메뉴 건너뛰기




Volumn 10, Issue 2, 2007, Pages 326-334

Artificial neural network modelling of common lambsquarters biomass production response to corn population and planting pattern

Author keywords

Artificial neural network; Biomass production estimation; Plantting pattern; Population

Indexed keywords

CHENOPODIUM ALBUM; ZEA MAYS;

EID: 33846689375     PISSN: 10288880     EISSN: 18125735     Source Type: Journal    
DOI: 10.3923/pjbs.2007.326.334     Document Type: Article
Times cited : (5)

References (61)
  • 1
    • 0036469175 scopus 로고    scopus 로고
    • Predictive non-linear modelling of complex data by artificial neural networks
    • Almeida, J.S., 2002. Predictive non-linear modelling of complex data by artificial neural networks. Curr. Opin. Biotechnol., 13: 72-76.
    • (2002) Curr. Opin. Biotechnol , vol.13 , pp. 72-76
    • Almeida, J.S.1
  • 2
    • 11844263587 scopus 로고    scopus 로고
    • Tropic croton interference in cotton
    • Askew, S.D. and J.W. Wilcut, 2001. Tropic croton interference in cotton. Weed Sci., 49: 184-189.
    • (2001) Weed Sci , vol.49 , pp. 184-189
    • Askew, S.D.1    Wilcut, J.W.2
  • 3
    • 0030935250 scopus 로고    scopus 로고
    • Development of a neural network for soybean rust epidemics
    • Batchelor, W.D., X.B. Yang and A.T. Tshanz, 1997. Development of a neural network for soybean rust epidemics. Trans. ASAE., 40: 247-252.
    • (1997) Trans. ASAE , vol.40 , pp. 247-252
    • Batchelor, W.D.1    Yang, X.B.2    Tshanz, A.T.3
  • 4
    • 0031947692 scopus 로고    scopus 로고
    • Economic and interference threshold densities of quackgrass (Elytrigia repens) in potato (Solanum tuberosum)
    • Baziramakenga, R. and G.D. Leroux, 1998. Economic and interference threshold densities of quackgrass (Elytrigia repens) in potato (Solanum tuberosum). Weed Sci., 46: 176-180.
    • (1998) Weed Sci , vol.46 , pp. 176-180
    • Baziramakenga, R.1    Leroux, G.D.2
  • 5
    • 85039218971 scopus 로고    scopus 로고
    • Board, J.E. and B.J. Harville, 1992. Explanations for greater light interception in narrow-vs wide-row soybean. Crop Sci., 32: 198-202.
    • Board, J.E. and B.J. Harville, 1992. Explanations for greater light interception in narrow-vs wide-row soybean. Crop Sci., 32: 198-202.
  • 6
    • 0031021146 scopus 로고    scopus 로고
    • Influence of barnyardgrass (Echinochloa crus-galli) time of emergence and density on corn (Zea mays)
    • Bosnic, A.C. and C.J. Swanton, 1997. Influence of barnyardgrass (Echinochloa crus-galli) time of emergence and density on corn (Zea mays). Weed Sci. 45: 276-282.
    • (1997) Weed Sci , vol.45 , pp. 276-282
    • Bosnic, A.C.1    Swanton, C.J.2
  • 7
    • 0001590095 scopus 로고
    • Comparison of models for describing corn yield response to nitrogen fertilizer
    • Cerrato, M.E. and A.M. Blackmer, 1990. Comparison of models for describing corn yield response to nitrogen fertilizer. Agron. J., 82: 138-143.
    • (1990) Agron. J , vol.82 , pp. 138-143
    • Cerrato, M.E.1    Blackmer, A.M.2
  • 8
    • 0034476917 scopus 로고    scopus 로고
    • Estimation of soil physical properties using remote sensing and artificial neural network
    • Chang, D.H. and S. Islam, 2000. Estimation of soil physical properties using remote sensing and artificial neural network. Remote Sensing of Environ., 74: 534-544.
    • (2000) Remote Sensing of Environ , vol.74 , pp. 534-544
    • Chang, D.H.1    Islam, S.2
  • 9
    • 23044514789 scopus 로고    scopus 로고
    • Common ragweed interference in peanut
    • Clewis, S.B., S.D. Askew and J.W. Wilcut, 2001. Common ragweed interference in peanut. Weed Sci., 49: 768-772.
    • (2001) Weed Sci , vol.49 , pp. 768-772
    • Clewis, S.B.1    Askew, S.D.2    Wilcut, J.W.3
  • 10
    • 0022222663 scopus 로고
    • A simple model related yield loss to weed density
    • Cousens, R., 1985. A simple model related yield loss to weed density. Ann. Applied Biol., 107: 239-252.
    • (1985) Ann. Applied Biol , vol.107 , pp. 239-252
    • Cousens, R.1
  • 11
    • 0029200082 scopus 로고
    • Emperical models of pigweed (Amaranthus sp.) interfrence in soybean (Glycin max)
    • Dieleman, A., A.S. Hamill, S.F. Weise and C.J. Swanton, 1995. Emperical models of pigweed (Amaranthus sp.) interfrence in soybean (Glycin max). Weed Sci., 43: 612-618.
    • (1995) Weed Sci , vol.43 , pp. 612-618
    • Dieleman, A.1    Hamill, A.S.2    Weise, S.F.3    Swanton, C.J.4
  • 15
    • 33846706388 scopus 로고    scopus 로고
    • The method of forecasting grain production based on artificial neural network
    • Beijing, China
    • Feng Lei, H.Y., 1999. The method of forecasting grain production based on artificial neural network. In: Proc. Intl. Conf. Agric. Eng. Beijing, China.
    • (1999) Proc. Intl. Conf. Agric. Eng
    • Feng Lei, H.Y.1
  • 16
    • 0015761426 scopus 로고
    • The role of spatial pattern in the competition between crop plants and weeds. A theoretical analysis
    • Fischer, R.A. and R.E. Miles, 1973. The role of spatial pattern in the competition between crop plants and weeds. A theoretical analysis. Math. Biosci., 18 : 335-350.
    • (1973) Math. Biosci , vol.18 , pp. 335-350
    • Fischer, R.A.1    Miles, R.E.2
  • 20
    • 0037696635 scopus 로고    scopus 로고
    • Classification of hyperspectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of corn
    • Goel, P.K., S.O. Prasher, R.M. Patel, J.A. Landry, R.B. Bonnell and A.A. Viau, 2003. Classification of hyperspectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of corn. Computers and Electronics in Agric., 39: 67-93.
    • (2003) Computers and Electronics in Agric , vol.39 , pp. 67-93
    • Goel, P.K.1    Prasher, S.O.2    Patel, R.M.3    Landry, J.A.4    Bonnell, R.B.5    Viau, A.A.6
  • 21
    • 0002280910 scopus 로고    scopus 로고
    • Competitive effects and competitiveness in annual plant stands. 1. Measurement methods and problems related to plant density
    • Håkansson, S., 1997. Competitive effects and competitiveness in annual plant stands. 1. Measurement methods and problems related to plant density. Swedish J. Agric. Res., 27: 53-73.
    • (1997) Swedish J. Agric. Res , vol.27 , pp. 53-73
    • Håkansson, S.1
  • 22
    • 33846664138 scopus 로고    scopus 로고
    • Measurements of Competition and Competitiveness in Plant Stands of Short Duration
    • CABI Publishing: UK, pp
    • Håkansson, S., 2003. Measurements of Competition and Competitiveness in Plant Stands of Short Duration. In: Weeds and Weed Management on Arable Land: An Ecological Approach. CABI Publishing: UK., pp: 128-157.
    • (2003) Weeds and Weed Management on Arable Land: An Ecological Approach , pp. 128-157
    • Håkansson, S.1
  • 23
    • 0031948927 scopus 로고    scopus 로고
    • Effect of proximity factors on competition between winter wheat (Triticum aestivum) and Italian ryegrass (Lolium multiflorum)
    • Hashem, A., S.R. Radosevich and M.L. Roush, 1998. Effect of proximity factors on competition between winter wheat (Triticum aestivum) and Italian ryegrass (Lolium multiflorum). Weed Sci., 46: 181-190.
    • (1998) Weed Sci , vol.46 , pp. 181-190
    • Hashem, A.1    Radosevich, S.R.2    Roush, M.L.3
  • 25
    • 85039176988 scopus 로고    scopus 로고
    • Heinzow, T. and R.S.J. Tol, 2003. Prediction of crop yields across four climate zones in Germany: An artificial neural network approach. FNU-34. Centre for Marine and Climate Research. Hamburg University, Hamburg.
    • Heinzow, T. and R.S.J. Tol, 2003. Prediction of crop yields across four climate zones in Germany: An artificial neural network approach. FNU-34. Centre for Marine and Climate Research. Hamburg University, Hamburg.
  • 26
    • 0036220543 scopus 로고    scopus 로고
    • Neural network models to predict the maturity of spring wheat in western Canada
    • Hill, B.D., S.M. McGinn, A. Korchinski and B. Burnett, 2002. Neural network models to predict the maturity of spring wheat in western Canada. Can. J. Plant Sci., 82: 7-13.
    • (2002) Can. J. Plant Sci , vol.82 , pp. 7-13
    • Hill, B.D.1    McGinn, S.M.2    Korchinski, A.3    Burnett, B.4
  • 27
    • 0000988559 scopus 로고
    • Plant responses to light: A potential tool for weed management
    • Holt, J.S., 1995. Plant responses to light: A potential tool for weed management. Weed Sci., 43: 474-482.
    • (1995) Weed Sci , vol.43 , pp. 474-482
    • Holt, J.S.1
  • 28
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K., M. Stinchocombe and H. White, 1989. Multilayer feedforward networks are universal approximators. Neural Networks, 2: 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchocombe, M.2    White, H.3
  • 29
    • 0035686903 scopus 로고    scopus 로고
    • Neural network models for predicting organic matter content in Saskatchewan soils
    • Ingleby, H.R. and T.G. Crowe, 2001. Neural network models for predicting organic matter content in Saskatchewan soils. Can. Biosys. Eng., 43: 7.1-7.5.
    • (2001) Can. Biosys. Eng , vol.43
    • Ingleby, H.R.1    Crowe, T.G.2
  • 30
    • 19044373009 scopus 로고    scopus 로고
    • Artificial neural networks for corn and soybean yield prediction
    • Kaul, M., R.L. Hill and C. Walthall, 2005. Artificial neural networks for corn and soybean yield prediction. Agric. Syst., 85: 1-18.
    • (2005) Agric. Syst , vol.85 , pp. 1-18
    • Kaul, M.1    Hill, R.L.2    Walthall, C.3
  • 31
    • 85039194535 scopus 로고    scopus 로고
    • Khazaei, J. and F. Shahbazi, 2005. Modelling physical and physiological damages to wheat seeds under impact loading using artificial neural networks. Intl. Conf. Agrophysics. Lublin, Poland.
    • Khazaei, J. and F. Shahbazi, 2005. Modelling physical and physiological damages to wheat seeds under impact loading using artificial neural networks. Intl. Conf. Agrophysics. Lublin, Poland.
  • 32
    • 0029528407 scopus 로고
    • A two parameter model for prediction of crop loss by weed competition from early observations of relative leaf area of the weeds
    • Kropff, M.J., L.A.P. Lotz, S.E. Weaver, H.J. Bos, J. Wallinga and T. Migo, 1995. A two parameter model for prediction of crop loss by weed competition from early observations of relative leaf area of the weeds. Ann. Applied Biol., 126: 329-346.
    • (1995) Ann. Applied Biol , vol.126 , pp. 329-346
    • Kropff, M.J.1    Lotz, L.A.P.2    Weaver, S.E.3    Bos, H.J.4    Wallinga, J.5    Migo, T.6
  • 33
    • 0035187124 scopus 로고    scopus 로고
    • A neural network for setting target yields
    • Liu, J., C.E. Goering and L. Tian, 2001. A neural network for setting target yields. Trans. ASAE., 44: 705-713.
    • (2001) Trans. ASAE , vol.44 , pp. 705-713
    • Liu, J.1    Goering, C.E.2    Tian, L.3
  • 34
    • 0030465367 scopus 로고    scopus 로고
    • Prediction of seeding date in southern Alberta
    • Major, D.J., B.D. Hill and A. Touré, 1996. Prediction of seeding date in southern Alberta. Can. J. Plant Sci., 76: 59-65.
    • (1996) Can. J. Plant Sci , vol.76 , pp. 59-65
    • Major, D.J.1    Hill, B.D.2    Touré, A.3
  • 35
    • 0036749857 scopus 로고    scopus 로고
    • Neural network prediction of maize yield using alternative data coding algorithms
    • O'Neal, M.R., B.A. Engel, D.R. Ess and J.R. Frankenberger, 2002. Neural network prediction of maize yield using alternative data coding algorithms. Biosys. Eng., 83: 31-45.
    • (2002) Biosys. Eng , vol.83 , pp. 31-45
    • O'Neal, M.R.1    Engel, B.A.2    Ess, D.R.3    Frankenberger, J.R.4
  • 36
    • 0000196946 scopus 로고
    • Planting patterns and radiation interception, plant nutrient concentration and yield in corn
    • Ottman, M.J. and L.F. Welch, 1989. Planting patterns and radiation interception, plant nutrient concentration and yield in corn. Agron. J., 81: 167-174.
    • (1989) Agron. J , vol.81 , pp. 167-174
    • Ottman, M.J.1    Welch, L.F.2
  • 37
    • 0030473352 scopus 로고    scopus 로고
    • Artificial neural networks to estimate soil water retention from easily measurable data
    • Pachepssky, Y.A., D. Timlin and G. Varallyay, 1996. Artificial neural networks to estimate soil water retention from easily measurable data. Soil Sci. Soc. Am. J., 60: 727-733.
    • (1996) Soil Sci. Soc. Am. J , vol.60 , pp. 727-733
    • Pachepssky, Y.A.1    Timlin, D.2    Varallyay, G.3
  • 39
    • 19044383581 scopus 로고    scopus 로고
    • Comparison of adaptive techniques to predict crop yield response under varying soil and land management conditions
    • Park, S.J., C.S. Hwang and P.L.G. Vlek, 2005. Comparison of adaptive techniques to predict crop yield response under varying soil and land management conditions. Agric. Syst., 85: 59-81.
    • (2005) Agric. Syst , vol.85 , pp. 59-81
    • Park, S.J.1    Hwang, C.S.2    Vlek, P.L.G.3
  • 43
    • 84893659141 scopus 로고
    • SAS Institute, Version 6. 4th Edn. Cary, N. SAS Institute
    • SAS Institute, 1994. SAS STAT User's Guide, Version 6. 4th Edn. Cary, N. SAS Institute.
    • (1994) SAS STAT User's Guide
  • 44
    • 33748762260 scopus 로고    scopus 로고
    • Barley (Hordeum vulgare) and wild oat (Avena fatua) competition is affected by crop and weed density
    • Scursoni, J.A. and E.H. Satorre, 2005. Barley (Hordeum vulgare) and wild oat (Avena fatua) competition is affected by crop and weed density. Weed Technol., 19: 790-795.
    • (2005) Weed Technol , vol.19 , pp. 790-795
    • Scursoni, J.A.1    Satorre, E.H.2
  • 47
    • 0001320385 scopus 로고
    • Simulation of competition for light and water in crop-weed associations
    • Spitters, C.J. and R. Aerts, 1983. Simulation of competition for light and water in crop-weed associations. Aspect of Applied Biol., 4: 467-483.
    • (1983) Aspect of Applied Biol , vol.4 , pp. 467-483
    • Spitters, C.J.1    Aerts, R.2
  • 48
    • 0030613616 scopus 로고    scopus 로고
    • Using artificial neural networks and regression to predict percentage of applied nitrogen leached under turfgrass
    • Starrett, S.K. and G.L. Adams, 1997. Using artificial neural networks and regression to predict percentage of applied nitrogen leached under turfgrass. Commun. Soil Sci. Plant Anal., 28: 497-507.
    • (1997) Commun. Soil Sci. Plant Anal , vol.28 , pp. 497-507
    • Starrett, S.K.1    Adams, G.L.2
  • 50
    • 0000619190 scopus 로고
    • Integrated weed management: The rational and approach
    • Swanton, C.J. and S.F. Weise, 1991. Integrated weed management: The rational and approach. Weed Technol., 5: 657-663.
    • (1991) Weed Technol , vol.5 , pp. 657-663
    • Swanton, C.J.1    Weise, S.F.2
  • 51
    • 0028002451 scopus 로고
    • A bioeconomic model for weed management in corn and soybean
    • Swinton, S.M. and R.P. King, 1994. A bioeconomic model for weed management in corn and soybean. Agric. Sys., 44: 313-335.
    • (1994) Agric. Sys , vol.44 , pp. 313-335
    • Swinton, S.M.1    King, R.P.2
  • 52
    • 0030770038 scopus 로고    scopus 로고
    • The competitive ability of wheat (Triticum aestivum) compared to rigid ryegrass (Lolium rigidum) and cowcockle (Vaccaria hispanica)
    • Tanji, A. and R.L. Zimdahl, 1997. The competitive ability of wheat (Triticum aestivum) compared to rigid ryegrass (Lolium rigidum) and cowcockle (Vaccaria hispanica). Weed Sci., 5: 481-487.
    • (1997) Weed Sci , vol.5 , pp. 481-487
    • Tanji, A.1    Zimdahl, R.L.2
  • 53
    • 0029158243 scopus 로고
    • Influence of narrow row/high population corn on weed control and light transmittance
    • Teasdale, J.R., 1995. Influence of narrow row/high population corn on weed control and light transmittance. Weed Technol., 9: 113-118.
    • (1995) Weed Technol , vol.9 , pp. 113-118
    • Teasdale, J.R.1
  • 56
    • 85039211264 scopus 로고    scopus 로고
    • Weiss, M., F. Baret., M. Leroy, O. Hautecoeur, L. Prévot, N. Bruguier, 2000. Validation of neural network techniques for the estimation of canopy biophysical variables from vegetation data. VEGETATION-2000, Lake Maggiore-Italy, 3-6 April.
    • Weiss, M., F. Baret., M. Leroy, O. Hautecoeur, L. Prévot, N. Bruguier, 2000. Validation of neural network techniques for the estimation of canopy biophysical variables from vegetation data. VEGETATION-2000, Lake Maggiore-Italy, 3-6 April.
  • 58
    • 0000194612 scopus 로고
    • SOYWEED: A simulation model of soybean and common cocklebur growth and competition
    • Wilkerson, G.G., J.W. Jones, H.D. Coble and J.L. Gunsolus, 1990. SOYWEED: A simulation model of soybean and common cocklebur growth and competition. Agron. J., 82: 1003-1010.
    • (1990) Agron. J , vol.82 , pp. 1003-1010
    • Wilkerson, G.G.1    Jones, J.W.2    Coble, H.D.3    Gunsolus, J.L.4
  • 59
    • 85039222993 scopus 로고    scopus 로고
    • Artificial intelligence modeling for crop yield prediction
    • ASAE Paper No. 031112 to be presented at the, Nevada, USA
    • Yang, C.C., S.O. Prasher and J. Whelan, 2003. Artificial intelligence modeling for crop yield prediction. ASAE Paper No. 031112 to be presented at the 2003 ASAE International Meeting to be held at Las Vegas, Nevada, USA.
    • (2003) 2003 ASAE International Meeting to be held at Las Vegas
    • Yang, C.C.1    Prasher, S.O.2    Whelan, J.3
  • 60
    • 0003058527 scopus 로고    scopus 로고
    • Neural network model for the evaluation of lettuce plant growth
    • Zaidi, M.A., H. Murase and N. Honami, 1999. Neural network model for the evaluation of lettuce plant growth. J. Agric. Eng. Res., 74: 237-242.
    • (1999) J. Agric. Eng. Res , vol.74 , pp. 237-242
    • Zaidi, M.A.1    Murase, H.2    Honami, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.