-
1
-
-
84982080598
-
-
& (2015). Empirical evaluation of rectified activations in convolutional network. CoRR, abs/1505.00853.
-
Bing Xu, T. C., Wang, Naiyan, & Li, M. (2015). Empirical evaluation of rectified activations in convolutional network. CoRR, abs/1505.00853.
-
(2015)
-
-
Xu, B.1
Wang, N.2
Li, M.3
-
2
-
-
77956502203
-
-
&, A theoretical analysis of feature pooling in visual recognition. In Proceedings of the 27th international conference on machine learning.
-
Boureau, Y.-L., Ponce, J., & LeCun, Y. (2010). A theoretical analysis of feature pooling in visual recognition. In Proceedings of the 27th international conference on machine learning (pp. 111–118).
-
(2010)
, pp. 111-118
-
-
Boureau, Y.-L.1
Ponce, J.2
LeCun, Y.3
-
3
-
-
84856649187
-
-
&, Ask the locals: multi-way local pooling for image recognition. In 2011 IEEE international conference on computer vision.
-
Boureau, Y.-L., Roux, N. L., Bach, F., Ponce, J., & LeCun, Y. (2011). Ask the locals: multi-way local pooling for image recognition. In 2011 IEEE international conference on computer vision (pp. 2651–2658).
-
(2011)
, pp. 2651-2658
-
-
Boureau, Y.-L.1
Roux, N.L.2
Bach, F.3
Ponce, J.4
LeCun, Y.5
-
4
-
-
0030211964
-
Bagging predictors
-
Breiman, L., Bagging predictors. Machine Learning 24 (1996), 123–140.
-
(1996)
Machine Learning
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
5
-
-
84905252882
-
-
&, Stochastic pooling maxout networks for low-resource speech recognition. In 2014 IEEE international conference on acoustics, speech and signal processing.
-
Cai, M., Shi, Y., & Liu, J. (2014). Stochastic pooling maxout networks for low-resource speech recognition. In 2014 IEEE international conference on acoustics, speech and signal processing (pp. 3266–3270).
-
(2014)
, pp. 3266-3270
-
-
Cai, M.1
Shi, Y.2
Liu, J.3
-
6
-
-
84866714584
-
-
&, Multi-column deep neural networks for image classification. In 2012 IEEE conference on computer vision and pattern recognition.
-
Ciresan, D., Meier, U., & Schmidhuber, J. (2012). Multi-column deep neural networks for image classification. In 2012 IEEE conference on computer vision and pattern recognition (pp. 3642–3649).
-
(2012)
, pp. 3642-3649
-
-
Ciresan, D.1
Meier, U.2
Schmidhuber, J.3
-
7
-
-
33645146449
-
-
&, Histograms of oriented gradients for human detection. In 2005 IEEE conference on computer vision and pattern recognition.
-
Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In 2005 IEEE conference on computer vision and pattern recognition (pp. 886–893).
-
(2005)
, pp. 886-893
-
-
Dalal, N.1
Triggs, B.2
-
8
-
-
84982089555
-
-
&. Geometric lp-norm feature pooling for image classification. In 2011 IEEE conference on computer vision and pattern recognition.
-
Feng, J., Ni, B., Tian, Q., & Yan, S. (2011). Geometric lp-norm feature pooling for image classification. In 2011 IEEE conference on computer vision and pattern recognition (pp. 2609–2704).
-
(2011)
, pp. 2609-2704
-
-
Feng, J.1
Ni, B.2
Tian, Q.3
Yan, S.4
-
9
-
-
0020331278
-
Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position
-
Fukushima, K., Miyake, S., Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position. Pattern Recognition 15 (1982), 455–469.
-
(1982)
Pattern Recognition
, vol.15
, pp. 455-469
-
-
Fukushima, K.1
Miyake, S.2
-
10
-
-
84893710272
-
-
&, Maxout networks. In Proceedings of the 30th international conference on machine learning
-
Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., & Bengio, Y. (2013). Maxout networks. In Proceedings of the 30th international conference on machine learning (pp. 1319–1327).
-
(2013)
, pp. 1319-1327
-
-
Goodfellow, I.J.1
Warde-Farley, D.2
Mirza, M.3
Courville, A.4
Bengio, Y.5
-
11
-
-
84982186231
-
-
Fractional max-pooling. CoRR, abs/1412.6071.
-
Graham, B. (2015). Fractional max-pooling. CoRR, abs/1412.6071.
-
(2015)
-
-
Graham, B.1
-
12
-
-
84907016671
-
Learned-norm pooling for deep feedforward and recurrent neural networks
-
Gulcehre, C., Cho, K., Pascanu, R., Bengio, Y., Learned-norm pooling for deep feedforward and recurrent neural networks. Machine learning and knowledge discovery in databases, 2014, 530–546.
-
(2014)
Machine learning and knowledge discovery in databases
, pp. 530-546
-
-
Gulcehre, C.1
Cho, K.2
Pascanu, R.3
Bengio, Y.4
-
13
-
-
84982080681
-
-
&, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. CoRR, abs/1502.01852.
-
He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. CoRR, abs/1502.01852.
-
(2015)
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
14
-
-
84982186252
-
-
&, Improving neural networks by preventing co-adaptation of feature detectors. CoRR, abs/1207.0580.
-
Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2012). Improving neural networks by preventing co-adaptation of feature detectors. CoRR, abs/1207.0580.
-
(2012)
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.R.5
-
15
-
-
33645410496
-
Receptive fields, binocular interaction and functional architecture in the cat's visual cortex
-
Hubel, D.H., Wiesel, T.N., Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of Physiology, 160, 1962, 106.
-
(1962)
The Journal of Physiology
, vol.160
, pp. 106
-
-
Hubel, D.H.1
Wiesel, T.N.2
-
16
-
-
84982146067
-
-
& Caffe: Convolutional architecture for fast feature embedding. CoRR, abs/1408.5093.
-
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., & Darrell, T. (2014). Caffe: Convolutional architecture for fast feature embedding. CoRR, abs/1408.5093.
-
(2014)
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
17
-
-
84982080686
-
-
& Emonets: Multimodal deep learning approaches for emotion recognition in video. CoRR, abs/1503.01800.
-
Kahou, S. E., Bouthillier, X., Lamblin, P., & Gulcehre, C. (2015). Emonets: Multimodal deep learning approaches for emotion recognition in video. CoRR, abs/1503.01800.
-
(2015)
-
-
Kahou, S.E.1
Bouthillier, X.2
Lamblin, P.3
Gulcehre, C.4
-
19
-
-
77956002520
-
Learning multiple layers of features from tiny images. Tech. Rep., 1
-
Computer Science Department, University of Toronto
-
Krizhevsky, A., Hinton, G., Learning multiple layers of features from tiny images. Tech. Rep., 1., 2009, Computer Science Department, University of Toronto, 7.
-
(2009)
, pp. 7
-
-
Krizhevsky, A.1
Hinton, G.2
-
20
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky, A., Sutskever, I., Hinton, G.E., Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 2012, 1097–1105.
-
(2012)
Advances in neural information processing systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
21
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., Gradient-based learning applied to document recognition. Proceedings of the IEEE 86 (1998), 2278–2324.
-
(1998)
Proceedings of the IEEE
, vol.86
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
22
-
-
5044231640
-
-
& Learning methods for generic object recognition with invariance to pose and lighting. In 2004 IEEE computer society conference on computer vision and pattern recognition.
-
LeCun, Y., Huang, F. J., & Bottou, L. (2004). Learning methods for generic object recognition with invariance to pose and lighting. In 2004 IEEE computer society conference on computer vision and pattern recognition, Vol. 2 (pp. II-97-104).
-
(2004)
, vol.2
, pp. II-97-104
-
-
LeCun, Y.1
Huang, F.J.2
Bottou, L.3
-
23
-
-
84954314676
-
-
& Deeply-supervised nets. In Proceedings of the 18th international conference on artificial intelligence and statistics (pp. 562–570).
-
Lee, C.-Y., Xie, S., Gallagher, P., Zhang, Z., & Tu, Z. (2014). Deeply-supervised nets. In Proceedings of the 18th international conference on artificial intelligence and statistics (pp. 562–570).
-
(2014)
-
-
Lee, C.-Y.1
Xie, S.2
Gallagher, P.3
Zhang, Z.4
Tu, Z.5
-
24
-
-
84982090410
-
-
& Network in network. CoRR, abs/1312.4400.
-
Lin, M., Chen, Q., & Yan, S. (2014). Network in network. CoRR, abs/1312.4400.
-
(2014)
-
-
Lin, M.1
Chen, Q.2
Yan, S.3
-
25
-
-
3042535216
-
Distinctive image features from scale-invariant keypoints
-
Lowe, D.G., Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60 (2004), 91–110.
-
(2004)
International Journal of Computer Vision
, vol.60
, pp. 91-110
-
-
Lowe, D.G.1
-
26
-
-
84982154504
-
-
& Rectifier nonlinearities improve neural network acoustic models. In Proceedings of the 27th international conference on machine learning.
-
Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities improve neural network acoustic models. In Proceedings of the 27th international conference on machine learning, Vol. 30.
-
(2013)
, vol.30
-
-
Maas, A.L.1
Hannun, A.Y.2
Ng, A.Y.3
-
27
-
-
0003540748
-
Genetic algorithms+ data structures= evolution programs
-
Springer Science & Business Media
-
Michalewicz, Z., Genetic algorithms+ data structures= evolution programs. 2013, Springer Science & Business Media.
-
(2013)
-
-
Michalewicz, Z.1
-
28
-
-
77956509090
-
-
& Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th international conference on machine learning.
-
Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th international conference on machine learning (pp. 807–814).
-
(2010)
, pp. 807-814
-
-
Nair, V.1
Hinton, G.E.2
-
29
-
-
0033316361
-
Hierarchical models of object recognition in cortex
-
Riesenhuber, M., Poggio, T., Hierarchical models of object recognition in cortex. Nature Neuroscience 2 (1999), 1019–1025.
-
(1999)
Nature Neuroscience
, vol.2
, pp. 1019-1025
-
-
Riesenhuber, M.1
Poggio, T.2
-
30
-
-
84922343800
-
Deep convolutional neural networks for large-scale speech tasks
-
Sainath, T.N., Kingsbury, B., Saon, G., Soltau, H., Mohamed, A.-r., Dahl, G., Ramabhadran, B., Deep convolutional neural networks for large-scale speech tasks. Neural Networks 64 (2015), 39–48.
-
(2015)
Neural Networks
, vol.64
, pp. 39-48
-
-
Sainath, T.N.1
Kingsbury, B.2
Saon, G.3
Soltau, H.4
Mohamed, A.-R.5
Dahl, G.6
Ramabhadran, B.7
-
31
-
-
84874575248
-
-
& Convolutional neural networks applied to house numbers digit classification. In 2012 international conference on pattern recognition.
-
Sermanet, P., Chintala, S., & LeCun, Y. (2012). Convolutional neural networks applied to house numbers digit classification. In 2012 international conference on pattern recognition (pp. 3288–3291).
-
(2012)
, pp. 3288-3291
-
-
Sermanet, P.1
Chintala, S.2
LeCun, Y.3
-
32
-
-
54449100428
-
Data classification with multilayer perceptrons using a generalized error function
-
Silva, L.M., de Sá, J.M., Alexandre, L.A., Data classification with multilayer perceptrons using a generalized error function. Neural Networks 21 (2008), 1302–1310.
-
(2008)
Neural Networks
, vol.21
, pp. 1302-1310
-
-
Silva, L.M.1
de Sá, J.M.2
Alexandre, L.A.3
-
33
-
-
85083953063
-
-
& Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556.
-
Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556.
-
(2015)
-
-
Simonyan, K.1
Zisserman, A.2
-
34
-
-
84897493971
-
Improving neural networks with dropout
-
(Master's thesis) University of Toronto
-
Srivastava, N., Improving neural networks with dropout. (Master's thesis), 2013, University of Toronto.
-
(2013)
-
-
Srivastava, N.1
-
35
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research 15 (2014), 1929–1958.
-
(2014)
The Journal of Machine Learning Research
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
36
-
-
84982169215
-
-
&, Compete to compute.
-
Srivastava, R. K., Masci, J., Kazerounian, S., Gomez, F., & Schmidhuber, J. (2013). Compete to compute. (pp. 2310–2318).
-
(2013)
, pp. 2310-2318
-
-
Srivastava, R.K.1
Masci, J.2
Kazerounian, S.3
Gomez, F.4
Schmidhuber, J.5
-
37
-
-
84937522268
-
-
& Going deeper with convolutions. In 2015 IEEE conference on computer vision and pattern recognition.
-
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2014). Going deeper with convolutions. In 2015 IEEE conference on computer vision and pattern recognition (pp. 1–9).
-
(2014)
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
38
-
-
84899064374
-
-
& Regularization of neural networks using dropconnect. In Proceedings of the 30th international conference on machine learning.
-
Wan, L., Zeiler, M., Zhang, S., Cun, Y. L., & Fergus, R. (2013). Regularization of neural networks using dropconnect. In Proceedings of the 30th international conference on machine learning (pp. 1058–1066).
-
(2013)
, pp. 1058-1066
-
-
Wan, L.1
Zeiler, M.2
Zhang, S.3
Cun, Y.L.4
Fergus, R.5
-
39
-
-
84982186242
-
-
Multi-path convolutional neural networks for complex image classification. CoRR, abs/1506.04701.
-
Wang, M. (2014). Multi-path convolutional neural networks for complex image classification. CoRR, abs/1506.04701.
-
(2014)
-
-
Wang, M.1
-
40
-
-
85083954484
-
-
& Stochastic pooling for regularization of deep convolutional neural networks. CoRR, abs/1301.3557.
-
Zeiler, M. D., & Fergus, R. (2013). Stochastic pooling for regularization of deep convolutional neural networks. CoRR, abs/1301.3557.
-
(2013)
-
-
Zeiler, M.D.1
Fergus, R.2
-
41
-
-
84906489074
-
-
& Visualizing and understanding convolutional networks. In European conference on computer vision.
-
Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In European conference on computer vision, Vol. 2014 (pp. 818–833).
-
(2014)
, vol.2014
, pp. 818-833
-
-
Zeiler, M.D.1
Fergus, R.2
|