메뉴 건너뛰기




Volumn 47, Issue 2, 2005, Pages 149-161

Artificial neural networks to predict corn yield from Compact Airborne Spectrographic Imager data

Author keywords

Artificial neural networks; CASI; Corn; Crop yield; Hyperspectral remote sensing; Precision agriculture

Indexed keywords

FORECASTING; MAPPING; NEURAL NETWORKS; PHOTOCHEMICAL REACTIONS; REGRESSION ANALYSIS; VEGETATION;

EID: 16844366163     PISSN: 01681699     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compag.2004.11.014     Document Type: Article
Times cited : (204)

References (39)
  • 1
    • 0034026627 scopus 로고    scopus 로고
    • Spectral vegetation indices as nondestructive tools for determining durum wheat yield
    • N. Aparicio, D. Villegas, J. Casadesus, J.L. Araus, and C. Royo Spectral vegetation indices as nondestructive tools for determining durum wheat yield Agron. J. 92 1 2000 83 91
    • (2000) Agron. J. , vol.92 , Issue.1 , pp. 83-91
    • Aparicio, N.1    Villegas, D.2    Casadesus, J.3    Araus, J.L.4    Royo, C.5
  • 5
    • 0031158781 scopus 로고    scopus 로고
    • An ecological survey of deciduous woodlands using airborne remote sensing and geographical information system (GIS)
    • G.A. Blackburn, and E.J. Milton An ecological survey of deciduous woodlands using airborne remote sensing and geographical information system (GIS) Int. J. Remote Sens. 18 9 1997 1919 1935
    • (1997) Int. J. Remote Sens. , vol.18 , Issue.9 , pp. 1919-1935
    • Blackburn, G.A.1    Milton, E.J.2
  • 6
    • 0031184388 scopus 로고    scopus 로고
    • Technical note: The discrimination of scenes by principal components analysis of multi-spectral imagery
    • J.C. Ceballos, and M.J. Bottino Technical note: the discrimination of scenes by principal components analysis of multi-spectral imagery Int. J. Remote Sens. 18 11 1997 2437 2449
    • (1997) Int. J. Remote Sens. , vol.18 , Issue.11 , pp. 2437-2449
    • Ceballos, J.C.1    Bottino, M.J.2
  • 7
    • 0034476917 scopus 로고    scopus 로고
    • Estimation of soil physical properties using remote sensing and artificial neural network
    • D.-H. Chang, and S. Islam Estimation of soil physical properties using remote sensing and artificial neural network Remote Sens. Environ. 74 3 2000 534 544
    • (2000) Remote Sens. Environ. , vol.74 , Issue.3 , pp. 534-544
    • Chang, D.-H.1    Islam, S.2
  • 8
    • 0037300063 scopus 로고    scopus 로고
    • Retrieving soil moisture and agricultural variables by microwave radiometry using neural networks
    • F. Del Frate, P. Ferrazzoli, and G. Schiavon Retrieving soil moisture and agricultural variables by microwave radiometry using neural networks Remote Sens. Environ. 84 2 2003 174 183
    • (2003) Remote Sens. Environ. , vol.84 , Issue.2 , pp. 174-183
    • Del Frate, F.1    Ferrazzoli, P.2    Schiavon, G.3
  • 10
    • 0037813906 scopus 로고    scopus 로고
    • Precision farming: The management of variability
    • R. Earl, P.N. Wheeler, B.S. Blackmore, and R.J. Godwin Precision farming: the management of variability Landwards 51 4 1996 18 23
    • (1996) Landwards , vol.51 , Issue.4 , pp. 18-23
    • Earl, R.1    Wheeler, P.N.2    Blackmore, B.S.3    Godwin, R.J.4
  • 11
    • 0035144766 scopus 로고    scopus 로고
    • Variations in reflectance of tropical soils: Spectral-chemical composition relationships from AVIRIS data
    • L.S. Galvão, M.A. Pizarro, and J.C.N. Epiphanio Variations in reflectance of tropical soils: spectral-chemical composition relationships from AVIRIS data Remote Sens. Environ. 75 2 2001 245 255
    • (2001) Remote Sens. Environ. , vol.75 , Issue.2 , pp. 245-255
    • Galvão, L.S.1    Pizarro, M.A.2    Epiphanio, J.C.N.3
  • 13
    • 0242287210 scopus 로고    scopus 로고
    • Estimation of crop biophysical parameters through airborne and field hyperspectral remote sensing
    • P.K. Goel, S.O. Prasher, J.A. Landry, R.M. Patel, and A.A. Viau Estimation of crop biophysical parameters through airborne and field hyperspectral remote sensing Trans. ASAE 46 4 2003 1235 1246
    • (2003) Trans. ASAE , vol.46 , Issue.4 , pp. 1235-1246
    • Goel, P.K.1    Prasher, S.O.2    Landry, J.A.3    Patel, R.M.4    Viau, A.A.5
  • 14
    • 0033578440 scopus 로고    scopus 로고
    • Applying artificial neural network methodology to ocean color remote sensing
    • L. Gross, S. Thiria, and R. Frouin Applying artificial neural network methodology to ocean color remote sensing Ecol. Model. 120 2-3 1999 237 246
    • (1999) Ecol. Model. , vol.120 , Issue.2-3 , pp. 237-246
    • Gross, L.1    Thiria, S.2    Frouin, R.3
  • 15
    • 16844367924 scopus 로고    scopus 로고
    • Integral Solutions Ltd. Integral Solutions Ltd. Hampshire, UK
    • Integral Solutions Ltd. Clementine Reference Manual 1998 Integral Solutions Ltd. Hampshire, UK
    • (1998) Clementine Reference Manual
  • 16
    • 0031106095 scopus 로고    scopus 로고
    • Biomass retrieval from high-dimensional active/passive remote sensing data by using artificial neural networks
    • Y.-Q. Jin, and C. Liu Biomass retrieval from high-dimensional active/passive remote sensing data by using artificial neural networks Int. J. Remote Sens. 18 4 1997 971 979
    • (1997) Int. J. Remote Sens. , vol.18 , Issue.4 , pp. 971-979
    • Jin, Y.-Q.1    Liu, C.2
  • 17
    • 0344326232 scopus 로고    scopus 로고
    • A neural network model for estimating sea surface chlorophyll and sediments from thematic mapper imagery
    • L.E. Keiner, and X. Yan A neural network model for estimating sea surface chlorophyll and sediments from thematic mapper imagery Remote Sens. Environ. 66 2 1998 153 165
    • (1998) Remote Sens. Environ. , vol.66 , Issue.2 , pp. 153-165
    • Keiner, L.E.1    Yan, X.2
  • 18
    • 0032552629 scopus 로고    scopus 로고
    • Attributes of neural networks for extracting continuous vegetation variables from optical and radar measurements
    • D.S. Kimes, R.F. Nelson, M.T. Manry, and A.K. Fung Attributes of neural networks for extracting continuous vegetation variables from optical and radar measurements Int. J. Remote Sens. 19 14 1998 2639 2663
    • (1998) Int. J. Remote Sens. , vol.19 , Issue.14 , pp. 2639-2663
    • Kimes, D.S.1    Nelson, R.F.2    Manry, M.T.3    Fung, A.K.4
  • 20
    • 0035187124 scopus 로고    scopus 로고
    • A neural network for setting target corn yields
    • J. Liu, C.E. Goering, and L. Tian A neural network for setting target corn yields Trans. ASAE 44 3 2001 705 713
    • (2001) Trans. ASAE , vol.44 , Issue.3 , pp. 705-713
    • Liu, J.1    Goering, C.E.2    Tian, L.3
  • 22
    • 0034526769 scopus 로고    scopus 로고
    • Processing of CAC NDVI data for yield forecasting in the Sahelian region
    • F. Maselli, S. Romanelli, L. Bottai, and G. Maracchi Processing of CAC NDVI data for yield forecasting in the Sahelian region Int. J. Remote Sens. 21 18 2000 3509 3523
    • (2000) Int. J. Remote Sens. , vol.21 , Issue.18 , pp. 3509-3523
    • Maselli, F.1    Romanelli, S.2    Bottai, L.3    Maracchi, G.4
  • 24
    • 0031163572 scopus 로고    scopus 로고
    • Atmospheric correction validation of CASI images acquired over the BOREAS southern study area
    • N.T. O'Neill, F. Zagolski, M. Bergeron, A. Royer, J. Miller, and J. Freemantle Atmospheric correction validation of CASI images acquired over the BOREAS southern study area Can. J. Remote Sens. 23 2 1997 143 162
    • (1997) Can. J. Remote Sens. , vol.23 , Issue.2 , pp. 143-162
    • O'Neill, N.T.1    Zagolski, F.2    Bergeron, M.3    Royer, A.4    Miller, J.5    Freemantle, J.6
  • 25
    • 0036156499 scopus 로고    scopus 로고
    • Use of spectral radiance to estimate in-season biomass and grain yield in nitrogen- and water-stressed corn
    • S.L. Osborne, J.S. Schepers, D.D. Francis, and M.R. Schlemmer Use of spectral radiance to estimate in-season biomass and grain yield in nitrogen- and water-stressed corn Crop Sci. 42 2002 165 171
    • (2002) Crop Sci. , vol.42 , pp. 165-171
    • Osborne, S.L.1    Schepers, J.S.2    Francis, D.D.3    Schlemmer, M.R.4
  • 27
    • 0000848238 scopus 로고    scopus 로고
    • Investigations on a particular yield mapping system for combine harvesters
    • P. Reitz, and H.D. Kutzbach Investigations on a particular yield mapping system for combine harvesters Comput. Electron. Agric. 14 2-3 1996 137 150
    • (1996) Comput. Electron. Agric. , vol.14 , Issue.2-3 , pp. 137-150
    • Reitz, P.1    Kutzbach, H.D.2
  • 28
    • 0033589499 scopus 로고    scopus 로고
    • The influence of principal component analysis on the spatial structure of a multispectral dataset
    • C. Ricotta, and G.C. Avena The influence of principal component analysis on the spatial structure of a multispectral dataset Int. J. Remote Sens. 20 17 1999 3367 3376
    • (1999) Int. J. Remote Sens. , vol.20 , Issue.17 , pp. 3367-3376
    • Ricotta, C.1    Avena, G.C.2
  • 30
    • 0026308446 scopus 로고
    • Estimating grain yield of maturing rice canopies using high spectral resolution reflectance measurements
    • M. Shibayama, and T. Akiyama Estimating grain yield of maturing rice canopies using high spectral resolution reflectance measurements Remote Sens. Environ. 36 1991 45 53
    • (1991) Remote Sens. Environ. , vol.36 , pp. 45-53
    • Shibayama, M.1    Akiyama, T.2
  • 33
    • 0000742297 scopus 로고    scopus 로고
    • Implementing precision agriculture in the 21st century
    • J.V. Stafford Implementing precision agriculture in the 21st century J. Agric. Eng. Res. 76 2000 267 275
    • (2000) J. Agric. Eng. Res. , vol.76 , pp. 267-275
    • Stafford, J.V.1
  • 34
    • 0012899206 scopus 로고    scopus 로고
    • Mapping and interpreting the yield variation in cereal crops
    • J.V. Stafford, B. Ambler, R.M. Lark, and J. Catt Mapping and interpreting the yield variation in cereal crops Comput. Electron. Agric. 14 2-3 1996 101 119
    • (1996) Comput. Electron. Agric. , vol.14 , Issue.2-3 , pp. 101-119
    • Stafford, J.V.1    Ambler, B.2    Lark, R.M.3    Catt, J.4
  • 35
    • 0036105111 scopus 로고    scopus 로고
    • Impact of nitrogen and environmental conditions on corn as detected by hyperspectral reflectance
    • I.B. Strachan, E. Pattey, and J.B. Boisvert Impact of nitrogen and environmental conditions on corn as detected by hyperspectral reflectance Remote Sens. Environ. 80 2 2002 213 224
    • (2002) Remote Sens. Environ. , vol.80 , Issue.2 , pp. 213-224
    • Strachan, I.B.1    Pattey, E.2    Boisvert, J.B.3
  • 36
    • 0032415381 scopus 로고    scopus 로고
    • Evaluating the profitability of site-specific farming
    • S.M. Swinton, and J. Lowenberg-DeBoer Evaluating the profitability of site-specific farming J. Prod. Agric. 11 2 1998 439 446
    • (1998) J. Prod. Agric. , vol.11 , Issue.2 , pp. 439-446
    • Swinton, S.M.1    Lowenberg-Deboer, J.2
  • 37
    • 0035728101 scopus 로고    scopus 로고
    • Airborne multispectral imagery for mapping variable growing conditions and yields of cotton, grain sorghum, and corn
    • C. Yang, J.M. Bradford, and C.L. Wiegand Airborne multispectral imagery for mapping variable growing conditions and yields of cotton, grain sorghum, and corn Trans. ASAE 44 6 2001 1983 1994
    • (2001) Trans. ASAE , vol.44 , Issue.6 , pp. 1983-1994
    • Yang, C.1    Bradford, J.M.2    Wiegand, C.L.3
  • 38
    • 0034473334 scopus 로고    scopus 로고
    • Mapping grain sorghum growth and yield variations using airborne multispectral digital imagery
    • C. Yang, J.H. Everitt, J.M. Bradford, and D.E. Escobar Mapping grain sorghum growth and yield variations using airborne multispectral digital imagery Trans. ASAE 43 6 2000 1927 1938
    • (2000) Trans. ASAE , vol.43 , Issue.6 , pp. 1927-1938
    • Yang, C.1    Everitt, J.H.2    Bradford, J.M.3    Escobar, D.E.4
  • 39
    • 0036330344 scopus 로고    scopus 로고
    • Application of an empirical neural network to surface water quality estimation in the Gulf of Finland using combined optical data and microwave data
    • Y. Zhang, J. Pulliainen, S. Koponen, and M. Hallikainen Application of an empirical neural network to surface water quality estimation in the Gulf of Finland using combined optical data and microwave data Remote Sens. Environ. 81 2-3 2002 327 336
    • (2002) Remote Sens. Environ. , vol.81 , Issue.2-3 , pp. 327-336
    • Zhang, Y.1    Pulliainen, J.2    Koponen, S.3    Hallikainen, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.