-
1
-
-
85084012304
-
Brainwash: A data system for feature engineering
-
M. Anderson et al., "Brainwash: A data system for feature engineering," in CIDR, 2013.
-
(2013)
CIDR
-
-
Anderson, M.1
-
2
-
-
84867539048
-
A few useful things to know about machine learning
-
P. Domingos, "A few useful things to know about machine learning," Communications of the ACM, vol. 55, no. 10, p. 78, 2012.
-
(2012)
Communications of the ACM
, vol.55
, Issue.10
, pp. 78
-
-
Domingos, P.1
-
3
-
-
84873631758
-
How google's algorithm rules the web
-
S. Levy, "How Google's Algorithm Rules the Web," Wired, 2010. [Online]. Available: http://www.wired.com/2010/02/ff google algorithm/
-
(2010)
Wired
-
-
Levy, S.1
-
4
-
-
84980393487
-
How the netflix prize was won
-
E. V. Buskirk, "How the Netflix Prize Was Won," Wired, 2009. [Online]. Available: http://wired.com/2009/09/how-the-netflix-prize-was-won/
-
(2009)
Wired
-
-
Buskirk, E.V.1
-
5
-
-
84980358545
-
An overview of the deepqa project
-
D. Ferrucci, "An Overview of the DeepQA Project," AI Magazine, 2012.
-
(2012)
AI Magazine
-
-
Ferrucci, D.1
-
6
-
-
85030321143
-
Mapreduce: Simplified data processing on large clusters
-
J. Dean and S. Ghemawat, "MapReduce: Simplified data processing on large clusters," in OSDI, 2004.
-
(2004)
OSDI
-
-
Dean, J.1
Ghemawat, S.2
-
7
-
-
85085251984
-
Spark: Cluster computing with working sets
-
M. Zaharia et al., "Spark: Cluster computing with working sets," in HotCloud, 2010.
-
(2010)
HotCloud
-
-
Zaharia, M.1
-
8
-
-
14244258507
-
Distributed computing in practice: The Condor experience
-
D. Thain, T. Tannenbaum, and M. Livny, "Distributed computing in practice: The Condor experience." Concurrency and Computation: Practice and Experience, vol. 17, no. 2-4, 2005.
-
(2005)
Concurrency and Computation: Practice and Experience
, vol.17
, Issue.2-4
-
-
Thain, D.1
Tannenbaum, T.2
Livny, M.3
-
9
-
-
84905814744
-
An integrated development environment for faster feature engineering
-
M. R. Anderson et al., "An integrated development environment for faster feature engineering," PVLDB, vol. 7, no. 13, pp. 1657-1660, 2014.
-
(2014)
PVLDB
, vol.7
, Issue.13
, pp. 1657-1660
-
-
Anderson, M.R.1
-
10
-
-
84980370933
-
Ringtail: Feature selection for easier nowcasting
-
D. Antenucci et al., "Ringtail: Feature selection for easier nowcasting." in WebDB, 2013.
-
(2013)
WebDB
-
-
Antenucci, D.1
-
11
-
-
84875277978
-
Hazy: Making it easier to build and maintain big-data analytics
-
A. Kumar, F. Niu, and C. Ré, "Hazy: Making it easier to build and maintain big-data analytics," Communications of the ACM, vol. 56, no. 3, pp. 40-49, 2013.
-
(2013)
Communications of the ACM
, vol.56
, Issue.3
, pp. 40-49
-
-
Kumar, A.1
Niu, F.2
Ré, C.3
-
12
-
-
84970908124
-
Feature engineering for knowledge base construction
-
C. Ré et al., "Feature engineering for knowledge base construction," IEEE Data Eng. Bulletin, vol. 37, no. 3, 2014.
-
(2014)
IEEE Data Eng. Bulletin
, vol.37
, Issue.3
-
-
Ré, C.1
-
13
-
-
84904317928
-
Materialization optimizations for feature selection workloads
-
C. Zhang, A. Kumar, and C. Ré, "Materialization optimizations for feature selection workloads," in SIGMOD, 2014.
-
(2014)
SIGMOD
-
-
Zhang, C.1
Kumar, A.2
Ré, C.3
-
14
-
-
85084017339
-
MLbase: A distributed machine-learning system
-
T. Kraska et al., "MLbase: A distributed machine-learning system," in CIDR, 2013.
-
(2013)
CIDR
-
-
Kraska, T.1
-
15
-
-
34250654176
-
To search or to crawl: Towards a query optimizer for text-centric tasks
-
P. G. Ipeirotis et al., "To search or to crawl: Towards a query optimizer for text-centric tasks," in SIGMOD, 2006.
-
(2006)
SIGMOD
-
-
Ipeirotis, P.G.1
-
16
-
-
85184862820
-
Distant supervision for relation extraction without labeled data
-
M. Mintz et al., "Distant supervision for relation extraction without labeled data," in ACL-IJCNLP, 2009.
-
(2009)
ACL-IJCNLP
-
-
Mintz, M.1
-
18
-
-
0031169625
-
Online aggregation
-
J. M. Hellerstein, P. J. Haas, and H. J. Wang, "Online aggregation," ACM SIGMOD Record, vol. 26, no. 2, pp. 171-182, 1997.
-
(1997)
ACM SIGMOD Record
, vol.26
, Issue.2
, pp. 171-182
-
-
Hellerstein, J.M.1
Haas, P.J.2
Wang, H.J.3
-
19
-
-
40149096977
-
A stopping criterion for active learning
-
A. Vlachos, "A stopping criterion for active learning," Computer Speech & Language, vol. 22, no. 3, pp. 295-312, 2008.
-
(2008)
Computer Speech & Language
, vol.22
, Issue.3
, pp. 295-312
-
-
Vlachos, A.1
-
20
-
-
77953755634
-
Confidence-based stopping criteria for active learning for data annotation
-
J. Zhu et al., "Confidence-based stopping criteria for active learning for data annotation," Transactions on Speech and Language Processing, vol. 6, no. 3, p. 3, 2010.
-
(2010)
Transactions on Speech and Language Processing
, vol.6
, Issue.3
, pp. 3
-
-
Zhu, J.1
-
21
-
-
68949137209
-
-
University of Wisconsin-Madison, Computer Sciences Technical Report 1648
-
B. Settles, "Active learning literature survey," University of Wisconsin-Madison, Computer Sciences Technical Report 1648, 2009.
-
(2009)
Active Learning Literature Survey
-
-
Settles, B.1
-
22
-
-
84944315044
-
Approximate query processing: Taming the terabytes
-
M. N. Garofalakis and P. B. Gibbons, "Approximate query processing: Taming the terabytes." in VLDB, 2001.
-
(2001)
VLDB
-
-
Garofalakis, M.N.1
Gibbons, P.B.2
-
23
-
-
1142303671
-
Dynamic sample selection for approximate query processing
-
B. Babcock, S. Chaudhuri, and G. Das, "Dynamic sample selection for approximate query processing," in SIGMOD, 2003.
-
(2003)
SIGMOD
-
-
Babcock, B.1
Chaudhuri, S.2
Das, G.3
-
24
-
-
84877703682
-
BlinkDB: Queries with bounded errors and bounded response times on very large data
-
S. Agarwal et al., "BlinkDB: Queries with bounded errors and bounded response times on very large data," in EuroSys, 2013.
-
(2013)
EuroSys
-
-
Agarwal, S.1
-
25
-
-
0035521110
-
Learn++: An incremental learning algorithm for supervised neural networks
-
R. Polikar et al., "Learn++: An incremental learning algorithm for supervised neural networks," IEEE Transactions on Systems, Man, and Cybernetics, vol. 31, no. 4, pp. 497-508, 2001.
-
(2001)
IEEE Transactions on Systems, Man, and Cybernetics
, vol.31
, Issue.4
, pp. 497-508
-
-
Polikar, R.1
-
26
-
-
33745777639
-
Incremental support vector learning: Analysis, implementation and applications
-
P. Laskov et al., "Incremental support vector learning: Analysis, implementation and applications," The Journal of Machine Learning Research, vol. 7, pp. 1909-1936, 2006.
-
(2006)
The Journal of Machine Learning Research
, vol.7
, pp. 1909-1936
-
-
Laskov, P.1
-
27
-
-
77952642202
-
Incremental induction of decision trees
-
P. E. Utgoff, "Incremental induction of decision trees," Machine learning, vol. 4, no. 2, pp. 161-186, 1989.
-
(1989)
Machine Learning
, vol.4
, Issue.2
, pp. 161-186
-
-
Utgoff, P.E.1
-
29
-
-
60849101344
-
Clustering cancer gene expression data: A comparative study
-
M. C. de Souto et al., "Clustering cancer gene expression data: A comparative study," BMC Bioinformatics, vol. 9, no. 1, 2008.
-
(2008)
BMC Bioinformatics
, vol.9
, Issue.1
-
-
De Souto, M.C.1
-
31
-
-
84874045238
-
Regret analysis of stochastic and nonstochastic multi-armed bandit problems
-
S. Bubeck and N. Cesa-Bianchi, "Regret analysis of stochastic and nonstochastic multi-armed bandit problems," Machine Learning, vol. 5, no. 1, pp. 1-122, 2012.
-
(2012)
Machine Learning
, vol.5
, Issue.1
, pp. 1-122
-
-
Bubeck, S.1
Cesa-Bianchi, N.2
-
32
-
-
0036568025
-
Finite-time analysis of the multiarmed bandit problem
-
P. Auer, N. Cesa-Bianchi, and P. Fischer, "Finite-time analysis of the multiarmed bandit problem," Machine Learning, vol. 47, no. 2-3, pp. 235-256, 2002.
-
(2002)
Machine Learning
, vol.47
, Issue.2-3
, pp. 235-256
-
-
Auer, P.1
Cesa-Bianchi, N.2
Fischer, P.3
-
33
-
-
68549133155
-
Learning from imbalanced data
-
H. He and E. A. Garcia, "Learning from imbalanced data," IEEE Transactions on Knowledge and Data Engineering, vol. 21, no. 9, pp. 1263-1284, 2009.
-
(2009)
IEEE Transactions on Knowledge and Data Engineering
, vol.21
, Issue.9
, pp. 1263-1284
-
-
He, H.1
Garcia, E.A.2
-
34
-
-
85124125604
-
Heterogenous uncertainty sampling for supervised learning
-
D. D. Lewis and J. Catlett, "Heterogenous uncertainty sampling for supervised learning." in ICML, 1994.
-
(1994)
ICML
-
-
Lewis, D.D.1
Catlett, J.2
-
35
-
-
84979692409
-
The boosting approach to machine learning: An overview
-
Springer
-
R. E. Schapire, "The boosting approach to machine learning: An overview," in Nonlinear estimation and classification. Springer, 2003, pp. 149-171.
-
(2003)
Nonlinear Estimation and Classification
, pp. 149-171
-
-
Schapire, R.E.1
-
37
-
-
76749092270
-
The WEKA data mining software: An update
-
M. Hall et al., "The WEKA data mining software: An update," SIGKDD Explorations, vol. 11, no. 1, pp. 10-18, 2009.
-
(2009)
SIGKDD Explorations
, vol.11
, Issue.1
, pp. 10-18
-
-
Hall, M.1
-
38
-
-
84859918687
-
Incorporating non-local information into information extraction systems by Gibbs sampling
-
J. R. Finkel et al., "Incorporating non-local information into information extraction systems by Gibbs sampling," in ACL, 2005.
-
(2005)
ACL
-
-
Finkel, J.R.1
-
39
-
-
80555140075
-
Scikit-learn: Machine learning in Python
-
F. Pedregosa et al., "Scikit-learn: Machine learning in Python," Journal of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
-
40
-
-
84980376169
-
-
"Google word2vec," https://code.google.com/p/word2vec/.
-
Google word2vec
-
-
-
41
-
-
79958258284
-
Dremel: Interactive analysis of web-scale datasets
-
S. Melnik et al., "Dremel: Interactive analysis of web-scale datasets," PVLDB, vol. 3, no. 1-2, pp. 330-339, 2010.
-
(2010)
PVLDB
, vol.3
, Issue.1-2
, pp. 330-339
-
-
Melnik, S.1
-
42
-
-
77954723629
-
Pregel: A system for large-scale graph processing
-
G. Malewicz et al., "Pregel: A system for large-scale graph processing," in SIGMOD, 2010.
-
(2010)
SIGMOD
-
-
Malewicz, G.1
-
43
-
-
77952625496
-
H-store: A high-performance, distributed main memory transaction processing system
-
R. Kallman et al., "H-store: A high-performance, distributed main memory transaction processing system," PVLDB, vol. 1, no. 2, pp. 1496-1499, 2008.
-
(2008)
PVLDB
, vol.1
, Issue.2
, pp. 1496-1499
-
-
Kallman, R.1
-
44
-
-
84873155673
-
Stubby: A transformation-based optimizer for MapReduce workflows
-
H. Lim, H. Herodotou, and S. Babu, "Stubby: A transformation-based optimizer for MapReduce workflows," PVLDB, vol. 5, no. 11, pp. 1196-1207, 2012.
-
(2012)
PVLDB
, vol.5
, Issue.11
, pp. 1196-1207
-
-
Lim, H.1
Herodotou, H.2
Babu, S.3
-
45
-
-
84900299151
-
-
"Cloudera Impala," https://github.com/cloudera/impala.
-
Cloudera Impala
-
-
-
46
-
-
67650302608
-
Active feature-value acquisition
-
M. Saar-Tsechansky, P. Melville, and F. Provost, "Active Feature-Value Acquisition," Management Science, vol. 55, no. 4, pp. 664-684, 2009.
-
(2009)
Management Science
, vol.55
, Issue.4
, pp. 664-684
-
-
Saar-Tsechansky, M.1
Melville, P.2
Provost, F.3
-
47
-
-
80053446757
-
An analysis of single-layer networks in unsupervised feature learning
-
A. Coates, A. Y. Ng, and H. Lee, "An analysis of single-layer networks in unsupervised feature learning," in AISTATS, 2011.
-
(2011)
AISTATS
-
-
Coates, A.1
Ng, A.Y.2
Lee, H.3
-
48
-
-
84867135575
-
Building high-level features using large scale unsupervised learning
-
Q. V. Le et al., "Building high-level features using large scale unsupervised learning," in ICML, 2012.
-
(2012)
ICML
-
-
Le, Q.V.1
|