메뉴 건너뛰기




Volumn 123, Issue , 2014, Pages 168-178

Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy

Author keywords

Forecasting; Machine learning; Monitoring; Prediction; Residential building; Support vector regression

Indexed keywords

ELECTRIC MEASURING INSTRUMENTS; ENERGY EFFICIENCY; ENERGY UTILIZATION; FLOORS; FORECASTING; LEARNING SYSTEMS; MONITORING; OFFICE BUILDINGS; REGRESSION ANALYSIS; SENSORS;

EID: 84896085639     PISSN: 03062619     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apenergy.2014.02.057     Document Type: Article
Times cited : (501)

References (33)
  • 1
    • 84896079277 scopus 로고    scopus 로고
    • U.S. Department of Energy. Buildings energy data Book; Retrieved from: .
    • U.S. Department of Energy. Buildings energy data Book; 2013. Retrieved from: http://buildingsdatabook.eren.doe.gov/.
    • (2013)
  • 2
    • 84896080647 scopus 로고    scopus 로고
    • PlaNYC - Green buildings & energy efficiency. The City of New York;
    • PlaNYC - Green buildings & energy efficiency. The City of New York; 2013.
    • (2013)
  • 3
    • 77951106791 scopus 로고    scopus 로고
    • Method and simulation program informed decisions in the early stages of building design
    • Petersen S., Svendsen S. Method and simulation program informed decisions in the early stages of building design. Energy Build 2010, 42:1113-1119.
    • (2010) Energy Build , vol.42 , pp. 1113-1119
    • Petersen, S.1    Svendsen, S.2
  • 4
    • 84864521328 scopus 로고    scopus 로고
    • Stochastic models for building energy prediction based on occupant behavior assessment
    • Virote J., Neves-silva R. Stochastic models for building energy prediction based on occupant behavior assessment. Energy Build 2012, 53:183-193.
    • (2012) Energy Build , vol.53 , pp. 183-193
    • Virote, J.1    Neves-silva, R.2
  • 5
    • 84860837922 scopus 로고    scopus 로고
    • Modeling and optimization of HVAC systems using a dynamic neural network
    • Kusiak A., Xu G. Modeling and optimization of HVAC systems using a dynamic neural network. Energy 2012, 42:241-250.
    • (2012) Energy , vol.42 , pp. 241-250
    • Kusiak, A.1    Xu, G.2
  • 7
    • 84861802647 scopus 로고    scopus 로고
    • Predicting future hourly residential electrical consumption: a machine learning case study
    • Edwards R.E., New J., Parker L.E. Predicting future hourly residential electrical consumption: a machine learning case study. Energy Build 2012, 49:591-603.
    • (2012) Energy Build , vol.49 , pp. 591-603
    • Edwards, R.E.1    New, J.2    Parker, L.E.3
  • 8
    • 84860223914 scopus 로고    scopus 로고
    • A review on the prediction of building energy consumption
    • Zhao H-x., Magoulès F. A review on the prediction of building energy consumption. Renew Sustain Energy Rev 2012, 16:3586-3592.
    • (2012) Renew Sustain Energy Rev , vol.16 , pp. 3586-3592
    • Zhao, H.-X.1    Magoulès, F.2
  • 9
    • 0028442437 scopus 로고
    • ASHRAE Journal (American Society of Heating, Refrigerating and Air-Conditioning Engineers), United States
    • Kreider J.F., Haberl J.S. Predicting hourly building energy usage 1994, ASHRAE Journal (American Society of Heating, Refrigerating and Air-Conditioning Engineers), United States, p. 36.
    • (1994) Predicting hourly building energy usage , pp. 36
    • Kreider, J.F.1    Haberl, J.S.2
  • 10
    • 0028698662 scopus 로고
    • Bayesian nonlinear modeling for the prediction competition
    • Mackay D.J.C. Bayesian nonlinear modeling for the prediction competition. ASHRAE Trans 1994, 100:1053-1062.
    • (1994) ASHRAE Trans , vol.100 , pp. 1053-1062
    • Mackay, D.J.C.1
  • 11
    • 25844500264 scopus 로고    scopus 로고
    • On-line building energy prediction using adaptive artificial neural networks
    • Yang J., Rivard H., Zmeureanu R. On-line building energy prediction using adaptive artificial neural networks. Energy Build 2005, 37:1250-1259.
    • (2005) Energy Build , vol.37 , pp. 1250-1259
    • Yang, J.1    Rivard, H.2    Zmeureanu, R.3
  • 12
    • 13244270060 scopus 로고    scopus 로고
    • Applying support vector machines to predict building energy consumption in tropical region
    • Dong B., Cao C., Lee S.E. Applying support vector machines to predict building energy consumption in tropical region. Energy Build 2005, 37:545-553.
    • (2005) Energy Build , vol.37 , pp. 545-553
    • Dong, B.1    Cao, C.2    Lee, S.E.3
  • 13
    • 33646870136 scopus 로고    scopus 로고
    • Modeling and predicting building's energy use with artificial neural networks: methods and results
    • Karatasou S., Santamouris M., Geros V. Modeling and predicting building's energy use with artificial neural networks: methods and results. Energy Build 2006, 38:949-958.
    • (2006) Energy Build , vol.38 , pp. 949-958
    • Karatasou, S.1    Santamouris, M.2    Geros, V.3
  • 14
    • 56049088473 scopus 로고    scopus 로고
    • Predicting hourly cooling load in the building: a comparison of support vector machine and different artificial neural networks
    • Li Q., Meng Q., Cai J., Yoshino H., Mochida A. Predicting hourly cooling load in the building: a comparison of support vector machine and different artificial neural networks. Energy Convers Manage 2009, 50:90-96.
    • (2009) Energy Convers Manage , vol.50 , pp. 90-96
    • Li, Q.1    Meng, Q.2    Cai, J.3    Yoshino, H.4    Mochida, A.5
  • 15
    • 64849083683 scopus 로고    scopus 로고
    • Applying support vector machine to predict hourly cooling load in the building
    • Li Q., Meng Q., Cai J., Yoshino H., Mochida A. Applying support vector machine to predict hourly cooling load in the building. Appl Energy 2009, 86:2249-2256.
    • (2009) Appl Energy , vol.86 , pp. 2249-2256
    • Li, Q.1    Meng, Q.2    Cai, J.3    Yoshino, H.4    Mochida, A.5
  • 16
    • 75449093272 scopus 로고    scopus 로고
    • Artificial neural networks for energy analysis of office buildings with daylighting
    • Wong S.L., Wan K.K.W., Lam T.N.T. Artificial neural networks for energy analysis of office buildings with daylighting. Appl Energy 2010, 87:551-557.
    • (2010) Appl Energy , vol.87 , pp. 551-557
    • Wong, S.L.1    Wan, K.K.W.2    Lam, T.N.T.3
  • 17
    • 80055058091 scopus 로고    scopus 로고
    • A large-scale study on predicting and contextualizing building energy usage. In: Proceedings of the twenty-fifth AAAI conference on artificial intelligence: AAAI.
    • Kolter JZ, Ferreira J. A large-scale study on predicting and contextualizing building energy usage. In: Proceedings of the twenty-fifth AAAI conference on artificial intelligence: AAAI. p. 1349-56.
    • Kolter, JZ.1    Ferreira, J.2
  • 18
    • 80054796723 scopus 로고    scopus 로고
    • Forecasting building energy consumption using neural networks and hybrid neuro-fuzzy system: a comparative study
    • Li K., Su H., Chu J. Forecasting building energy consumption using neural networks and hybrid neuro-fuzzy system: a comparative study. Energy Build 2011, 43:2893-2899.
    • (2011) Energy Build , vol.43 , pp. 2893-2899
    • Li, K.1    Su, H.2    Chu, J.3
  • 19
    • 77957308800 scopus 로고    scopus 로고
    • Modeling and prediction of Turkey's electricity consumption using support vector regression
    • Kavaklioglu K. Modeling and prediction of Turkey's electricity consumption using support vector regression. Appl Energy 2011, 88:368-375.
    • (2011) Appl Energy , vol.88 , pp. 368-375
    • Kavaklioglu, K.1
  • 20
    • 84859087157 scopus 로고    scopus 로고
    • Feature selection for predicting building energy consumption based on statistical learning method
    • Zhao H-x, Magoulès F. Feature selection for predicting building energy consumption based on statistical learning method. J Algor Comput Technol 2012, 6:59-78.
    • (2012) J Algor Comput Technol , vol.6 , pp. 59-78
    • Zhao, H.-X.1    Magoulès, F.2
  • 21
    • 84865413861 scopus 로고    scopus 로고
    • Application of SVR with chaotic GASA algorithm in cyclic electric load forecasting
    • Zhang W.Y., Hong W.-C., Dong Y., Tsai G., Sung J.-T., Fan G-f. Application of SVR with chaotic GASA algorithm in cyclic electric load forecasting. Energy 2012, 45:850-858.
    • (2012) Energy , vol.45 , pp. 850-858
    • Zhang, W.Y.1    Hong, W.-C.2    Dong, Y.3    Tsai, G.4    Sung, J.-T.5    Fan, G.-F.6
  • 22
    • 33645018466 scopus 로고    scopus 로고
    • Fixed-size least squares support vector machines: a large scale application in electrical load forecasting
    • Espinoza M., Espinoza M., Suykens J.A.K., Moor B.D. Fixed-size least squares support vector machines: a large scale application in electrical load forecasting. CMS 2006, 3:113-129.
    • (2006) CMS , vol.3 , pp. 113-129
    • Espinoza, M.1    Espinoza, M.2    Suykens, J.A.K.3    Moor, B.D.4
  • 24
    • 50649125772 scopus 로고    scopus 로고
    • Electrical energy demand prediction using artificial neural networks and support vector regression. In: 3rd International Symposium on Communications, Control and Signal Processing, ISCCSP 2008, IEEE;
    • Ruas GIS, Bragatto TAC, Lamar MV, Aoki AR, de Rocco SM. Electrical energy demand prediction using artificial neural networks and support vector regression. In: 3rd International Symposium on Communications, Control and Signal Processing, ISCCSP 2008, IEEE; 2008.
    • (2008)
    • Ruas, GIS.1    Bragatto, TAC.2    Lamar, MV.3    Aoki, AR.4    de Rocco, SM.5
  • 28
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • In: IJCAI
    • Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: IJCAI 1995. p. 1137-45.
    • (1995) , pp. 1137-1145
    • Kohavi, R.1
  • 29
    • 84891376397 scopus 로고    scopus 로고
    • Network eco-informatics: development of a social eco-feedback system to drive energy efficiency in residential buildings
    • Gulbinas R., Jain R., Taylor J., Peschiera G., Golparvar-Fard M. Network eco-informatics: development of a social eco-feedback system to drive energy efficiency in residential buildings. ASCE J Comput Civil Eng 2014, 28(1):89-98.
    • (2014) ASCE J Comput Civil Eng , vol.28 , Issue.1 , pp. 89-98
    • Gulbinas, R.1    Jain, R.2    Taylor, J.3    Peschiera, G.4    Golparvar-Fard, M.5
  • 30
    • 29144462687 scopus 로고    scopus 로고
    • A long term study of residential home heating consumption and the effect of occupant behavior on homes in the Pacific Northwest constructed according to improved thermal standards
    • Emery A.F., Kippenhan C.J. A long term study of residential home heating consumption and the effect of occupant behavior on homes in the Pacific Northwest constructed according to improved thermal standards. Energy 2006, 31:677-693.
    • (2006) Energy , vol.31 , pp. 677-693
    • Emery, A.F.1    Kippenhan, C.J.2
  • 31
    • 84885933555 scopus 로고    scopus 로고
    • A novel dynamic modeling approach for predicting building energy performance
    • Lü X., Lu T., Kibert C.J., Viljanen M. A novel dynamic modeling approach for predicting building energy performance. Appl Energy 2014, 114:91-103.
    • (2014) Appl Energy , vol.114 , pp. 91-103
    • Lü, X.1    Lu, T.2    Kibert, C.J.3    Viljanen, M.4
  • 32
    • 79953766575 scopus 로고    scopus 로고
    • A systematic procedure to study the influence of occupant behavior on building energy consumption
    • Yu Z., Fung B.C.M., Haghighat F., Yoshino H., Morofsky E. A systematic procedure to study the influence of occupant behavior on building energy consumption. Energy Build 2011, 43:1409-1417.
    • (2011) Energy Build , vol.43 , pp. 1409-1417
    • Yu, Z.1    Fung, B.C.M.2    Haghighat, F.3    Yoshino, H.4    Morofsky, E.5
  • 33
    • 84861695269 scopus 로고    scopus 로고
    • Residential demand response model and impact on voltage profile and losses of an electric distribution network
    • Venkatesan N., Solanki J., Solanki S.K. Residential demand response model and impact on voltage profile and losses of an electric distribution network. Appl Energy 2012, 96:84-91.
    • (2012) Appl Energy , vol.96 , pp. 84-91
    • Venkatesan, N.1    Solanki, J.2    Solanki, S.K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.