메뉴 건너뛰기




Volumn 13, Issue 4, 2011, Pages 627-640

Predicting dryland wheat yield from meteorological data using expert system, Khorasan Province, Iran

Author keywords

ANFIS; Artificial neural network; Dryland wheat yield; Khorasan; Multi layered preceptron; Prediction

Indexed keywords

TRITICUM AESTIVUM;

EID: 84859965161     PISSN: 16807073     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (33)

References (43)
  • 3
    • 0035047573 scopus 로고    scopus 로고
    • Spatial Validation of Crop Models for Precision Agriculture
    • Basso, B., Ritchie, J. T., Pierce, F. J., Braga, R. P. and Jones, J. W. 2001. Spatial Validation of Crop Models for Precision Agriculture. Agric. Sys., 68: 97-112.
    • (2001) Agric. Sys , vol.68 , pp. 97-112
    • Basso, B.1    Ritchie, J.T.2    Pierce, F.J.3    Braga, R.P.4    Jones, J.W.5
  • 6
    • 0037232380 scopus 로고    scopus 로고
    • CropSyst, a Cropping Systems Simulation Model
    • Claudio, O., Marcello, D. and Roger, N. 2003. CropSyst, a Cropping Systems Simulation Model, Eur. J. Agron., 18(3-4): 289-307.
    • (2003) Eur. J. Agron , vol.18 , Issue.3-4 , pp. 289-307
    • Claudio, O.1    Marcello, D.2    Roger, N.3
  • 7
    • 0032005702 scopus 로고    scopus 로고
    • An Artificial Neural Network Approach to Rainfall-runoff Modelling
    • Dawson, W. C. and Wilby, R. 1998. An Artificial Neural Network Approach to Rainfall-runoff Modelling. Hydrol. Sci. J., 43(1): 47-66.
    • (1998) Hydrol. Sci. J , vol.43 , Issue.1 , pp. 47-66
    • Dawson, W.C.1    Wilby, R.2
  • 8
    • 0032829433 scopus 로고    scopus 로고
    • Provision Hydrologique par Reseaux de Neurons Artificials
    • Coulibaly, P., Anctil, F. and Bobee, B. 1999. Provision Hydrologique par Reseaux de Neurons Artificials. Can. J. Civil Eng., 26(3): 293-304.
    • (1999) Can. J. Civil Eng , vol.26 , Issue.3 , pp. 293-304
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 10
    • 73649141001 scopus 로고    scopus 로고
    • Reference Evapotranspiration Estimation Using Adaptive Neuro-Fuzzy Inference System
    • Doǧan, E. 2008. Reference Evapotranspiration Estimation Using Adaptive Neuro-Fuzzy Inference System. J. Irrig. Drain. Eng., ASCE, 58:617-628
    • (2008) J. Irrig. Drain. Eng., ASCE , vol.58 , pp. 617-628
    • Doǧan, E.1
  • 11
  • 13
    • 60249095062 scopus 로고    scopus 로고
    • A Fuzzy Dynamic Wave Routing Model
    • Gopakumar, R. P. and Mujumdar, P. 2007. A Fuzzy Dynamic Wave Routing Model. Hydrol. Proc., 21: 458-467.
    • (2007) Hydrol. Proc , vol.21 , pp. 458-467
    • Gopakumar, R.P.1    Mujumdar, P.2
  • 14
    • 84859962203 scopus 로고    scopus 로고
    • Prediction of Crop Yields Across Four Climate Zones in Germany: An Artificial Neural Network Approach
    • Hamburg University, Germany
    • Heinzow, T. and Richard, T. 2002. Prediction of Crop Yields Across Four Climate Zones in Germany: an Artificial Neural Network Approach. Working Paper FNU-34 Centre for Marine and Climate Research, Hamburg University, Germany.
    • (2002) Working Paper FNU-34 Centre For Marine and Climate Research
    • Heinzow, T.1    Richard, T.2
  • 15
    • 84859970286 scopus 로고    scopus 로고
    • Application of ANN and Multi-variable Regression Models on Yield of Dryland Wheat in Gorve of Kordestan
    • Hosseini, S. M., Seyosemorde, M., Fathi, P and Seyosemorde, A. 2007. Application of ANN and Multi-variable Regression Models on Yield of Dryland Wheat in Gorve of Kordestan. Agri. Res. J., 7(1): 41-54. (In Persian)
    • (2007) Agri. Res. J , vol.7 , Issue.1 , pp. 41-54
    • Hosseini, S.M.1    Seyosemorde, M.2    Fathi, P.3    Seyosemorde, A.4
  • 16
    • 0033007788 scopus 로고    scopus 로고
    • Temperature Response Function for Leaf Appearance Rate in Wheat and Corn
    • Jame, Y. W., Cutforth, H. W. and Ritchie, J. 1999. Temperature Response Function for Leaf Appearance Rate in Wheat and Corn. Can. J. Plant Sci., 79: 1-10.
    • (1999) Can. J. Plant Sci , vol.79 , pp. 1-10
    • Jame, Y.W.1    Cutforth, H.W.2    Ritchie, J.3
  • 17
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-Network-Based Fuzzy Inference System
    • Jang, J. S. R. 1993. ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE, Trans. Sys. Man. Cyb., 23(3): 665-685.
    • (1993) IEEE, Trans. Sys. Man. Cyb , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.R.1
  • 19
    • 84860002948 scopus 로고    scopus 로고
    • Prediction of Pressure in Water Networks Using ANFIS Models
    • Karamouz, M. M., Tabehs, A. and Nazief, A. 2004. Prediction of Pressure in Water Networks Using ANFIS Models. Isfahan J. Water Wastewater, 53: 3-14. (In Persian)
    • (2004) Isfahan. J. Water Wastewater , vol.3-14 , pp. 53
    • Karamouz, M.M.1    Tabehs, A.2    Nazief, A.3
  • 20
    • 19044373009 scopus 로고    scopus 로고
    • Artificial Neural Networks for Corn and Soybean Yield Prediction
    • Kaul, M., Hill, R. L. and Walthall C. 2005. Artificial Neural Networks for Corn and Soybean Yield Prediction. Agric. Sys., 85: 1-18.
    • (2005) Agric. Sys , vol.85 , pp. 1-18
    • Kaul, M.1    Hill, R.L.2    Walthall, C.3
  • 23
    • 33845872549 scopus 로고    scopus 로고
    • River Suspended Sediment Modeling Using a Fuzzy Logic Approach
    • Kisi, O., Karahan, M. E. and Sen, Z. 2006. River Suspended Sediment Modeling Using a Fuzzy Logic Approach. Hydrol. Proc., 20: 4351-4362.
    • (2006) Hydrol. Proc , vol.20 , pp. 4351-4362
    • Kisi, O.1    Karahan, M.E.2    Sen, Z.3
  • 24
    • 34547116654 scopus 로고    scopus 로고
    • Adaptive Neurofuzzy Computing Technique for Evapotranspiration Estimation
    • Kisi, O. and Oztork, O. 2007. Adaptive Neurofuzzy Computing Technique for Evapotranspiration Estimation. J. Irrig. Drain. Eng, ASCE, 133(4): 368-379
    • (2007) J. Irrig. Drain. Eng, ASCE , vol.133 , Issue.4 , pp. 368-379
    • Kisi, O.1    Oztork, O.2
  • 25
    • 0034062402 scopus 로고    scopus 로고
    • Correlation of Corn and Soybean Grain Yield with Topography and Soil Properties
    • Kravchenko, A. N. and Bullock, D. G. 2000. Correlation of Corn and Soybean Grain Yield with Topography and Soil Properties., Agron. J. 92 (1): 75-83.
    • (2000) Agron. J , vol.92 , Issue.1 , pp. 75-83
    • Kravchenko, A.N.1    Bullock, D.G.2
  • 27
    • 0029663621 scopus 로고    scopus 로고
    • The Use of Artificial Neural Networks for the Prediction of Water Quality Parameters
    • Maier, H. R. and Dandy, G. C. 1996. The Use of Artificial Neural Networks for the Prediction of Water Quality Parameters. Water Resour. Res., 32(4): 1013-1022.
    • (1996) Water Resour. Res , vol.32 , Issue.4 , pp. 1013-1022
    • Maier, H.R.1    Dandy, G.C.2
  • 28
    • 0346846648 scopus 로고    scopus 로고
    • Artificial Neural Network Modeling of Hydrogen Storage Properties of Mg-based Alloys
    • Malinova, T. and Guo, Z. X. 2004. Artificial Neural Network Modeling of Hydrogen Storage Properties of Mg-based Alloys. Mater. Sci. Eng. A., 365: 219-227.
    • (2004) Mater. Sci. Eng. A , vol.365 , pp. 219-227
    • Malinova, T.1    Guo, Z.X.2
  • 29
    • 1942490118 scopus 로고    scopus 로고
    • A Neuro-Fuzzy Computing Technique for Modeling Hydrological Time Series
    • Nayak, P. C., Sudheer, K. P., Rangan, D. M. and Ramasastri, K. S. 2004. A Neuro-Fuzzy Computing Technique for Modeling Hydrological Time Series. J. Hydrol., 291: 52-66.
    • (2004) J. Hydrol , vol.291 , pp. 52-66
    • Nayak, P.C.1    Sudheer, K.P.2    Rangan, D.M.3    Ramasastri, K.S.4
  • 30
    • 19044383581 scopus 로고    scopus 로고
    • Comparison of Adaptive Techniques to Predict Crop Yield Response Under Varying Soil and Land Management Conditions
    • Park, S. J., Hwang, C. S. and Vlek, P. L. G. 2005. Comparison of Adaptive Techniques to Predict Crop Yield Response Under Varying Soil and Land Management Conditions. Agric. Sys., 85: 59-81.
    • (2005) Agric. Sys , vol.85 , pp. 59-81
    • Park, S.J.1    Hwang, C.S.2    Vlek, P.L.G.3
  • 31
    • 0034975178 scopus 로고    scopus 로고
    • Crop Modeling: Nostalgia about Present or Reminiscence about Future
    • Poluektov, R. A. and Topaj, A. G. 2001. Crop Modeling: Nostalgia about Present or Reminiscence about Future. Agron. J., 93: 653-659.
    • (2001) Agron. J , vol.93 , pp. 653-659
    • Poluektov, R.A.1    Topaj, A.G.2
  • 32
    • 4243260613 scopus 로고
    • Approaches to Modelling Canopy Development in Wheat
    • (Eds.): Day, W. and Atkin, R. K., Plenum Press, New York; London
    • Porter, I. R. and Jame, R. 1985. Approaches to Modelling Canopy Development in Wheat. In: Wheat Growth and Modelling. (Eds.): Day, W. and Atkin, R. K., Plenum Press, New York; London, PP. 69-82.
    • (1985) Wheat Growth and Modelling , pp. 69-82
    • Porter, I.R.1    Jame, R.2
  • 33
    • 54849427050 scopus 로고    scopus 로고
    • Artificial Neural Network Estimation of Reference Evapotranspiration from Pan Evaporation in a Semi-Arid Environment
    • Rahimi-Khoob, A. 2008. Artificial Neural Network Estimation of Reference Evapotranspiration from Pan Evaporation in a Semi-Arid Environment. Irrig. Sci., 27:35-39.
    • (2008) Irrig. Sci , vol.27 , pp. 35-39
    • Rahimi-Khoob, A.1
  • 34
    • 60249099862 scopus 로고    scopus 로고
    • An Expert System for Predicting Longitudinal Dispersion Coefficient in Natural Streams by Using ANFIS
    • Riahi-Madvar, H., Ayyoubzadeh, S. A., Khadangi, E. and Ebadzadeh, M. M. 2009. An Expert System for Predicting Longitudinal Dispersion Coefficient in Natural Streams by Using ANFIS. Expet Sys. Appl., 36: 589-8596.
    • (2009) Expet Sys. Appl , vol.36 , pp. 589-8596
    • Riahi-Madvar, H.1    Ayyoubzadeh, S.A.2    Khadangi, E.3    Ebadzadeh, M.M.4
  • 35
    • 33745101017 scopus 로고    scopus 로고
    • A Comparative Fuzzy Logic Approach to Runoff Coefficient and Runoff Estimation
    • Sen, Z. and Altunkaynak, A. 2006. A Comparative Fuzzy Logic Approach to Runoff Coefficient and Runoff Estimation. Hydrol. Proc., 20: 1993-2009.
    • (2006) Hydrol. Proc , vol.20 , pp. 1993-2009
    • Sen, Z.1    Altunkaynak, A.2
  • 36
    • 84859953914 scopus 로고    scopus 로고
    • Evalution and Modification of MEDIWY Model for of Irrigated and Rainfed Wheat in Maraghe Area
    • Sepaskhah A. R., Aghayari, F. and Tavakoli A. R. 2006. Evalution and Modification of MEDIWY Model for of Irrigated and Rainfed Wheat in Maraghe Area. J. Agric. Eng. Res., 7(28):133-150. (In Persian)
    • (2006) J. Agric. Eng. Res , vol.7 , Issue.28 , pp. 133-150
    • Sepaskhah, A.R.1    Aghayari, F.2    Tavakoli, A.R.3
  • 38
    • 60249089557 scopus 로고    scopus 로고
    • Modeling Trip Tours Using ANFIS Modeling
    • Tashnehlab, M. and Menhaj, S. 2001. Modeling Trip Tours Using ANFIS Modeling. Eng. J. Tehran Univ., 31(3): 361-370. (In Persian)
    • (2001) Eng. J. Tehran Univ , vol.31 , Issue.3 , pp. 361-370
    • Tashnehlab, M.1    Menhaj, S.2
  • 39
    • 16844366163 scopus 로고    scopus 로고
    • Artificial Neural Networks to Predict Corn Yield from Compact Airborne Spectrographic Imager Data
    • Uno, Y., Prasher, S. O., Lacroix, R. /xnamexGoel/x/namex, P. K., Karimi, Y., Viau, A. and Patel, R. M. 2005. Artificial Neural Networks to Predict Corn Yield from Compact Airborne Spectrographic Imager Data. Comput. Electron. Agric., 47: 149-161.
    • (2005) Comput. Electron. Agric , vol.47 , pp. 149-161
    • Uno, Y.1    Prasher, S.O.2    Lacroix, R.P.K.3    Karimi, Y.4    Viau, A.5    Patel, R.M.6
  • 40
    • 0037417450 scopus 로고    scopus 로고
    • Site-specic Evaluation of the CROPGROW-Soybean Model on Missouri Claypan Soils
    • Wang, F., Fraisse, C. W., Kitchen, N. R. and Sudduth, K. A. 2002. Site-specic Evaluation of the CROPGROW-Soybean Model on Missouri Claypan Soils. Agric. Sys.,76: 985-1005.
    • (2002) Agric. Sys , vol.76 , pp. 985-1005
    • Wang, F.1    Fraisse, C.W.2    Kitchen, N.R.3    Sudduth, K.A.4
  • 41
    • 0041691767 scopus 로고    scopus 로고
    • Spatial Crop Yield Prediction from Soil and Land Surface State Variables Using an Autoregressive State-space Approach
    • Wendroth, O., Jurschik, P. and Nielsen, D. R. 1999. Spatial Crop Yield Prediction from Soil and Land Surface State Variables Using an Autoregressive State-space Approach. Precision Agric., 99: 419-428.
    • (1999) Precision Agric , vol.99 , pp. 419-428
    • Wendroth, O.1    Jurschik, P.2    Nielsen, D.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.