메뉴 건너뛰기




Volumn , Issue , 2016, Pages 577-588

Input selection for fast feature engineering

Author keywords

[No Author keywords available]

Indexed keywords

APPLICATION PROGRAMS; ARTIFICIAL INTELLIGENCE; CODES (SYMBOLS); DATA HANDLING; FEATURE EXTRACTION; ITERATIVE METHODS; LEARNING ALGORITHMS; LEARNING SYSTEMS;

EID: 84980315341     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDE.2016.7498272     Document Type: Conference Paper
Times cited : (42)

References (48)
  • 1
    • 85084012304 scopus 로고    scopus 로고
    • Brainwash: A data system for feature engineering
    • M. Anderson et al., "Brainwash: A data system for feature engineering," in CIDR, 2013.
    • (2013) CIDR
    • Anderson, M.1
  • 2
    • 84867539048 scopus 로고    scopus 로고
    • A few useful things to know about machine learning
    • P. Domingos, "A few useful things to know about machine learning," Communications of the ACM, vol. 55, no. 10, p. 78, 2012.
    • (2012) Communications of the ACM , vol.55 , Issue.10 , pp. 78
    • Domingos, P.1
  • 3
    • 84873631758 scopus 로고    scopus 로고
    • How google's algorithm rules the web
    • S. Levy, "How Google's Algorithm Rules the Web," Wired, 2010. [Online]. Available: http://www.wired.com/2010/02/ff google algorithm/
    • (2010) Wired
    • Levy, S.1
  • 4
    • 84980393487 scopus 로고    scopus 로고
    • How the netflix prize was won
    • E. V. Buskirk, "How the Netflix Prize Was Won," Wired, 2009. [Online]. Available: http://wired.com/2009/09/how-the-netflix-prize-was-won/
    • (2009) Wired
    • Buskirk, E.V.1
  • 5
    • 84980358545 scopus 로고    scopus 로고
    • An overview of the deepqa project
    • D. Ferrucci, "An Overview of the DeepQA Project," AI Magazine, 2012.
    • (2012) AI Magazine
    • Ferrucci, D.1
  • 6
    • 85030321143 scopus 로고    scopus 로고
    • Mapreduce: Simplified data processing on large clusters
    • J. Dean and S. Ghemawat, "MapReduce: Simplified data processing on large clusters," in OSDI, 2004.
    • (2004) OSDI
    • Dean, J.1    Ghemawat, S.2
  • 7
    • 85085251984 scopus 로고    scopus 로고
    • Spark: Cluster computing with working sets
    • M. Zaharia et al., "Spark: Cluster computing with working sets," in HotCloud, 2010.
    • (2010) HotCloud
    • Zaharia, M.1
  • 9
    • 84905814744 scopus 로고    scopus 로고
    • An integrated development environment for faster feature engineering
    • M. R. Anderson et al., "An integrated development environment for faster feature engineering," PVLDB, vol. 7, no. 13, pp. 1657-1660, 2014.
    • (2014) PVLDB , vol.7 , Issue.13 , pp. 1657-1660
    • Anderson, M.R.1
  • 10
    • 84980370933 scopus 로고    scopus 로고
    • Ringtail: Feature selection for easier nowcasting
    • D. Antenucci et al., "Ringtail: Feature selection for easier nowcasting." in WebDB, 2013.
    • (2013) WebDB
    • Antenucci, D.1
  • 11
    • 84875277978 scopus 로고    scopus 로고
    • Hazy: Making it easier to build and maintain big-data analytics
    • A. Kumar, F. Niu, and C. Ré, "Hazy: Making it easier to build and maintain big-data analytics," Communications of the ACM, vol. 56, no. 3, pp. 40-49, 2013.
    • (2013) Communications of the ACM , vol.56 , Issue.3 , pp. 40-49
    • Kumar, A.1    Niu, F.2    Ré, C.3
  • 12
    • 84970908124 scopus 로고    scopus 로고
    • Feature engineering for knowledge base construction
    • C. Ré et al., "Feature engineering for knowledge base construction," IEEE Data Eng. Bulletin, vol. 37, no. 3, 2014.
    • (2014) IEEE Data Eng. Bulletin , vol.37 , Issue.3
    • Ré, C.1
  • 13
    • 84904317928 scopus 로고    scopus 로고
    • Materialization optimizations for feature selection workloads
    • C. Zhang, A. Kumar, and C. Ré, "Materialization optimizations for feature selection workloads," in SIGMOD, 2014.
    • (2014) SIGMOD
    • Zhang, C.1    Kumar, A.2    Ré, C.3
  • 14
    • 85084017339 scopus 로고    scopus 로고
    • MLbase: A distributed machine-learning system
    • T. Kraska et al., "MLbase: A distributed machine-learning system," in CIDR, 2013.
    • (2013) CIDR
    • Kraska, T.1
  • 15
    • 34250654176 scopus 로고    scopus 로고
    • To search or to crawl: Towards a query optimizer for text-centric tasks
    • P. G. Ipeirotis et al., "To search or to crawl: Towards a query optimizer for text-centric tasks," in SIGMOD, 2006.
    • (2006) SIGMOD
    • Ipeirotis, P.G.1
  • 16
    • 85184862820 scopus 로고    scopus 로고
    • Distant supervision for relation extraction without labeled data
    • M. Mintz et al., "Distant supervision for relation extraction without labeled data," in ACL-IJCNLP, 2009.
    • (2009) ACL-IJCNLP
    • Mintz, M.1
  • 19
    • 40149096977 scopus 로고    scopus 로고
    • A stopping criterion for active learning
    • A. Vlachos, "A stopping criterion for active learning," Computer Speech & Language, vol. 22, no. 3, pp. 295-312, 2008.
    • (2008) Computer Speech & Language , vol.22 , Issue.3 , pp. 295-312
    • Vlachos, A.1
  • 20
    • 77953755634 scopus 로고    scopus 로고
    • Confidence-based stopping criteria for active learning for data annotation
    • J. Zhu et al., "Confidence-based stopping criteria for active learning for data annotation," Transactions on Speech and Language Processing, vol. 6, no. 3, p. 3, 2010.
    • (2010) Transactions on Speech and Language Processing , vol.6 , Issue.3 , pp. 3
    • Zhu, J.1
  • 21
    • 68949137209 scopus 로고    scopus 로고
    • University of Wisconsin-Madison, Computer Sciences Technical Report 1648
    • B. Settles, "Active learning literature survey," University of Wisconsin-Madison, Computer Sciences Technical Report 1648, 2009.
    • (2009) Active Learning Literature Survey
    • Settles, B.1
  • 22
    • 84944315044 scopus 로고    scopus 로고
    • Approximate query processing: Taming the terabytes
    • M. N. Garofalakis and P. B. Gibbons, "Approximate query processing: Taming the terabytes." in VLDB, 2001.
    • (2001) VLDB
    • Garofalakis, M.N.1    Gibbons, P.B.2
  • 23
    • 1142303671 scopus 로고    scopus 로고
    • Dynamic sample selection for approximate query processing
    • B. Babcock, S. Chaudhuri, and G. Das, "Dynamic sample selection for approximate query processing," in SIGMOD, 2003.
    • (2003) SIGMOD
    • Babcock, B.1    Chaudhuri, S.2    Das, G.3
  • 24
    • 84877703682 scopus 로고    scopus 로고
    • BlinkDB: Queries with bounded errors and bounded response times on very large data
    • S. Agarwal et al., "BlinkDB: Queries with bounded errors and bounded response times on very large data," in EuroSys, 2013.
    • (2013) EuroSys
    • Agarwal, S.1
  • 25
    • 0035521110 scopus 로고    scopus 로고
    • Learn++: An incremental learning algorithm for supervised neural networks
    • R. Polikar et al., "Learn++: An incremental learning algorithm for supervised neural networks," IEEE Transactions on Systems, Man, and Cybernetics, vol. 31, no. 4, pp. 497-508, 2001.
    • (2001) IEEE Transactions on Systems, Man, and Cybernetics , vol.31 , Issue.4 , pp. 497-508
    • Polikar, R.1
  • 26
    • 33745777639 scopus 로고    scopus 로고
    • Incremental support vector learning: Analysis, implementation and applications
    • P. Laskov et al., "Incremental support vector learning: Analysis, implementation and applications," The Journal of Machine Learning Research, vol. 7, pp. 1909-1936, 2006.
    • (2006) The Journal of Machine Learning Research , vol.7 , pp. 1909-1936
    • Laskov, P.1
  • 27
    • 77952642202 scopus 로고
    • Incremental induction of decision trees
    • P. E. Utgoff, "Incremental induction of decision trees," Machine learning, vol. 4, no. 2, pp. 161-186, 1989.
    • (1989) Machine Learning , vol.4 , Issue.2 , pp. 161-186
    • Utgoff, P.E.1
  • 29
    • 60849101344 scopus 로고    scopus 로고
    • Clustering cancer gene expression data: A comparative study
    • M. C. de Souto et al., "Clustering cancer gene expression data: A comparative study," BMC Bioinformatics, vol. 9, no. 1, 2008.
    • (2008) BMC Bioinformatics , vol.9 , Issue.1
    • De Souto, M.C.1
  • 31
    • 84874045238 scopus 로고    scopus 로고
    • Regret analysis of stochastic and nonstochastic multi-armed bandit problems
    • S. Bubeck and N. Cesa-Bianchi, "Regret analysis of stochastic and nonstochastic multi-armed bandit problems," Machine Learning, vol. 5, no. 1, pp. 1-122, 2012.
    • (2012) Machine Learning , vol.5 , Issue.1 , pp. 1-122
    • Bubeck, S.1    Cesa-Bianchi, N.2
  • 32
    • 0036568025 scopus 로고    scopus 로고
    • Finite-time analysis of the multiarmed bandit problem
    • P. Auer, N. Cesa-Bianchi, and P. Fischer, "Finite-time analysis of the multiarmed bandit problem," Machine Learning, vol. 47, no. 2-3, pp. 235-256, 2002.
    • (2002) Machine Learning , vol.47 , Issue.2-3 , pp. 235-256
    • Auer, P.1    Cesa-Bianchi, N.2    Fischer, P.3
  • 34
    • 85124125604 scopus 로고
    • Heterogenous uncertainty sampling for supervised learning
    • D. D. Lewis and J. Catlett, "Heterogenous uncertainty sampling for supervised learning." in ICML, 1994.
    • (1994) ICML
    • Lewis, D.D.1    Catlett, J.2
  • 35
    • 84979692409 scopus 로고    scopus 로고
    • The boosting approach to machine learning: An overview
    • Springer
    • R. E. Schapire, "The boosting approach to machine learning: An overview," in Nonlinear estimation and classification. Springer, 2003, pp. 149-171.
    • (2003) Nonlinear Estimation and Classification , pp. 149-171
    • Schapire, R.E.1
  • 37
    • 76749092270 scopus 로고    scopus 로고
    • The WEKA data mining software: An update
    • M. Hall et al., "The WEKA data mining software: An update," SIGKDD Explorations, vol. 11, no. 1, pp. 10-18, 2009.
    • (2009) SIGKDD Explorations , vol.11 , Issue.1 , pp. 10-18
    • Hall, M.1
  • 38
    • 84859918687 scopus 로고    scopus 로고
    • Incorporating non-local information into information extraction systems by Gibbs sampling
    • J. R. Finkel et al., "Incorporating non-local information into information extraction systems by Gibbs sampling," in ACL, 2005.
    • (2005) ACL
    • Finkel, J.R.1
  • 39
    • 80555140075 scopus 로고    scopus 로고
    • Scikit-learn: Machine learning in Python
    • F. Pedregosa et al., "Scikit-learn: Machine learning in Python," Journal of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.
    • (2011) Journal of Machine Learning Research , vol.12 , pp. 2825-2830
    • Pedregosa, F.1
  • 40
    • 84980376169 scopus 로고    scopus 로고
    • "Google word2vec," https://code.google.com/p/word2vec/.
    • Google word2vec
  • 41
    • 79958258284 scopus 로고    scopus 로고
    • Dremel: Interactive analysis of web-scale datasets
    • S. Melnik et al., "Dremel: Interactive analysis of web-scale datasets," PVLDB, vol. 3, no. 1-2, pp. 330-339, 2010.
    • (2010) PVLDB , vol.3 , Issue.1-2 , pp. 330-339
    • Melnik, S.1
  • 42
    • 77954723629 scopus 로고    scopus 로고
    • Pregel: A system for large-scale graph processing
    • G. Malewicz et al., "Pregel: A system for large-scale graph processing," in SIGMOD, 2010.
    • (2010) SIGMOD
    • Malewicz, G.1
  • 43
    • 77952625496 scopus 로고    scopus 로고
    • H-store: A high-performance, distributed main memory transaction processing system
    • R. Kallman et al., "H-store: A high-performance, distributed main memory transaction processing system," PVLDB, vol. 1, no. 2, pp. 1496-1499, 2008.
    • (2008) PVLDB , vol.1 , Issue.2 , pp. 1496-1499
    • Kallman, R.1
  • 44
    • 84873155673 scopus 로고    scopus 로고
    • Stubby: A transformation-based optimizer for MapReduce workflows
    • H. Lim, H. Herodotou, and S. Babu, "Stubby: A transformation-based optimizer for MapReduce workflows," PVLDB, vol. 5, no. 11, pp. 1196-1207, 2012.
    • (2012) PVLDB , vol.5 , Issue.11 , pp. 1196-1207
    • Lim, H.1    Herodotou, H.2    Babu, S.3
  • 45
    • 84900299151 scopus 로고    scopus 로고
    • "Cloudera Impala," https://github.com/cloudera/impala.
    • Cloudera Impala
  • 47
    • 80053446757 scopus 로고    scopus 로고
    • An analysis of single-layer networks in unsupervised feature learning
    • A. Coates, A. Y. Ng, and H. Lee, "An analysis of single-layer networks in unsupervised feature learning," in AISTATS, 2011.
    • (2011) AISTATS
    • Coates, A.1    Ng, A.Y.2    Lee, H.3
  • 48
    • 84867135575 scopus 로고    scopus 로고
    • Building high-level features using large scale unsupervised learning
    • Q. V. Le et al., "Building high-level features using large scale unsupervised learning," in ICML, 2012.
    • (2012) ICML
    • Le, Q.V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.