메뉴 건너뛰기




Volumn 10, Issue 6, 2016, Pages 895-903

Prediction of biological and grain yield of barley using multiple regression and artificial neural network models

Author keywords

Barley grain yield; Correlation coefficient; Data mining; Standardized

Indexed keywords


EID: 84982242466     PISSN: 18352693     EISSN: 18352707     Source Type: Journal    
DOI: 10.21475/ajcs.2016.10.06.p7634     Document Type: Article
Times cited : (17)

References (38)
  • 1
    • 84926248110 scopus 로고    scopus 로고
    • Effect of terminal drought stress on yield and yield components of barley (Hordeum vulgare L.) cultivars
    • (In Persian)
    • Afshari N, Askari L, Hedaiati S (2011) Effect of terminal drought stress on yield and yield components of barley (Hordeum vulgare L.) cultivars. J New Physio Sci. 8: 3-8. (In Persian).
    • (2011) J New Physio Sci , vol.8 , pp. 3-8
    • Afshari, N.1    Askari, L.2    Hedaiati, S.3
  • 2
    • 84896328541 scopus 로고    scopus 로고
    • Awn primordium to tipping is the most decisive developmental phase for spikelet survival in barley
    • Alqudah AM, Schnurbusch T (2014) Awn primordium to tipping is the most decisive developmental phase for spikelet survival in barley. Funct Plant Biol. 41:424-436.
    • (2014) Funct Plant Biol , vol.41 , pp. 424-436
    • Alqudah, A.M.1    Schnurbusch, T.2
  • 3
    • 0005410978 scopus 로고
    • Crop characteristics and the potential of wheat yield
    • Austin RB (1984) Crop characteristics and the potential of wheat yield. J Agric Sci Camb. 98: 447-453.
    • (1984) J Agric Sci Camb , vol.98 , pp. 447-453
    • Austin, R.B.1
  • 4
    • 84971673428 scopus 로고    scopus 로고
    • Application of unsupervised weighting algorithms for identifying important attributes and factors contributing to grain and biological yields of wheat
    • Bijanzadeh E, Emam Y, Ebrahimie E, Ebrahimie M (2012) Application of unsupervised weighting algorithms for identifying important attributes and factors contributing to grain and biological yields of wheat. Crop Breed J. 2:111-117.
    • (2012) Crop Breed J , vol.2 , pp. 111-117
    • Bijanzadeh, E.1    Emam, Y.2    Ebrahimie, E.3    Ebrahimie, M.4
  • 5
    • 84868226351 scopus 로고    scopus 로고
    • Evaluation of assimilate remobilization and yield of wheat cultivars under different irrigation regimes in an arid climate
    • Bijanzadeh E, Emam Y (2012) Evaluation of assimilate remobilization and yield of wheat cultivars under different irrigation regimes in an arid climate. Arch Agron Soil Sci. 58: 1243-1259.
    • (2012) Arch Agron Soil Sci , vol.58 , pp. 1243-1259
    • Bijanzadeh, E.1    Emam, Y.2
  • 6
    • 84918540491 scopus 로고    scopus 로고
    • Application of supervised and unsupervised algorithms to find the important features related to barley (Hurdeum vulgare L.) grain yield: A new vista in data mining
    • Bijanzadeh E, Naderi R (2014) Application of supervised and unsupervised algorithms to find the important features related to barley (Hurdeum vulgare L.) grain yield: A new vista in data mining. Aust J Crop Sci. 8:1590-1596.
    • (2014) Aust J Crop Sci , vol.8 , pp. 1590-1596
    • Bijanzadeh, E.1    Naderi, R.2
  • 7
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • Broomhead DS, Lowe D (1988) Multivariable functional interpolation and adaptive networks. Comp Sys. 2:321-355.
    • (1988) Comp Sys , vol.2 , pp. 321-355
    • Broomhead, D.S.1    Lowe, D.2
  • 8
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modeling
    • Dawson CW, Wilby R (1998) An artificial neural network approach to rainfall-runoff modeling. J Hydrol Sci. 43:47-66
    • (1998) J Hydrol Sci , vol.43 , pp. 47-66
    • Dawson, C.W.1    Wilby, R.2
  • 9
    • 0030899310 scopus 로고    scopus 로고
    • Source-sink ratio in barley (Hordeum vulgare L.) during grain filling: effects on senescence and grain protein concentration
    • Dreccer MF, Grashoff C, Rabbinge R (1997) Source-sink ratio in barley (Hordeum vulgare L.) during grain filling: effects on senescence and grain protein concentration. Field Crops Res. 49:269-277.
    • (1997) Field Crops Res , vol.49 , pp. 269-277
    • Dreccer, M.F.1    Grashoff, C.2    Rabbinge, R.3
  • 10
    • 79955431489 scopus 로고    scopus 로고
    • Effect of planting density and chlormequat chloride on morphological and physiological characteristics of winter barley (Hordeum vulgare L.) cultivar
    • Emam Y (2002) Effect of planting density and chlormequat chloride on morphological and physiological characteristics of winter barley (Hordeum vulgare L.) cultivar. J Agric Sci Tech. 2:75-83.
    • (2002) J Agric Sci Tech , vol.2 , pp. 75-83
    • Emam, Y.1
  • 11
    • 84926249965 scopus 로고    scopus 로고
    • Investigation of grain yield in some cultivars and genotypes of barely (Hordeum vulgare L.) using drought tolerance indices
    • (In Persian)
    • Etemadi R, Naghavi A, Jafarii S, Sedaghat L (2005) Investigation of grain yield in some cultivars and genotypes of barely (Hordeum vulgare L.) using drought tolerance indices. J Crop Breed. 4:75-83. (In Persian)
    • (2005) J Crop Breed , vol.4 , pp. 75-83
    • Etemadi, R.1    Naghavi, A.2    Jafarii, S.3    Sedaghat, L.4
  • 12
    • 0035306877 scopus 로고    scopus 로고
    • A rule based fuzzy model for the prediction of petrophysical rock parameters
    • Finol J, Guo YK, Jing, XD (2001) A rule based fuzzy model for the prediction of petrophysical rock parameters. J Pet Sci Eng. 29: 97-113.
    • (2001) J Pet Sci Eng , vol.29 , pp. 97-113
    • Finol, J.1    Guo, Y.K.2    Jing, X.D.3
  • 13
    • 77949748301 scopus 로고    scopus 로고
    • Modeling the terminal velocity of agricultural seeds with artificial neural networks
    • Ghamari S, Borghei AM, Rabbani H, Khazaei J, Basati F (2010) Modeling the terminal velocity of agricultural seeds with artificial neural networks. Afr J Agr Res. 5: 389-398.
    • (2010) Afr J Agr Res , vol.5 , pp. 389-398
    • Ghamari, S.1    Borghei, A.M.2    Rabbani, H.3    Khazaei, J.4    Basati, F.5
  • 16
    • 84859970286 scopus 로고    scopus 로고
    • Application of ANN and multi-variable regression models on yield of dryland wheat in Gorve of Kordestan
    • (In Persian)
    • Hosseini SM, Seyosemorde M, Fathi P, Seyosemorde A (2007) Application of ANN and multi-variable regression models on yield of dryland wheat in Gorve of Kordestan. Agric Res J. 7: 41-54. (In Persian)
    • (2007) Agric Res J , vol.7 , pp. 41-54
    • Hosseini, S.M.1    Seyosemorde, M.2    Fathi, P.3    Seyosemorde, A.4
  • 18
    • 19044373009 scopus 로고    scopus 로고
    • Artificial neural networks for corn and soybean yield prediction
    • Kaul M, Hill RL, Walthall C (2005) Artificial neural networks for corn and soybean yield prediction. Agric Sys. 85: 1-18.
    • (2005) Agric Sys , vol.85 , pp. 1-18
    • Kaul, M.1    Hill, R.L.2    Walthall, C.3
  • 19
    • 84923191263 scopus 로고    scopus 로고
    • Samihah M, Wan I (2014) Application of artificial neural network in predicting crop yield: a review
    • Khairunniza-Bejo S (2014) Samihah M, Wan I (2014) Application of artificial neural network in predicting crop yield: a review. J Food Sci Eng. 4: 1-9.
    • (2014) J Food Sci Eng , vol.4 , pp. 1-9
    • Khairunniza-Bejo, S.1
  • 20
    • 84859965161 scopus 로고    scopus 로고
    • Predicting dryland wheat yield from meteorological data using expert system, Khorasan Province, Iran
    • Khashei-Siuki A, Kouchakzadeh M, Ghahraman, B (2011). Predicting dryland wheat yield from meteorological data using expert system, Khorasan Province, Iran. J Agr Sci Tech. 13: 627-640
    • (2011) J Agr Sci Tech , vol.13 , pp. 627-640
    • Khashei-Siuki, A.1    Kouchakzadeh, M.2    Ghahraman, B.3
  • 21
    • 46049104173 scopus 로고    scopus 로고
    • A novel alternative method for modeling the effects of air temperature and Slice thickness on quality and drying kinetics of tomato slices
    • Khazaei J, Chegini GR, Bakhshiani M (2008) A novel alternative method for modeling the effects of air temperature and Slice thickness on quality and drying kinetics of tomato slices. Int Dry Tech J. 26: 759-775.
    • (2008) Int Dry Tech J , vol.26 , pp. 759-775
    • Khazaei, J.1    Chegini, G.R.2    Bakhshiani, M.3
  • 22
    • 84929323011 scopus 로고    scopus 로고
    • Model for prediction of evapotranspiration Using MLP neural network
    • Khoshhal J. Mokarram, M (2012). Model for prediction of evapotranspiration Using MLP neural network. Int J Envi Sci. 3: 1000-1009.
    • (2012) Int J Envi Sci , vol.3 , pp. 1000-1009
    • Khoshhal, J.1    Mokarram, M.2
  • 24
    • 84882313625 scopus 로고    scopus 로고
    • Comparison between multi-layer perceptron and radial basis function networks for sediment load estimation in a tropical watershed
    • Memarian H, Balasundram SK (2012) Comparison between multi-layer perceptron and radial basis function networks for sediment load estimation in a tropical watershed. J Water Res Prot. 4: 870-876.
    • (2012) J Water Res Prot , vol.4 , pp. 870-876
    • Memarian, H.1    Balasundram, S.K.2
  • 25
    • 84918493701 scopus 로고    scopus 로고
    • Study of effective traits on grain yield of two and six row barley genotypes (Hordeum vulgare L.) under terminal drought stress condition
    • (In Persian)
    • Nikkhah HR, Saberi MH, Mahlouji M (2010) Study of effective traits on grain yield of two and six row barley genotypes (Hordeum vulgare L.) under terminal drought stress condition. Iran J Crop Sci. 12:170-184. (In Persian).
    • (2010) Iran J Crop Sci , vol.12 , pp. 170-184
    • Nikkhah, H.R.1    Saberi, M.H.2    Mahlouji, M.3
  • 26
    • 0036749857 scopus 로고    scopus 로고
    • Neural network prediction of maize yield using alternative data coding algorithms
    • O'Neal MR, Engel BA, Ess DR, Frankenberger JR (2002) Neural network prediction of maize yield using alternative data coding algorithms. Bio Eng. 83: 31-46.
    • (2002) Bio Eng , vol.83 , pp. 31-46
    • O'Neal, M.R.1    Engel, B.A.2    Ess, D.R.3    Frankenberger, J.R.4
  • 27
    • 19044383581 scopus 로고    scopus 로고
    • Comparison of adaptive techniques to predict crop yield response under varying soil and land management conditions
    • Park SJ, Hwang CS, Vlek PL (2005) Comparison of adaptive techniques to predict crop yield response under varying soil and land management conditions. Agric Sys. 85: 59-81.
    • (2005) Agric Sys , vol.85 , pp. 59-81
    • Park, S.J.1    Hwang, C.S.2    Vlek, P.L.3
  • 28
    • 0034975178 scopus 로고    scopus 로고
    • Crop modeling: nostalgia about present or reminiscence about future
    • Poluektov RA Topaj AG (2001) Crop modeling: nostalgia about present or reminiscence about future. Agron J. 93: 653-659.
    • (2001) Agron J , vol.93 , pp. 653-659
    • Poluektov, R.A.1    Topaj, A.G.2
  • 29
    • 0001355838 scopus 로고
    • Radial basis functions for multivariable interpolation: a review
    • Mason JC, Cox MG (eds). Oxford UniversityPress, New York
    • Powell MJD (1987) Radial basis functions for multivariable interpolation: a review. In: Mason JC, Cox MG (eds) Proceedings of IMA Conference on Algorithms for Approximation. Oxford UniversityPress, New York, pp 143-167
    • (1987) Proceedings of IMA Conference on Algorithms for Approximation , pp. 143-167
    • Powell, M.J.D.1
  • 30
    • 84926246521 scopus 로고    scopus 로고
    • Evaluation of some physiological and morphological characteristic correlated to yield of barley cultivars
    • (In Persian)
    • Rezaii S, Naseri F, Namazi B (2010) Evaluation of some physiological and morphological characteristic correlated to yield of barley cultivars. Weed Crop Ecophys. 21:43-51. (In Persian).
    • (2010) Weed Crop Ecophys , vol.21 , pp. 43-51
    • Rezaii, S.1    Naseri, F.2    Namazi, B.3
  • 32
    • 33846689375 scopus 로고    scopus 로고
    • Artificial neural network modelling of common lambs quarters biomass production response to corn population and planting pattern
    • Saberali SF, Sadat Noori SA, Khazaei J, Hejazi A (2007) Artificial neural network modelling of common lambs quarters biomass production response to corn population and planting pattern. Pak J Biol Sci. 10: 326-334.
    • (2007) Pak J Biol Sci , vol.10 , pp. 326-334
    • Saberali, S.F.1    Sadat Noori, S.A.2    Khazaei, J.3    Hejazi, A.4
  • 34
    • 0037197571 scopus 로고    scopus 로고
    • A data driven algo-rithm for constructing artificial neural network rainfall-runoff models
    • Sudheer KP, Gosain AK, Ramasastri KS (2002) A data driven algo-rithm for constructing artificial neural network rainfall-runoff models. J Hydr Proc. 16:1325-1330.
    • (2002) J Hydr Proc , vol.16 , pp. 1325-1330
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 35
    • 11144277367 scopus 로고    scopus 로고
    • Does a higher yield potential improve barley performance under Mediterranean stresses conditions? A case study
    • Tambussi EA, Nogues S, Ferrio JP, Voltas J, Araus JL (2005) Does a higher yield potential improve barley performance under Mediterranean stresses conditions? A case study. Field Crop Res. 91: 149-160.
    • (2005) Field Crop Res , vol.91 , pp. 149-160
    • Tambussi, E.A.1    Nogues, S.2    Ferrio, J.P.3    Voltas, J.4    Araus, J.L.5
  • 36
  • 37
    • 33751569366 scopus 로고    scopus 로고
    • Application of a radial basis function neural network for diagnosis of diabetes mellitus
    • Venkatesan P, Anitha S (2006) Application of a radial basis function neural network for diagnosis of diabetes mellitus. Cerr Sci. 91: 10-16.
    • (2006) Cerr Sci , vol.91 , pp. 10-16
    • Venkatesan, P.1    Anitha, S.2
  • 38
    • 79151474442 scopus 로고    scopus 로고
    • Multiple regression, ANN (RBF, MLP) and ANFIS models for prediction of swell potential of clayey soils
    • Yilmaz I, Kaynar O (2011) Multiple regression, ANN (RBF, MLP) and ANFIS models for prediction of swell potential of clayey soils. Exp Sys App. 38: 5958-5966.
    • (2011) Exp Sys App , vol.38 , pp. 5958-5966
    • Yilmaz, I.1    Kaynar, O.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.