메뉴 건너뛰기




Volumn 30, Issue 6, 2015, Pages 841-849

Requirement of POL3 and POL4 on non-homologous and microhomology-mediated end joining in rad50/xrs2 mutants of Saccharomyces cerevisiae

Author keywords

[No Author keywords available]

Indexed keywords

FUNGAL PROTEIN; RAD50 PROTEIN; UNCLASSIFIED DRUG; XRS2 PROTEIN; DNA BINDING PROTEIN; DNA DIRECTED DNA POLYMERASE BETA; DNA DIRECTED DNA POLYMERASE GAMMA; POL3 PROTEIN, S CEREVISIAE; POL4 PROTEIN, S CEREVISIAE; RAD50 PROTEIN, S CEREVISIAE; SACCHAROMYCES CEREVISIAE PROTEIN; XRS2 PROTEIN, S CEREVISIAE;

EID: 84982082520     PISSN: 02678357     EISSN: 14643804     Source Type: Journal    
DOI: 10.1093/mutage/gev046     Document Type: Article
Times cited : (7)

References (70)
  • 1
    • 0028013486 scopus 로고
    • Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events
    • Kramer, K. M., Brock, J. A., Bloom, K., Moore, J. K. and Haber, J. E. (1994) Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events. Mol. Cell. Biol., 14, 1293-1301.
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 1293-1301
    • Kramer, K.M.1    Brock, J.A.2    Bloom, K.3    Moore, J.K.4    Haber, J.E.5
  • 2
    • 0027266927 scopus 로고
    • Transformation of Saccharomyces cerevisiae with nonhomologous DNA: Illegitimate integration of transforming DNA into yeast chromosomes and in vivo ligation of transforming DNA to mitochondrial DNA sequences
    • Schiestl, R. H., Dominska, M. and Petes, T. D. (1993) Transformation of Saccharomyces cerevisiae with nonhomologous DNA: illegitimate integration of transforming DNA into yeast chromosomes and in vivo ligation of transforming DNA to mitochondrial DNA sequences. Mol. Cell. Biol., 13, 2697-2705.
    • (1993) Mol. Cell. Biol. , vol.13 , pp. 2697-2705
    • Schiestl, R.H.1    Dominska, M.2    Petes, T.D.3
  • 3
    • 7944231563 scopus 로고    scopus 로고
    • Non-homologous endjoining factors of Saccharomyces cerevisiae
    • Dudásová, Z., Dudás, A. and Chovanec, M. (2004) Non-homologous endjoining factors of Saccharomyces cerevisiae. FEMS Microbiol. Rev., 28, 581-601.
    • (2004) FEMS Microbiol. Rev. , vol.28 , pp. 581-601
    • Dudásová, Z.1    Dudás, A.2    Chovanec, M.3
  • 4
    • 80755187806 scopus 로고    scopus 로고
    • Double-strand break end resection and repair pathway choice
    • Symington, L. S. and Gautier, J. (2011) Double-strand break end resection and repair pathway choice. Annu. Rev. Genet., 45, 247-271.
    • (2011) Annu. Rev. Genet. , vol.45 , pp. 247-271
    • Symington, L.S.1    Gautier, J.2
  • 5
    • 0037356461 scopus 로고    scopus 로고
    • Ku-dependent and Ku-independent endjoining pathways lead to chromosomal rearrangements during doublestrand break repair in Saccharomyces cerevisiae
    • Yu, X. and Gabriel, A. (2003) Ku-dependent and Ku-independent endjoining pathways lead to chromosomal rearrangements during doublestrand break repair in Saccharomyces cerevisiae. Genetics, 163, 843-856.
    • (2003) Genetics , vol.163 , pp. 843-856
    • Yu, X.1    Gabriel, A.2
  • 6
    • 0029791694 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways
    • Boulton, S. J. and Jackson, S. P. (1996) Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J., 15, 5093-5103.
    • (1996) EMBO J. , vol.15 , pp. 5093-5103
    • Boulton, S.J.1    Jackson, S.P.2
  • 7
    • 0034234487 scopus 로고    scopus 로고
    • DNA double-strand break repair in cell-free extracts from Ku80-deficient cells: Implications for Ku serving as an alignment factor in non-homologous DNA end joining
    • Feldmann, E., Schmiemann, V., Goedecke, W., Reichenberger, S. and Pfeiffer, P. (2000) DNA double-strand break repair in cell-free extracts from Ku80-deficient cells: implications for Ku serving as an alignment factor in non-homologous DNA end joining. Nucleic Acids Res., 28, 2585-2596.
    • (2000) Nucleic Acids Res. , vol.28 , pp. 2585-2596
    • Feldmann, E.1    Schmiemann, V.2    Goedecke, W.3    Reichenberger, S.4    Pfeiffer, P.5
  • 8
    • 54849404458 scopus 로고    scopus 로고
    • MMEJ repair of double-strand breaks (director's cut): Deleted sequences and alternative endings
    • McVey, M. and Lee, S. E. (2008) MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings. Trends Genet., 24, 529-538.
    • (2008) Trends Genet. , vol.24 , pp. 529-538
    • McVey, M.1    Lee, S.E.2
  • 9
    • 84900298762 scopus 로고    scopus 로고
    • Nonhomologous end joining often uses microhomology: Implications for alternative end joining
    • Pannunzio, N. R., Li, S., Watanabe, G. and Lieber, M. R. (2014) Nonhomologous end joining often uses microhomology: implications for alternative end joining. DNA Repair (Amst)., 17, 74-80.
    • (2014) DNA Repair (Amst). , vol.17 , pp. 74-80
    • Pannunzio, N.R.1    Li, S.2    Watanabe, G.3    Lieber, M.R.4
  • 10
    • 27544434114 scopus 로고    scopus 로고
    • The Mre11/Rad50/Xrs2 complex and non-homologous end-joining of incompatible ends in S
    • Zhang, X., and Paull, T.T. (2005) The Mre11/Rad50/Xrs2 complex and non-homologous end-joining of incompatible ends in S. cerevisiae. DNA Repair (Amst), 4, 1281-1294.
    • (2005) Cerevisiae. DNA Repair (Amst) , vol.4 , pp. 1281-1294
    • Zhang, X.1    Paull, T.T.2
  • 11
    • 0030811523 scopus 로고    scopus 로고
    • Yeast DNA ligase IV mediates non-homologous DNA end joining
    • Wilson, T. E., Grawunder, U. and Lieber, M. R. (1997) Yeast DNA ligase IV mediates non-homologous DNA end joining. Nature, 388, 495-498.
    • (1997) Nature , vol.388 , pp. 495-498
    • Wilson, T.E.1    Grawunder, U.2    Lieber, M.R.3
  • 12
    • 0029976325 scopus 로고    scopus 로고
    • Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae
    • Moore, J. K. and Haber, J. E. (1996) Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell. Biol., 16, 2164-2173.
    • (1996) Mol. Cell. Biol. , vol.16 , pp. 2164-2173
    • Moore, J.K.1    Haber, J.E.2
  • 14
    • 0025315699 scopus 로고
    • A pathway for generation and processing of double-strand breaks during meiotic recombination in S. Cerevisiae
    • Cao, L., Alani, E. and Kleckner, N. (1990) A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell, 61, 1089-1101.
    • (1990) Cell , vol.61 , pp. 1089-1101
    • Cao, L.1    Alani, E.2    Kleckner, N.3
  • 15
    • 0025334351 scopus 로고
    • Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination
    • Alani, E., Padmore, R. and Kleckner, N. (1990) Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell, 61, 419-436.
    • (1990) Cell , vol.61 , pp. 419-436
    • Alani, E.1    Padmore, R.2    Kleckner, N.3
  • 16
    • 0036682830 scopus 로고    scopus 로고
    • Tethering on the brink: The evolutionarily conserved Mre11-Rad50 complex
    • Connelly, J. C. and Leach, D. R. (2002) Tethering on the brink: the evolutionarily conserved Mre11-Rad50 complex. Trends Biochem. Sci., 27, 410-418.
    • (2002) Trends Biochem. Sci. , vol.27 , pp. 410-418
    • Connelly, J.C.1    Leach, D.R.2
  • 17
    • 0035929667 scopus 로고    scopus 로고
    • DNA structure-specific nuclease activities in the Saccharomyces cerevisiae Rad50∗Mre11 complex
    • Trujillo, K. M. and Sung, P. (2001) DNA structure-specific nuclease activities in the Saccharomyces cerevisiae Rad50∗Mre11 complex. J. Biol. Chem., 276, 35458-35464.
    • (2001) J. Biol. Chem. , vol.276 , pp. 35458-35464
    • Trujillo, K.M.1    Sung, P.2
  • 20
    • 0032931844 scopus 로고    scopus 로고
    • The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance
    • Moreau, S., Ferguson, J. R. and Symington, L. S. (1999) The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance. Mol. Cell. Biol., 19, 556-566.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 556-566
    • Moreau, S.1    Ferguson, J.R.2    Symington, L.S.3
  • 21
    • 2442463320 scopus 로고    scopus 로고
    • Role of the nuclease activity of Saccharomyces cerevisiae Mre11 in repair of DNA double-strand breaks in mitotic cells
    • Lewis, L. K., Storici, F., Van Komen, S., Calero, S., Sung, P. and Resnick, M. A. (2004) Role of the nuclease activity of Saccharomyces cerevisiae Mre11 in repair of DNA double-strand breaks in mitotic cells. Genetics, 166, 1701-1713.
    • (2004) Genetics , vol.166 , pp. 1701-1713
    • Lewis, L.K.1    Storici, F.2    Van Komen, S.3    Calero, S.4    Sung, P.5    Resnick, M.A.6
  • 22
    • 0034612307 scopus 로고    scopus 로고
    • A mechanistic basis for Mre11-directed DNA joining at microhomologies
    • Paull, T. T. and Gellert, M. (2000) A mechanistic basis for Mre11-directed DNA joining at microhomologies. Proc. Natl. Acad. Sci. USA, 97, 6409-6414.
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 6409-6414
    • Paull, T.T.1    Gellert, M.2
  • 23
    • 0035930342 scopus 로고    scopus 로고
    • Promotion of Dnl4-catalyzed DNA end-joining by the Rad50/Mre11/Xrs2 and Hdf1/Hdf2 complexes
    • Chen, L., Trujillo, K., Ramos, W., Sung, P. and Tomkinson, A. E. (2001) Promotion of Dnl4-catalyzed DNA end-joining by the Rad50/Mre11/Xrs2 and Hdf1/Hdf2 complexes. Mol. Cell, 8, 1105-1115.
    • (2001) Mol. Cell , vol.8 , pp. 1105-1115
    • Chen, L.1    Trujillo, K.2    Ramos, W.3    Sung, P.4    Tomkinson, A.E.5
  • 24
    • 0032567041 scopus 로고    scopus 로고
    • The many interfaces of Mre11
    • Haber, J. E. (1998) The many interfaces of Mre11. Cell, 95, 583-586.
    • (1998) Cell , vol.95 , pp. 583-586
    • Haber, J.E.1
  • 25
    • 0028246091 scopus 로고
    • Effect of mutations in genes affecting homologous recombination on restriction enzyme-mediated and illegitimate recombination in Saccharomyces cerevisiae
    • Schiestl, R. H., Zhu, J. and Petes, T. D. (1994) Effect of mutations in genes affecting homologous recombination on restriction enzyme-mediated and illegitimate recombination in Saccharomyces cerevisiae. Mol. Cell. Biol., 14, 4493-4500.
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 4493-4500
    • Schiestl, R.H.1    Zhu, J.2    Petes, T.D.3
  • 26
    • 0032536861 scopus 로고    scopus 로고
    • Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing
    • Boulton, S. J. and Jackson, S. P. (1998) Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J., 17, 1819-1828.
    • (1998) EMBO J. , vol.17 , pp. 1819-1828
    • Boulton, S.J.1    Jackson, S.P.2
  • 27
    • 0034854142 scopus 로고    scopus 로고
    • Checkpoint activation in response to double-strand breaks requires the Mre11/Rad50/Xrs2 complex
    • Grenon, M., Gilbert, C. and Lowndes, N. F. (2001) Checkpoint activation in response to double-strand breaks requires the Mre11/Rad50/Xrs2 complex. Nat. Cell Biol., 3, 844-847.
    • (2001) Nat. Cell Biol. , vol.3 , pp. 844-847
    • Grenon, M.1    Gilbert, C.2    Lowndes, N.F.3
  • 28
    • 0032860479 scopus 로고    scopus 로고
    • Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants
    • Chen, C. and Kolodner, R. D. (1999) Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat. Genet., 23, 81-85.
    • (1999) Nat. Genet. , vol.23 , pp. 81-85
    • Chen, C.1    Kolodner, R.D.2
  • 29
    • 16244368497 scopus 로고    scopus 로고
    • Suppression of gross chromosomal rearrangements by the multiple functions of the Mre11-Rad50-Xrs2 complex in Saccharomyces cerevisiae
    • Smith, S., Gupta, A., Kolodner, R. D. and Myung, K. (2005) Suppression of gross chromosomal rearrangements by the multiple functions of the Mre11-Rad50-Xrs2 complex in Saccharomyces cerevisiae. DNA Repair (Amst)., 4, 606-617.
    • (2005) DNA Repair (Amst). , vol.4 , pp. 606-617
    • Smith, S.1    Gupta, A.2    Kolodner, R.D.3    Myung, K.4
  • 30
    • 0024430208 scopus 로고
    • Structure and function of the Saccharomyces cerevisiae CDC2 gene encoding the large subunit of DNA polymerase III
    • Boulet, A., Simon, M., Faye, G., Bauer, G. A. and Burgers, P. M. (1989) Structure and function of the Saccharomyces cerevisiae CDC2 gene encoding the large subunit of DNA polymerase III. EMBO J., 8, 1849-1854.
    • (1989) EMBO J. , vol.8 , pp. 1849-1854
    • Boulet, A.1    Simon, M.2    Faye, G.3    Bauer, G.A.4    Burgers, P.M.5
  • 31
    • 0342872024 scopus 로고    scopus 로고
    • DNA polymerase delta, an essential enzyme for DNA transactions
    • Hindges, R. and Hübscher, U. (1997) DNA polymerase delta, an essential enzyme for DNA transactions. Biol. Chem., 378, 345-362.
    • (1997) Biol. Chem. , vol.378 , pp. 345-362
    • Hindges, R.1    Hübscher, U.2
  • 32
    • 0033525095 scopus 로고    scopus 로고
    • Double-strand break repair in yeast requires both leading and lagging strand DNA polymerases
    • Holmes, A. M. and Haber, J. E. (1999) Double-strand break repair in yeast requires both leading and lagging strand DNA polymerases. Cell, 96, 415-424.
    • (1999) Cell , vol.96 , pp. 415-424
    • Holmes, A.M.1    Haber, J.E.2
  • 33
    • 0028940972 scopus 로고
    • DNA polymerases required for repair of UV-induced damage in Saccharomyces cerevisiae
    • Budd, M. E. and Campbell, J. L. (1995) DNA polymerases required for repair of UV-induced damage in Saccharomyces cerevisiae. Mol. Cell. Biol., 15, 2173-2179.
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 2173-2179
    • Budd, M.E.1    Campbell, J.L.2
  • 34
    • 0027475974 scopus 로고
    • DNA repair synthesis during base excision repair in vitro is catalyzed by DNA polymerase epsilon and is influenced by DNA polymerases alpha and delta in Saccharomyces cerevisiae
    • Wang, Z., Wu, X. and Friedberg, E. C. (1993) DNA repair synthesis during base excision repair in vitro is catalyzed by DNA polymerase epsilon and is influenced by DNA polymerases alpha and delta in Saccharomyces cerevisiae. Mol. Cell. Biol., 13, 1051-1058.
    • (1993) Mol. Cell. Biol. , vol.13 , pp. 1051-1058
    • Wang, Z.1    Wu, X.2    Friedberg, E.C.3
  • 35
    • 0030814759 scopus 로고    scopus 로고
    • Involvement of the yeast DNA polymerase delta in DNA repair in vivo
    • Giot, L., Chanet, R., Simon, M., Facca, C. and Faye, G. (1997) Involvement of the yeast DNA polymerase delta in DNA repair in vivo. Genetics, 146, 1239-1251.
    • (1997) Genetics , vol.146 , pp. 1239-1251
    • Giot, L.1    Chanet, R.2    Simon, M.3    Facca, C.4    Faye, G.5
  • 36
    • 0032925857 scopus 로고    scopus 로고
    • Genetic factors affecting the impact of DNA polymerase delta proofreading activity on mutation avoidance in yeast
    • Tran, H. T., Degtyareva, N. P., Gordenin, D. A. and Resnick, M. A. (1999) Genetic factors affecting the impact of DNA polymerase delta proofreading activity on mutation avoidance in yeast. Genetics, 152, 47-59.
    • (1999) Genetics , vol.152 , pp. 47-59
    • Tran, H.T.1    Degtyareva, N.P.2    Gordenin, D.A.3    Resnick, M.A.4
  • 38
    • 0015105591 scopus 로고
    • Genetic control of the cell division cycle in yeast. 3. Seven genes controlling nuclear division
    • Culotti, J. and Hartwell, L. H. (1971) Genetic control of the cell division cycle in yeast. 3. Seven genes controlling nuclear division. Exp. Cell Res., 67, 389-401.
    • (1971) Exp. Cell Res. , vol.67 , pp. 389-401
    • Culotti, J.1    Hartwell, L.H.2
  • 39
    • 0029087573 scopus 로고
    • Replication slippage between distant short repeats in Saccharomyces cerevisiae depends on the direction of replication and the RAD50 and RAD52 genes
    • Tran, H. T., Degtyareva, N. P., Koloteva, N. N., Sugino, A., Masumoto, H., Gordenin, D. A. and Resnick, M. A. (1995) Replication slippage between distant short repeats in Saccharomyces cerevisiae depends on the direction of replication and the RAD50 and RAD52 genes. Mol. Cell. Biol., 15, 5607-5617.
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 5607-5617
    • Tran, H.T.1    Degtyareva, N.P.2    Koloteva, N.N.3    Sugino, A.4    Masumoto, H.5    Gordenin, D.A.6    Resnick, M.A.7
  • 40
    • 0031953438 scopus 로고    scopus 로고
    • Destabilization of yeast micro-and minisatellite DNA sequences by mutations affecting a nuclease involved in Okazaki fragment processing (rad27) and DNA polymerase delta (pol3-t)
    • Kokoska, R. J., Stefanovic, L., Tran, H. T., Resnick, M. A., Gordenin, D. A. and Petes, T. D. (1998) Destabilization of yeast micro-and minisatellite DNA sequences by mutations affecting a nuclease involved in Okazaki fragment processing (rad27) and DNA polymerase delta (pol3-t). Mol. Cell. Biol., 18, 2779-2788.
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 2779-2788
    • Kokoska, R.J.1    Stefanovic, L.2    Tran, H.T.3    Resnick, M.A.4    Gordenin, D.A.5    Petes, T.D.6
  • 41
    • 0024058351 scopus 로고
    • Genetic control of intrachromosomal recombination in Saccharomyces cerevisiae. I. Isolation and genetic characterization of hyper-recombination mutations
    • Aguilera, A. and Klein, H. L. (1988) Genetic control of intrachromosomal recombination in Saccharomyces cerevisiae. I. Isolation and genetic characterization of hyper-recombination mutations. Genetics, 119, 779-790.
    • (1988) Genetics , vol.119 , pp. 779-790
    • Aguilera, A.1    Klein, H.L.2
  • 42
    • 71449104242 scopus 로고    scopus 로고
    • The pol3-t hyperrecombination phenotype and DNA damage-induced recombination in Saccharomyces cerevisiae is RAD50 dependent
    • Galli, A., Hafer, K., Cervelli, T. and Schiestl, R. H. (2009) The pol3-t hyperrecombination phenotype and DNA damage-induced recombination in Saccharomyces cerevisiae is RAD50 dependent. J. Biomed. Biotechnol., 2009, 312710.
    • (2009) J. Biomed. Biotechnol. , vol.2009 , pp. 312710
    • Galli, A.1    Hafer, K.2    Cervelli, T.3    Schiestl, R.H.4
  • 43
    • 0027057935 scopus 로고
    • Comprehensive sequence analysis of the 182 predicted open reading frames of yeast chromosome III
    • Bork, P., Ouzounis, C., Sander, C., Scharf, M., Schneider, R. and Sonnhammer, E. (1992) Comprehensive sequence analysis of the 182 predicted open reading frames of yeast chromosome III. Protein Sci., 1, 1677-1690.
    • (1992) Protein Sci. , vol.1 , pp. 1677-1690
    • Bork, P.1    Ouzounis, C.2    Sander, C.3    Scharf, M.4    Schneider, R.5    Sonnhammer, E.6
  • 44
    • 0027937623 scopus 로고
    • The yeast Saccharomyces cerevisiae DNA polymerase IV: Possible involvement in double strand break DNA repair
    • Leem, S. H., Ropp, P. A. and Sugino, A. (1994) The yeast Saccharomyces cerevisiae DNA polymerase IV: possible involvement in double strand break DNA repair. Nucleic Acids Res., 22, 3011-3017.
    • (1994) Nucleic Acids Res. , vol.22 , pp. 3011-3017
    • Leem, S.H.1    Ropp, P.A.2    Sugino, A.3
  • 45
    • 33644783692 scopus 로고    scopus 로고
    • DNA polymerase 4 of Saccharomyces cerevisiae is important for accurate repair of methyl-methanesulfonate-induced DNA damage
    • Sterling, C. H. and Sweasy, J. B. (2006) DNA polymerase 4 of Saccharomyces cerevisiae is important for accurate repair of methyl-methanesulfonate-induced DNA damage. Genetics, 172, 89-98.
    • (2006) Genetics , vol.172 , pp. 89-98
    • Sterling, C.H.1    Sweasy, J.B.2
  • 46
    • 0037160145 scopus 로고    scopus 로고
    • A physical and functional interaction between yeast Pol4 and Dnl4-Lif1 links DNA synthesis and ligation in nonhomologous end joining
    • Tseng, H. M. and Tomkinson, A. E. (2002) A physical and functional interaction between yeast Pol4 and Dnl4-Lif1 links DNA synthesis and ligation in nonhomologous end joining. J. Biol. Chem., 277, 45630-45637.
    • (2002) J. Biol. Chem. , vol.277 , pp. 45630-45637
    • Tseng, H.M.1    Tomkinson, A.E.2
  • 47
    • 9144237012 scopus 로고    scopus 로고
    • Processing and joining of DNA ends coordinated by interactions among Dnl4/Lif1, Pol4, and FEN-1
    • Tseng, H. M. and Tomkinson, A. E. (2004) Processing and joining of DNA ends coordinated by interactions among Dnl4/Lif1, Pol4, and FEN-1. J. Biol. Chem., 279, 47580-47588.
    • (2004) J. Biol. Chem. , vol.279 , pp. 47580-47588
    • Tseng, H.M.1    Tomkinson, A.E.2
  • 48
    • 0033551662 scopus 로고    scopus 로고
    • Efficient processing of DNA ends during yeast nonhomologous end joining. Evidence for a DNA polymerase beta (Pol4)-dependent pathway
    • Wilson, T. E. and Lieber, M. R. (1999) Efficient processing of DNA ends during yeast nonhomologous end joining. Evidence for a DNA polymerase beta (Pol4)-dependent pathway. J. Biol. Chem., 274, 23599-23609.
    • (1999) J. Biol. Chem. , vol.274 , pp. 23599-23609
    • Wilson, T.E.1    Lieber, M.R.2
  • 49
    • 23844464546 scopus 로고    scopus 로고
    • DNA joint dependence of pol X family polymerase action in nonhomologous end joining
    • Daley, J. M., Laan, R. L., Suresh, A. and Wilson, T. E. (2005) DNA joint dependence of pol X family polymerase action in nonhomologous end joining. J. Biol. Chem., 280, 29030-29037.
    • (2005) J. Biol. Chem. , vol.280 , pp. 29030-29037
    • Daley, J.M.1    Laan, R.L.2    Suresh, A.3    Wilson, T.E.4
  • 50
    • 33646187142 scopus 로고    scopus 로고
    • Mismatch tolerance by DNA polymerase Pol4 in the course of nonhomologous end joining in Saccharomyces cerevisiae
    • Pardo, B., Ma, E. and Marcand, S. (2006) Mismatch tolerance by DNA polymerase Pol4 in the course of nonhomologous end joining in Saccharomyces cerevisiae. Genetics, 172, 2689-2694.
    • (2006) Genetics , vol.172 , pp. 2689-2694
    • Pardo, B.1    Ma, E.2    Marcand, S.3
  • 52
    • 48149104385 scopus 로고    scopus 로고
    • Pol3 is involved in nonhomologous end-joining in Saccharomyces cerevisiae
    • Chan, C. Y., Galli, A. and Schiestl, R. H. (2008) Pol3 is involved in nonhomologous end-joining in Saccharomyces cerevisiae. DNA Repair (Amst)., 7, 1531-1541.
    • (2008) DNA Repair (Amst). , vol.7 , pp. 1531-1541
    • Chan, C.Y.1    Galli, A.2    Schiestl, R.H.3
  • 53
    • 0031888689 scopus 로고    scopus 로고
    • Nonhomologous end joining during restriction enzyme-mediated DNA integration in Saccharomyces cerevisiae
    • Manivasakam, P. and Schiestl, R. H. (1998) Nonhomologous end joining during restriction enzyme-mediated DNA integration in Saccharomyces cerevisiae. Mol. Cell. Biol., 18, 1736-1745.
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 1736-1745
    • Manivasakam, P.1    Schiestl, R.H.2
  • 54
    • 0026759693 scopus 로고
    • XRS2, a DNA repair gene of Saccharomyces cerevisiae, is needed for meiotic recombination
    • Ivanov, E. L., Korolev, V. G. and Fabre, F. (1992) XRS2, a DNA repair gene of Saccharomyces cerevisiae, is needed for meiotic recombination. Genetics, 132, 651-664.
    • (1992) Genetics , vol.132 , pp. 651-664
    • Ivanov, E.L.1    Korolev, V.G.2    Fabre, F.3
  • 55
    • 0024266139 scopus 로고
    • New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites
    • Gietz, R. D. and Sugino, A. (1988) New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene, 74, 527-534.
    • (1988) Gene , vol.74 , pp. 527-534
    • Gietz, R.D.1    Sugino, A.2
  • 56
    • 0026562884 scopus 로고
    • Improved method for high efficiency transformation of intact yeast cells
    • Gietz, D., St Jean, A., Woods, R. A. and Schiestl, R. H. (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res., 20, 1425.
    • (1992) Nucleic Acids Res. , vol.20 , pp. 1425
    • Gietz, D.1    St Jean, A.2    Woods, R.A.3    Schiestl, R.H.4
  • 57
    • 0034661902 scopus 로고    scopus 로고
    • Requirement for the SRS2 DNA helicase gene in non-homologous end joining in yeast
    • Hegde, V. and Klein, H. (2000) Requirement for the SRS2 DNA helicase gene in non-homologous end joining in yeast. Nucleic Acids Res., 28, 2779-2783.
    • (2000) Nucleic Acids Res. , vol.28 , pp. 2779-2783
    • Hegde, V.1    Klein, H.2
  • 58
    • 0032567108 scopus 로고    scopus 로고
    • Complex formation and functional versatility of Mre11 of budding yeast in recombination
    • Usui, T., Ohta, T., Oshiumi, H., Tomizawa, J., Ogawa, H. and Ogawa, T. (1998) Complex formation and functional versatility of Mre11 of budding yeast in recombination. Cell, 95, 705-716.
    • (1998) Cell , vol.95 , pp. 705-716
    • Usui, T.1    Ohta, T.2    Oshiumi, H.3    Tomizawa, J.4    Ogawa, H.5    Ogawa, T.6
  • 59
    • 78649451417 scopus 로고    scopus 로고
    • Making the best of the loose ends: Mre11/Rad50 complexes and Sae2 promote DNA double-strand break resection
    • Paull, T. T. (2010) Making the best of the loose ends: Mre11/Rad50 complexes and Sae2 promote DNA double-strand break resection. DNA Repair (Amst), 9, 1283-1291.
    • (2010) DNA Repair (Amst) , vol.9 , pp. 1283-1291
    • Paull, T.T.1
  • 61
    • 0029829054 scopus 로고    scopus 로고
    • DNA end joining by the Klenow fragment of DNA polymerase I
    • King, J. S., Fairley, C. F. and Morgan, W. F. (1996) DNA end joining by the Klenow fragment of DNA polymerase I. J. Biol. Chem., 271, 20450-20457.
    • (1996) J. Biol. Chem. , vol.271 , pp. 20450-20457
    • King, J.S.1    Fairley, C.F.2    Morgan, W.F.3
  • 63
    • 79957525844 scopus 로고    scopus 로고
    • Polymerases in nonhomologous end joining: Building a bridge over broken chromosomes
    • Ramsden, D. A. (2011) Polymerases in nonhomologous end joining: building a bridge over broken chromosomes. Antioxid. Redox Signal., 14, 2509-2519.
    • (2011) Antioxid. Redox Signal. , vol.14 , pp. 2509-2519
    • Ramsden, D.A.1
  • 64
    • 0029954821 scopus 로고    scopus 로고
    • Mutations in two Ku homologs define a DNA end-joining repair pathway in Saccharomyces cerevisiae
    • Milne, G. T., Jin, S., Shannon, K. B. and Weaver, D. T. (1996) Mutations in two Ku homologs define a DNA end-joining repair pathway in Saccharomyces cerevisiae. Mol. Cell. Biol., 16, 4189-4198.
    • (1996) Mol. Cell. Biol. , vol.16 , pp. 4189-4198
    • Milne, G.T.1    Jin, S.2    Shannon, K.B.3    Weaver, D.T.4
  • 66
    • 34548585254 scopus 로고    scopus 로고
    • Ionizing radiation and restriction enzymes induce microhomology-mediated illegitimate recombination in Saccharomyces cerevisiae
    • Chan, C. Y., Kiechle, M., Manivasakam, P. and Schiestl, R. H. (2007) Ionizing radiation and restriction enzymes induce microhomology-mediated illegitimate recombination in Saccharomyces cerevisiae. Nucleic Acids Res., 35, 5051-5059.
    • (2007) Nucleic Acids Res. , vol.35 , pp. 5051-5059
    • Chan, C.Y.1    Kiechle, M.2    Manivasakam, P.3    Schiestl, R.H.4
  • 68
    • 0036276388 scopus 로고    scopus 로고
    • The Mre11 complex: At the crossroads of DNA repair and checkpoint signalling
    • D'Amours, D. and Jackson, S. P. (2002) The Mre11 complex: at the crossroads of dna repair and checkpoint signalling. Nat. Rev. Mol. Cell Biol., 3, 317-327.
    • (2002) Nat. Rev. Mol. Cell Biol. , vol.3 , pp. 317-327
    • D'Amours, D.1    Jackson, S.P.2
  • 69
    • 0036797833 scopus 로고    scopus 로고
    • Protecting genomic integrity during DNA replication: Correlation between Werner's and Bloom's syndrome gene products and the MRE11 complex
    • Franchitto, A. and Pichierri, P. (2002) Protecting genomic integrity during DNA replication: correlation between Werner's and Bloom's syndrome gene products and the MRE11 complex. Hum. Mol. Genet., 11, 2447-2453.
    • (2002) Hum. Mol. Genet. , vol.11 , pp. 2447-2453
    • Franchitto, A.1    Pichierri, P.2
  • 70
    • 0031025093 scopus 로고    scopus 로고
    • DNA double-strand breaks caused by replication arrest
    • Michel, B., Ehrlich, S. D. and Uzest, M. (1997) DNA double-strand breaks caused by replication arrest. EMBO J., 16, 430-438.
    • (1997) EMBO J. , vol.16 , pp. 430-438
    • Michel, B.1    Ehrlich, S.D.2    Uzest, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.