메뉴 건너뛰기




Volumn 5, Issue 5, 2010, Pages 389-398

Modeling the terminal velocity of agricultural seeds with artificial neural networks

Author keywords

Artificial neural networks; Back propagation; Prediction; Terminal velocity

Indexed keywords

CICER ARIETINUM; LENS CULINARIS;

EID: 77949748301     PISSN: None     EISSN: 1991637X     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (19)

References (28)
  • 2
    • 0001779466 scopus 로고    scopus 로고
    • Some physical properties of lentil seeds
    • Carman K (1996). Some physical properties of lentil seeds, J. Agric. Eng. Res. pp. 87-92.
    • (1996) J. Agric. Eng. Res , pp. 87-92
    • Carman, K.1
  • 3
    • 0001590095 scopus 로고
    • Comparison of models for describing corn yield response to nitrogen fertilizer
    • Cerrato ME, Blackmer AM (1990). Comparison of models for describing corn yield response to nitrogen fertilizer, Agron. J. 8: 138-143.
    • (1990) Agron. J , vol.8 , pp. 138-143
    • Cerrato, M.E.1    Blackmer, A.M.2
  • 8
    • 24944462706 scopus 로고    scopus 로고
    • Some physical properties of caper seed
    • Dursun E, Dursun I (2005). Some physical properties of caper seed, Biosystems Eng. 92: 237-245.
    • (2005) Biosystems Eng , vol.92 , pp. 237-245
    • Dursun, E.1    Dursun, I.2
  • 9
    • 38349052332 scopus 로고    scopus 로고
    • The effect of moisture of organic chickpea grain on the physical and mechanical properties
    • Esref I, Hulya I (2008). The effect of moisture of organic chickpea grain on the physical and mechanical properties, Int. J. Agric. Res. 3: 40-51.
    • (2008) Int. J. Agric. Res. , vol.3 , pp. 40-51
    • Esref, I.1    Hulya, I.2
  • 10
    • 0035686903 scopus 로고    scopus 로고
    • Neural network models for predicting organic matter content in Saskatchewan soils
    • Ingleby HR, Crowe TG (2001). Neural network models for predicting organic matter content in Saskatchewan soils, Canadian. Biosyst. Eng. 4: 71-75.
    • (2001) Canadian. Biosyst. Eng , vol.4 , pp. 71-75
    • Ingleby, H.R.1    Crowe, T.G.2
  • 11
    • 11144227443 scopus 로고    scopus 로고
    • Soil moisture estimation using an artificial neural network: A feasibility study
    • Jiang H, Cotton WR (2004). Soil moisture estimation using an artificial neural network: a feasibility study, Can. J. Remote Sens. 30(5): 827-839.
    • (2004) Can. J. Remote Sens , vol.30 , Issue.5 , pp. 827-839
    • Jiang, H.1    Cotton, W.R.2
  • 12
    • 19044373009 scopus 로고    scopus 로고
    • Artificial neural networks for corn and soybean yield prediction
    • Kaul M, Hill RL, Walthall C (2005). Artificial neural networks for corn and soybean yield prediction, Agric. Syst. 85: 1-18.
    • (2005) Agric. Syst , vol.85 , pp. 1-18
    • Kaul, M.1    Hill, R.L.2    Walthall, C.3
  • 13
    • 49149114878 scopus 로고    scopus 로고
    • Modeling physical damage and percentage of threshed pods of chickpea in a finger type thresher using artificial neural networks
    • Khazaei J, Chegini GR, Kianmehr MH (2005). Modeling physical damage and percentage of threshed pods of chickpea in a finger type thresher using artificial neural networks, J. Lucrǎri Ştiinţifice 4: 594-607.
    • (2005) J. Lucrǎri Ştiinţifice , vol.4 , pp. 594-607
    • Khazaei, J.1    Chegini, G.R.2    Kianmehr, M.H.3
  • 14
    • 46049104173 scopus 로고    scopus 로고
    • A Novel Alternative Method for Modeling the Effects of Air Temperature and Slice Thickness on Quality and Drying Kinetics of Tomato Slices
    • Khazaei J, Chegini GR, Bakhshiani M (2008). A Novel Alternative Method for Modeling the Effects of Air Temperature and Slice Thickness on Quality and Drying Kinetics of Tomato Slices, Int. Drying. Technol. J. 26: 759-775.
    • (2008) Int. Drying. Technol. J , vol.26 , pp. 759-775
    • Khazaei, J.1    Chegini, G.R.2    Bakhshiani, M.3
  • 15
    • 47749091751 scopus 로고    scopus 로고
    • Yield Estimation and Clustering of Chickpea Genotypes Using Soft Computing Techniques
    • Khazaei J, Naghavi MR, Jahansouz MR, Salimi-Khorshidi G (2008). Yield Estimation and Clustering of Chickpea Genotypes Using Soft Computing Techniques, Agron. J. 100(4): 1077-1087.
    • (2008) Agron. J , vol.100 , Issue.4 , pp. 1077-1087
    • Khazaei, J.1    Naghavi, M.R.2    Jahansouz, M.R.3    Salimi-Khorshidi, G.4
  • 16
    • 0035187124 scopus 로고    scopus 로고
    • A neural network for setting target yields
    • Liu JC, Goering E, Tian L (2001). A neural network for setting target yields, Trans. ASAE 44: 705-713.
    • (2001) Trans. Asae , vol.44 , pp. 705-713
    • Liu, J.C.1    Goering, E.2    Tian, L.3
  • 17
    • 1942504268 scopus 로고    scopus 로고
    • On the use of counterpropagation artificial neural networks to characterize Italian rice varieties, Analytica
    • Marini F, Zupan J, Magr L (2004). On the use of counter propagation artificial neural networks to characterize Italian rice varieties, Analytica. Chimica. Acta pp. 231-240.
    • (2004) Chimica. Acta , pp. 231-240
    • Marini, F.1    Zupan, J.2    Magr, L.3
  • 19
    • 0034424604 scopus 로고    scopus 로고
    • Prediction of temperature and moisture content of frankfurters during thermal processing using neural network
    • Mittal GS, Zhang J (2000). Prediction of temperature and moisture content of frankfurters during thermal processing using neural network, Meat Sci. 55: 13-24.
    • (2000) Meat Sci , vol.55 , pp. 13-24
    • Mittal, G.S.1    Zhang, J.2
  • 20
    • 0036749857 scopus 로고    scopus 로고
    • Neural network prediction of maize yield using alternative data coding algorithms
    • O'Neal MR, Engel BA, Ess DR, Frankenberger JR (2002). Neural network prediction of maize yield using alternative data coding algorithms, Biosyst. Eng. 83: 31-45.
    • (2002) Biosyst. Eng , vol.83 , pp. 31-45
    • O'Neal, M.R.1    Engel, B.A.2    Ess, D.R.3    Frankenberger, J.R.4
  • 21
    • 19044383581 scopus 로고    scopus 로고
    • Comparison of adaptive techniques to predict crop yield response under varying soil and land management conditions
    • Park SJ, Hwang SC, Vlek PLG (2005). Comparison of adaptive techniques to predict crop yield response under varying soil and land management conditions, Agric. Syst. 85: 59-81.
    • (2005) Agric. Syst , vol.85 , pp. 59-81
    • Park, S.J.1    Hwang, S.C.2    Vlek, P.L.G.3
  • 22
    • 0037442528 scopus 로고    scopus 로고
    • Applications of artificial neural networks for patterning and predicting aquatic insect species richness in running waters
    • Parky SR, Cereghino A, Compin S Lek (2003), Applications of artificial neural networks for patterning and predicting aquatic insect species richness in running waters, Ecol. Modell. pp. 265-280.
    • (2003) Ecol. Modell , pp. 265-280
    • Parky, S.R.1    Cereghino, A.2    Lek, C.S.3
  • 23
    • 33846689375 scopus 로고    scopus 로고
    • Artificial neural network modelling of common lambs quarters biomass production response to corn population and planting pattern
    • Saberali SF, Sadat Noori SA, Khazaei J, Hejazi A (2007). Artificial neural network modelling of common lambs quarters biomass production response to corn population and planting pattern, Pak. J. Biol. Sci. 10: 326-334.
    • (2007) Pak. J. Biol. Sci , vol.10 , pp. 326-334
    • Saberali, S.F.1    Sadat, N.S.A.2    Khazaei, J.3    Hejazi, A.4
  • 24
    • 17444388869 scopus 로고    scopus 로고
    • Artificial neural network prediction of compressive strength of VARTM processed polymer composites
    • Seyhan, AT, Tayfur G, Karakurt M, Tanoglu M (2005). Artificial neural network prediction of compressive strength of VARTM processed polymer composites, Comput. Mater. Sci. 34: 99-105.
    • (2005) Comput. Mater. Sci , vol.34 , pp. 99-105
    • Seyhan, A.T.1    Tayfur, G.2    Karakurt, M.3    Tanoglu, M.4
  • 27
    • 0000946340 scopus 로고    scopus 로고
    • Aerodynamic properties of cottonseeds
    • Tabak, S, Wolf D (1998). Aerodynamic properties of cottonseeds, J. Agric. Eng. Res. 70: 257-265.
    • (1998) J. Agric. Eng. Res , vol.70 , pp. 257-265
    • Tabak, S.1    Wolf, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.