메뉴 건너뛰기




Volumn 26, Issue , 2015, Pages S1549-S1558

A novel method of diagnosing premature ventricular contraction based on sparse autoencoder and softmax regression

Author keywords

feature extraction; PVC diagnosis; softmax regression; sparse auto encoder

Indexed keywords

DIAGNOSIS; EXTRACTION; FEATURE EXTRACTION; LEARNING SYSTEMS;

EID: 84977462943     PISSN: 09592989     EISSN: 18783619     Source Type: Journal    
DOI: 10.3233/BME-151454     Document Type: Article
Times cited : (24)

References (19)
  • 1
    • 77957849289 scopus 로고    scopus 로고
    • ECG beat classification using particle swarm optimization, and radial basis function neural network
    • M. Korurek, and B. Dogan. ECG beat classification using particle swarm optimization, and radial basis function neural network. Expert Systems with Applications 37 (2010), 7563-7569
    • (2010) Expert Systems with Applications , vol.37 , pp. 7563-7569
    • Korurek, M.1    Dogan, B.2
  • 3
    • 85000900340 scopus 로고    scopus 로고
    • A case of heart failure caused by frequent premature ventricular contractions
    • K. Sawasaki, and M. Saito. A case of heart failure caused by frequent premature ventricular contractions. Journal of Arrhythmia 26 (2010), 204-208
    • (2010) Journal of Arrhythmia , vol.26 , pp. 204-208
    • Sawasaki, K.1    Saito, M.2
  • 6
    • 2942709662 scopus 로고    scopus 로고
    • Automatic classification of heartbeats using ECG morphology, and heartbeat interval features
    • P. de Chazal, M. O'Dwyer, and R.B. Reilly. Automatic classification of heartbeats using ECG morphology, and heartbeat interval features. IEEE Transactions on Biomedical Engineering 51 (2004), 1196-1206
    • (2004) IEEE Transactions on Biomedical Engineering , vol.51 , pp. 1196-1206
    • De Chazal, P.1    O'Dwyer, M.2    Reilly, R.B.3
  • 8
    • 84901835240 scopus 로고    scopus 로고
    • A new neural network model based on the LVQ algorithm for multiclass classification of arrhythmias
    • P. Melin, J. Amezcua, F. Valdez, and O. Castillo. A new neural network model based on the LVQ algorithm for multiclass classification of arrhythmias. Information Science 279 (2014), 483-479
    • (2014) Information Science , vol.279 , pp. 479-483
    • Melin, P.1    Amezcua, J.2    Valdez, F.3    Castillo, O.4
  • 9
    • 84940167190 scopus 로고    scopus 로고
    • Automatic ECG arrhythmia classification using dual tree complex wavelet based features
    • Manu Thomas. Manab Kr Das, and Samit Ari. Automatic ECG arrhythmia classification using dual tree complex wavelet based features, International Journal of Electronics, and Communications 69 (2015), 715-721
    • (2015) International Journal of Electronics, and Communications , vol.69 , pp. 715-721
    • Thomas, M.1    Kr Das, M.2    Ari, S.3
  • 10
    • 84878473520 scopus 로고    scopus 로고
    • ECG arrhythmia classification using a probabilistic neural network with a feature reduction method
    • J. Wang, W. Chiang, Y. Hsu, and Y.C. Yang. ECG arrhythmia classification using a probabilistic neural network with a feature reduction method. Neurocomputing 116 (2013), 38-45
    • (2013) Neurocomputing , vol.116 , pp. 38-45
    • Wang, J.1    Chiang, W.2    Hsu, Y.3    Yang, Y.C.4
  • 11
  • 12
    • 33845865323 scopus 로고    scopus 로고
    • Robust neural network based classification of premature ventricular contractions using wavelet transform, and timing interval features
    • Laurent Giowangrandi, and G.T.A. Kovacs. Robust neural network based classification of premature ventricular contractions using wavelet transform, and timing interval features. IEEE Transactions on Biomedical Engineering 53 (2006), 2507-2515
    • (2006) IEEE Transactions on Biomedical Engineering , vol.53 , pp. 2507-2515
    • Giowangrandi, L.1    Kovacs, G.T.A.2
  • 13
    • 84884325458 scopus 로고    scopus 로고
    • Classification of premature ventricular contraction based on discrete wavelet transform for real time applications
    • A. Orozco-Duque, and F.J. Martinez-Tabares. Classification of premature ventricular contraction based on discrete wavelet transform for real time applications. Pan American Health Care Exchanges, Medellin, 2013, pp. 1-5
    • (2013) Pan American Health Care Exchanges Medellin , pp. 1-5
    • Orozco-Duque, A.1    Martinez-Tabares, F.J.2
  • 16
    • 84891885335 scopus 로고    scopus 로고
    • A low-complexity dataadaptive approach for premature ventricular contraction recognition
    • Peng Li. Chengyu Liu. Xinpei Wang, Dingchang Zheng, Yuanyang Li, and Changchun Liu, A low-complexity dataadaptive approach for premature ventricular contraction recognition, Signal, Image, and Video Processing 8 (2014), 111-120
    • (2014) Signal, Image, and Video Processing , vol.8 , pp. 111-120
    • Li, P.1    Liu, C.2    Wang, X.3    Zheng, D.4    Li, Y.5    Liu, C.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.