메뉴 건너뛰기




Volumn 83, Issue , 2016, Pages 21-31

Rank-based pooling for deep convolutional neural networks

Author keywords

Convolutional neural network; Deep learning; Image classification; Pooling

Indexed keywords

ARTIFICIAL INTELLIGENCE; BENCHMARKING; CHEMICAL ACTIVATION; COMPUTER VISION; CONVOLUTION; LEARNING SYSTEMS; NEURAL NETWORKS; STOCHASTIC SYSTEMS;

EID: 84982149359     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2016.07.003     Document Type: Article
Times cited : (79)

References (41)
  • 1
    • 84982080598 scopus 로고    scopus 로고
    • & (2015). Empirical evaluation of rectified activations in convolutional network. CoRR, abs/1505.00853.
    • Bing Xu, T. C., Wang, Naiyan, & Li, M. (2015). Empirical evaluation of rectified activations in convolutional network. CoRR, abs/1505.00853.
    • (2015)
    • Xu, B.1    Wang, N.2    Li, M.3
  • 2
    • 77956502203 scopus 로고    scopus 로고
    • &, A theoretical analysis of feature pooling in visual recognition. In Proceedings of the 27th international conference on machine learning.
    • Boureau, Y.-L., Ponce, J., & LeCun, Y. (2010). A theoretical analysis of feature pooling in visual recognition. In Proceedings of the 27th international conference on machine learning (pp. 111–118).
    • (2010) , pp. 111-118
    • Boureau, Y.-L.1    Ponce, J.2    LeCun, Y.3
  • 3
    • 84856649187 scopus 로고    scopus 로고
    • &, Ask the locals: multi-way local pooling for image recognition. In 2011 IEEE international conference on computer vision.
    • Boureau, Y.-L., Roux, N. L., Bach, F., Ponce, J., & LeCun, Y. (2011). Ask the locals: multi-way local pooling for image recognition. In 2011 IEEE international conference on computer vision (pp. 2651–2658).
    • (2011) , pp. 2651-2658
    • Boureau, Y.-L.1    Roux, N.L.2    Bach, F.3    Ponce, J.4    LeCun, Y.5
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L., Bagging predictors. Machine Learning 24 (1996), 123–140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 5
    • 84905252882 scopus 로고    scopus 로고
    • &, Stochastic pooling maxout networks for low-resource speech recognition. In 2014 IEEE international conference on acoustics, speech and signal processing.
    • Cai, M., Shi, Y., & Liu, J. (2014). Stochastic pooling maxout networks for low-resource speech recognition. In 2014 IEEE international conference on acoustics, speech and signal processing (pp. 3266–3270).
    • (2014) , pp. 3266-3270
    • Cai, M.1    Shi, Y.2    Liu, J.3
  • 6
    • 84866714584 scopus 로고    scopus 로고
    • &, Multi-column deep neural networks for image classification. In 2012 IEEE conference on computer vision and pattern recognition.
    • Ciresan, D., Meier, U., & Schmidhuber, J. (2012). Multi-column deep neural networks for image classification. In 2012 IEEE conference on computer vision and pattern recognition (pp. 3642–3649).
    • (2012) , pp. 3642-3649
    • Ciresan, D.1    Meier, U.2    Schmidhuber, J.3
  • 7
    • 33645146449 scopus 로고    scopus 로고
    • &, Histograms of oriented gradients for human detection. In 2005 IEEE conference on computer vision and pattern recognition.
    • Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In 2005 IEEE conference on computer vision and pattern recognition (pp. 886–893).
    • (2005) , pp. 886-893
    • Dalal, N.1    Triggs, B.2
  • 8
    • 84982089555 scopus 로고    scopus 로고
    • &. Geometric lp-norm feature pooling for image classification. In 2011 IEEE conference on computer vision and pattern recognition.
    • Feng, J., Ni, B., Tian, Q., & Yan, S. (2011). Geometric lp-norm feature pooling for image classification. In 2011 IEEE conference on computer vision and pattern recognition (pp. 2609–2704).
    • (2011) , pp. 2609-2704
    • Feng, J.1    Ni, B.2    Tian, Q.3    Yan, S.4
  • 9
    • 0020331278 scopus 로고
    • Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position
    • Fukushima, K., Miyake, S., Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position. Pattern Recognition 15 (1982), 455–469.
    • (1982) Pattern Recognition , vol.15 , pp. 455-469
    • Fukushima, K.1    Miyake, S.2
  • 10
    • 84893710272 scopus 로고    scopus 로고
    • &, Maxout networks. In Proceedings of the 30th international conference on machine learning
    • Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., & Bengio, Y. (2013). Maxout networks. In Proceedings of the 30th international conference on machine learning (pp. 1319–1327).
    • (2013) , pp. 1319-1327
    • Goodfellow, I.J.1    Warde-Farley, D.2    Mirza, M.3    Courville, A.4    Bengio, Y.5
  • 11
    • 84982186231 scopus 로고    scopus 로고
    • Fractional max-pooling. CoRR, abs/1412.6071.
    • Graham, B. (2015). Fractional max-pooling. CoRR, abs/1412.6071.
    • (2015)
    • Graham, B.1
  • 13
    • 84982080681 scopus 로고    scopus 로고
    • &, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. CoRR, abs/1502.01852.
    • He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. CoRR, abs/1502.01852.
    • (2015)
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 14
    • 84982186252 scopus 로고    scopus 로고
    • &, Improving neural networks by preventing co-adaptation of feature detectors. CoRR, abs/1207.0580.
    • Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2012). Improving neural networks by preventing co-adaptation of feature detectors. CoRR, abs/1207.0580.
    • (2012)
    • Hinton, G.E.1    Srivastava, N.2    Krizhevsky, A.3    Sutskever, I.4    Salakhutdinov, R.R.5
  • 15
    • 33645410496 scopus 로고
    • Receptive fields, binocular interaction and functional architecture in the cat's visual cortex
    • Hubel, D.H., Wiesel, T.N., Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of Physiology, 160, 1962, 106.
    • (1962) The Journal of Physiology , vol.160 , pp. 106
    • Hubel, D.H.1    Wiesel, T.N.2
  • 17
    • 84982080686 scopus 로고    scopus 로고
    • & Emonets: Multimodal deep learning approaches for emotion recognition in video. CoRR, abs/1503.01800.
    • Kahou, S. E., Bouthillier, X., Lamblin, P., & Gulcehre, C. (2015). Emonets: Multimodal deep learning approaches for emotion recognition in video. CoRR, abs/1503.01800.
    • (2015)
    • Kahou, S.E.1    Bouthillier, X.2    Lamblin, P.3    Gulcehre, C.4
  • 19
    • 77956002520 scopus 로고    scopus 로고
    • Learning multiple layers of features from tiny images. Tech. Rep., 1
    • Computer Science Department, University of Toronto
    • Krizhevsky, A., Hinton, G., Learning multiple layers of features from tiny images. Tech. Rep., 1., 2009, Computer Science Department, University of Toronto, 7.
    • (2009) , pp. 7
    • Krizhevsky, A.1    Hinton, G.2
  • 21
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., Gradient-based learning applied to document recognition. Proceedings of the IEEE 86 (1998), 2278–2324.
    • (1998) Proceedings of the IEEE , vol.86 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 22
    • 5044231640 scopus 로고    scopus 로고
    • & Learning methods for generic object recognition with invariance to pose and lighting. In 2004 IEEE computer society conference on computer vision and pattern recognition.
    • LeCun, Y., Huang, F. J., & Bottou, L. (2004). Learning methods for generic object recognition with invariance to pose and lighting. In 2004 IEEE computer society conference on computer vision and pattern recognition, Vol. 2 (pp. II-97-104).
    • (2004) , vol.2 , pp. II-97-104
    • LeCun, Y.1    Huang, F.J.2    Bottou, L.3
  • 23
    • 84954314676 scopus 로고    scopus 로고
    • & Deeply-supervised nets. In Proceedings of the 18th international conference on artificial intelligence and statistics (pp. 562–570).
    • Lee, C.-Y., Xie, S., Gallagher, P., Zhang, Z., & Tu, Z. (2014). Deeply-supervised nets. In Proceedings of the 18th international conference on artificial intelligence and statistics (pp. 562–570).
    • (2014)
    • Lee, C.-Y.1    Xie, S.2    Gallagher, P.3    Zhang, Z.4    Tu, Z.5
  • 24
    • 84982090410 scopus 로고    scopus 로고
    • & Network in network. CoRR, abs/1312.4400.
    • Lin, M., Chen, Q., & Yan, S. (2014). Network in network. CoRR, abs/1312.4400.
    • (2014)
    • Lin, M.1    Chen, Q.2    Yan, S.3
  • 25
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Lowe, D.G., Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60 (2004), 91–110.
    • (2004) International Journal of Computer Vision , vol.60 , pp. 91-110
    • Lowe, D.G.1
  • 26
    • 84982154504 scopus 로고    scopus 로고
    • & Rectifier nonlinearities improve neural network acoustic models. In Proceedings of the 27th international conference on machine learning.
    • Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities improve neural network acoustic models. In Proceedings of the 27th international conference on machine learning, Vol. 30.
    • (2013) , vol.30
    • Maas, A.L.1    Hannun, A.Y.2    Ng, A.Y.3
  • 27
    • 0003540748 scopus 로고    scopus 로고
    • Genetic algorithms+ data structures= evolution programs
    • Springer Science & Business Media
    • Michalewicz, Z., Genetic algorithms+ data structures= evolution programs. 2013, Springer Science & Business Media.
    • (2013)
    • Michalewicz, Z.1
  • 28
    • 77956509090 scopus 로고    scopus 로고
    • & Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th international conference on machine learning.
    • Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th international conference on machine learning (pp. 807–814).
    • (2010) , pp. 807-814
    • Nair, V.1    Hinton, G.E.2
  • 29
    • 0033316361 scopus 로고    scopus 로고
    • Hierarchical models of object recognition in cortex
    • Riesenhuber, M., Poggio, T., Hierarchical models of object recognition in cortex. Nature Neuroscience 2 (1999), 1019–1025.
    • (1999) Nature Neuroscience , vol.2 , pp. 1019-1025
    • Riesenhuber, M.1    Poggio, T.2
  • 31
    • 84874575248 scopus 로고    scopus 로고
    • & Convolutional neural networks applied to house numbers digit classification. In 2012 international conference on pattern recognition.
    • Sermanet, P., Chintala, S., & LeCun, Y. (2012). Convolutional neural networks applied to house numbers digit classification. In 2012 international conference on pattern recognition (pp. 3288–3291).
    • (2012) , pp. 3288-3291
    • Sermanet, P.1    Chintala, S.2    LeCun, Y.3
  • 32
    • 54449100428 scopus 로고    scopus 로고
    • Data classification with multilayer perceptrons using a generalized error function
    • Silva, L.M., de Sá, J.M., Alexandre, L.A., Data classification with multilayer perceptrons using a generalized error function. Neural Networks 21 (2008), 1302–1310.
    • (2008) Neural Networks , vol.21 , pp. 1302-1310
    • Silva, L.M.1    de Sá, J.M.2    Alexandre, L.A.3
  • 33
    • 85083953063 scopus 로고    scopus 로고
    • & Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556.
    • Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556.
    • (2015)
    • Simonyan, K.1    Zisserman, A.2
  • 34
    • 84897493971 scopus 로고    scopus 로고
    • Improving neural networks with dropout
    • (Master's thesis) University of Toronto
    • Srivastava, N., Improving neural networks with dropout. (Master's thesis), 2013, University of Toronto.
    • (2013)
    • Srivastava, N.1
  • 37
    • 84937522268 scopus 로고    scopus 로고
    • & Going deeper with convolutions. In 2015 IEEE conference on computer vision and pattern recognition.
    • Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2014). Going deeper with convolutions. In 2015 IEEE conference on computer vision and pattern recognition (pp. 1–9).
    • (2014) , pp. 1-9
    • Szegedy, C.1    Liu, W.2    Jia, Y.3    Sermanet, P.4    Reed, S.5    Anguelov, D.6    Erhan, D.7    Vanhoucke, V.8    Rabinovich, A.9
  • 38
    • 84899064374 scopus 로고    scopus 로고
    • & Regularization of neural networks using dropconnect. In Proceedings of the 30th international conference on machine learning.
    • Wan, L., Zeiler, M., Zhang, S., Cun, Y. L., & Fergus, R. (2013). Regularization of neural networks using dropconnect. In Proceedings of the 30th international conference on machine learning (pp. 1058–1066).
    • (2013) , pp. 1058-1066
    • Wan, L.1    Zeiler, M.2    Zhang, S.3    Cun, Y.L.4    Fergus, R.5
  • 39
    • 84982186242 scopus 로고    scopus 로고
    • Multi-path convolutional neural networks for complex image classification. CoRR, abs/1506.04701.
    • Wang, M. (2014). Multi-path convolutional neural networks for complex image classification. CoRR, abs/1506.04701.
    • (2014)
    • Wang, M.1
  • 40
    • 85083954484 scopus 로고    scopus 로고
    • & Stochastic pooling for regularization of deep convolutional neural networks. CoRR, abs/1301.3557.
    • Zeiler, M. D., & Fergus, R. (2013). Stochastic pooling for regularization of deep convolutional neural networks. CoRR, abs/1301.3557.
    • (2013)
    • Zeiler, M.D.1    Fergus, R.2
  • 41
    • 84906489074 scopus 로고    scopus 로고
    • & Visualizing and understanding convolutional networks. In European conference on computer vision.
    • Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In European conference on computer vision, Vol. 2014 (pp. 818–833).
    • (2014) , vol.2014 , pp. 818-833
    • Zeiler, M.D.1    Fergus, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.