-
1
-
-
84896079277
-
-
U.S. Department of Energy. Buildings energy data Book; Retrieved from: .
-
U.S. Department of Energy. Buildings energy data Book; 2013. Retrieved from: http://buildingsdatabook.eren.doe.gov/.
-
(2013)
-
-
-
2
-
-
84896080647
-
-
PlaNYC - Green buildings & energy efficiency. The City of New York;
-
PlaNYC - Green buildings & energy efficiency. The City of New York; 2013.
-
(2013)
-
-
-
3
-
-
77951106791
-
Method and simulation program informed decisions in the early stages of building design
-
Petersen S., Svendsen S. Method and simulation program informed decisions in the early stages of building design. Energy Build 2010, 42:1113-1119.
-
(2010)
Energy Build
, vol.42
, pp. 1113-1119
-
-
Petersen, S.1
Svendsen, S.2
-
4
-
-
84864521328
-
Stochastic models for building energy prediction based on occupant behavior assessment
-
Virote J., Neves-silva R. Stochastic models for building energy prediction based on occupant behavior assessment. Energy Build 2012, 53:183-193.
-
(2012)
Energy Build
, vol.53
, pp. 183-193
-
-
Virote, J.1
Neves-silva, R.2
-
5
-
-
84860837922
-
Modeling and optimization of HVAC systems using a dynamic neural network
-
Kusiak A., Xu G. Modeling and optimization of HVAC systems using a dynamic neural network. Energy 2012, 42:241-250.
-
(2012)
Energy
, vol.42
, pp. 241-250
-
-
Kusiak, A.1
Xu, G.2
-
6
-
-
84855216433
-
Spatial distribution of urban building energy consumption by end use
-
Howard B., Parshall L., Thompson J., Hammer S., Dickinson J., Modi V. Spatial distribution of urban building energy consumption by end use. Energy Build 2012, 45:141-151.
-
(2012)
Energy Build
, vol.45
, pp. 141-151
-
-
Howard, B.1
Parshall, L.2
Thompson, J.3
Hammer, S.4
Dickinson, J.5
Modi, V.6
-
7
-
-
84861802647
-
Predicting future hourly residential electrical consumption: a machine learning case study
-
Edwards R.E., New J., Parker L.E. Predicting future hourly residential electrical consumption: a machine learning case study. Energy Build 2012, 49:591-603.
-
(2012)
Energy Build
, vol.49
, pp. 591-603
-
-
Edwards, R.E.1
New, J.2
Parker, L.E.3
-
8
-
-
84860223914
-
A review on the prediction of building energy consumption
-
Zhao H-x., Magoulès F. A review on the prediction of building energy consumption. Renew Sustain Energy Rev 2012, 16:3586-3592.
-
(2012)
Renew Sustain Energy Rev
, vol.16
, pp. 3586-3592
-
-
Zhao, H.-X.1
Magoulès, F.2
-
9
-
-
0028442437
-
-
ASHRAE Journal (American Society of Heating, Refrigerating and Air-Conditioning Engineers), United States
-
Kreider J.F., Haberl J.S. Predicting hourly building energy usage 1994, ASHRAE Journal (American Society of Heating, Refrigerating and Air-Conditioning Engineers), United States, p. 36.
-
(1994)
Predicting hourly building energy usage
, pp. 36
-
-
Kreider, J.F.1
Haberl, J.S.2
-
10
-
-
0028698662
-
Bayesian nonlinear modeling for the prediction competition
-
Mackay D.J.C. Bayesian nonlinear modeling for the prediction competition. ASHRAE Trans 1994, 100:1053-1062.
-
(1994)
ASHRAE Trans
, vol.100
, pp. 1053-1062
-
-
Mackay, D.J.C.1
-
11
-
-
25844500264
-
On-line building energy prediction using adaptive artificial neural networks
-
Yang J., Rivard H., Zmeureanu R. On-line building energy prediction using adaptive artificial neural networks. Energy Build 2005, 37:1250-1259.
-
(2005)
Energy Build
, vol.37
, pp. 1250-1259
-
-
Yang, J.1
Rivard, H.2
Zmeureanu, R.3
-
12
-
-
13244270060
-
Applying support vector machines to predict building energy consumption in tropical region
-
Dong B., Cao C., Lee S.E. Applying support vector machines to predict building energy consumption in tropical region. Energy Build 2005, 37:545-553.
-
(2005)
Energy Build
, vol.37
, pp. 545-553
-
-
Dong, B.1
Cao, C.2
Lee, S.E.3
-
13
-
-
33646870136
-
Modeling and predicting building's energy use with artificial neural networks: methods and results
-
Karatasou S., Santamouris M., Geros V. Modeling and predicting building's energy use with artificial neural networks: methods and results. Energy Build 2006, 38:949-958.
-
(2006)
Energy Build
, vol.38
, pp. 949-958
-
-
Karatasou, S.1
Santamouris, M.2
Geros, V.3
-
14
-
-
56049088473
-
Predicting hourly cooling load in the building: a comparison of support vector machine and different artificial neural networks
-
Li Q., Meng Q., Cai J., Yoshino H., Mochida A. Predicting hourly cooling load in the building: a comparison of support vector machine and different artificial neural networks. Energy Convers Manage 2009, 50:90-96.
-
(2009)
Energy Convers Manage
, vol.50
, pp. 90-96
-
-
Li, Q.1
Meng, Q.2
Cai, J.3
Yoshino, H.4
Mochida, A.5
-
15
-
-
64849083683
-
Applying support vector machine to predict hourly cooling load in the building
-
Li Q., Meng Q., Cai J., Yoshino H., Mochida A. Applying support vector machine to predict hourly cooling load in the building. Appl Energy 2009, 86:2249-2256.
-
(2009)
Appl Energy
, vol.86
, pp. 2249-2256
-
-
Li, Q.1
Meng, Q.2
Cai, J.3
Yoshino, H.4
Mochida, A.5
-
16
-
-
75449093272
-
Artificial neural networks for energy analysis of office buildings with daylighting
-
Wong S.L., Wan K.K.W., Lam T.N.T. Artificial neural networks for energy analysis of office buildings with daylighting. Appl Energy 2010, 87:551-557.
-
(2010)
Appl Energy
, vol.87
, pp. 551-557
-
-
Wong, S.L.1
Wan, K.K.W.2
Lam, T.N.T.3
-
17
-
-
80055058091
-
-
A large-scale study on predicting and contextualizing building energy usage. In: Proceedings of the twenty-fifth AAAI conference on artificial intelligence: AAAI.
-
Kolter JZ, Ferreira J. A large-scale study on predicting and contextualizing building energy usage. In: Proceedings of the twenty-fifth AAAI conference on artificial intelligence: AAAI. p. 1349-56.
-
-
-
Kolter, JZ.1
Ferreira, J.2
-
18
-
-
80054796723
-
Forecasting building energy consumption using neural networks and hybrid neuro-fuzzy system: a comparative study
-
Li K., Su H., Chu J. Forecasting building energy consumption using neural networks and hybrid neuro-fuzzy system: a comparative study. Energy Build 2011, 43:2893-2899.
-
(2011)
Energy Build
, vol.43
, pp. 2893-2899
-
-
Li, K.1
Su, H.2
Chu, J.3
-
19
-
-
77957308800
-
Modeling and prediction of Turkey's electricity consumption using support vector regression
-
Kavaklioglu K. Modeling and prediction of Turkey's electricity consumption using support vector regression. Appl Energy 2011, 88:368-375.
-
(2011)
Appl Energy
, vol.88
, pp. 368-375
-
-
Kavaklioglu, K.1
-
20
-
-
84859087157
-
Feature selection for predicting building energy consumption based on statistical learning method
-
Zhao H-x, Magoulès F. Feature selection for predicting building energy consumption based on statistical learning method. J Algor Comput Technol 2012, 6:59-78.
-
(2012)
J Algor Comput Technol
, vol.6
, pp. 59-78
-
-
Zhao, H.-X.1
Magoulès, F.2
-
21
-
-
84865413861
-
Application of SVR with chaotic GASA algorithm in cyclic electric load forecasting
-
Zhang W.Y., Hong W.-C., Dong Y., Tsai G., Sung J.-T., Fan G-f. Application of SVR with chaotic GASA algorithm in cyclic electric load forecasting. Energy 2012, 45:850-858.
-
(2012)
Energy
, vol.45
, pp. 850-858
-
-
Zhang, W.Y.1
Hong, W.-C.2
Dong, Y.3
Tsai, G.4
Sung, J.-T.5
Fan, G.-F.6
-
22
-
-
33645018466
-
Fixed-size least squares support vector machines: a large scale application in electrical load forecasting
-
Espinoza M., Espinoza M., Suykens J.A.K., Moor B.D. Fixed-size least squares support vector machines: a large scale application in electrical load forecasting. CMS 2006, 3:113-129.
-
(2006)
CMS
, vol.3
, pp. 113-129
-
-
Espinoza, M.1
Espinoza, M.2
Suykens, J.A.K.3
Moor, B.D.4
-
23
-
-
84899013173
-
Support vector regression machines
-
Drucker H., Burges C.J., Kaufman L., Smola A., Vapnik V. Support vector regression machines. Adv Neural Inform Process Syst 1997, 155-161.
-
(1997)
Adv Neural Inform Process Syst
, pp. 155-161
-
-
Drucker, H.1
Burges, C.J.2
Kaufman, L.3
Smola, A.4
Vapnik, V.5
-
24
-
-
50649125772
-
-
Electrical energy demand prediction using artificial neural networks and support vector regression. In: 3rd International Symposium on Communications, Control and Signal Processing, ISCCSP 2008, IEEE;
-
Ruas GIS, Bragatto TAC, Lamar MV, Aoki AR, de Rocco SM. Electrical energy demand prediction using artificial neural networks and support vector regression. In: 3rd International Symposium on Communications, Control and Signal Processing, ISCCSP 2008, IEEE; 2008.
-
(2008)
-
-
Ruas, GIS.1
Bragatto, TAC.2
Lamar, MV.3
Aoki, AR.4
de Rocco, SM.5
-
25
-
-
80555140075
-
Scikit-learn: machine learning in python
-
Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., et al. Scikit-learn: machine learning in python. J Mach Learn Res 2011, 12:2825-2830.
-
(2011)
J Mach Learn Res
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
-
28
-
-
85164392958
-
A study of cross-validation and bootstrap for accuracy estimation and model selection
-
In: IJCAI
-
Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: IJCAI 1995. p. 1137-45.
-
(1995)
, pp. 1137-1145
-
-
Kohavi, R.1
-
29
-
-
84891376397
-
Network eco-informatics: development of a social eco-feedback system to drive energy efficiency in residential buildings
-
Gulbinas R., Jain R., Taylor J., Peschiera G., Golparvar-Fard M. Network eco-informatics: development of a social eco-feedback system to drive energy efficiency in residential buildings. ASCE J Comput Civil Eng 2014, 28(1):89-98.
-
(2014)
ASCE J Comput Civil Eng
, vol.28
, Issue.1
, pp. 89-98
-
-
Gulbinas, R.1
Jain, R.2
Taylor, J.3
Peschiera, G.4
Golparvar-Fard, M.5
-
30
-
-
29144462687
-
A long term study of residential home heating consumption and the effect of occupant behavior on homes in the Pacific Northwest constructed according to improved thermal standards
-
Emery A.F., Kippenhan C.J. A long term study of residential home heating consumption and the effect of occupant behavior on homes in the Pacific Northwest constructed according to improved thermal standards. Energy 2006, 31:677-693.
-
(2006)
Energy
, vol.31
, pp. 677-693
-
-
Emery, A.F.1
Kippenhan, C.J.2
-
31
-
-
84885933555
-
A novel dynamic modeling approach for predicting building energy performance
-
Lü X., Lu T., Kibert C.J., Viljanen M. A novel dynamic modeling approach for predicting building energy performance. Appl Energy 2014, 114:91-103.
-
(2014)
Appl Energy
, vol.114
, pp. 91-103
-
-
Lü, X.1
Lu, T.2
Kibert, C.J.3
Viljanen, M.4
-
32
-
-
79953766575
-
A systematic procedure to study the influence of occupant behavior on building energy consumption
-
Yu Z., Fung B.C.M., Haghighat F., Yoshino H., Morofsky E. A systematic procedure to study the influence of occupant behavior on building energy consumption. Energy Build 2011, 43:1409-1417.
-
(2011)
Energy Build
, vol.43
, pp. 1409-1417
-
-
Yu, Z.1
Fung, B.C.M.2
Haghighat, F.3
Yoshino, H.4
Morofsky, E.5
-
33
-
-
84861695269
-
Residential demand response model and impact on voltage profile and losses of an electric distribution network
-
Venkatesan N., Solanki J., Solanki S.K. Residential demand response model and impact on voltage profile and losses of an electric distribution network. Appl Energy 2012, 96:84-91.
-
(2012)
Appl Energy
, vol.96
, pp. 84-91
-
-
Venkatesan, N.1
Solanki, J.2
Solanki, S.K.3
|