메뉴 건너뛰기




Volumn , Issue , 2011, Pages 1-284

A first course in machine learning

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85059570920     PISSN: None     EISSN: None     Source Type: Book    
DOI: None     Document Type: Book
Times cited : (114)

References (46)
  • 1
    • 0001740245 scopus 로고
    • Regression towards mediocrity in hereditary stature
    • F. Galton. Regression towards mediocrity in hereditary stature. Anthopological Miscellanea, 15:246-263, 1886.
    • (1886) Anthopological Miscellanea , vol.15 , pp. 246-263
    • Galton, F.1
  • 9
    • 69449098014 scopus 로고    scopus 로고
    • Estimating Bayes factors via thermodynamic integration and population mcmc
    • October
    • Ben Calderhead and Mark Girolami. Estimating Bayes factors via thermodynamic integration and population mcmc. Comput. Stat. Data Anal., 53:4028-4045, October 2009.
    • (2009) Comput. Stat. Data Anal. , vol.53 , pp. 4028-4045
    • Calderhead, B.1    Girolami, M.2
  • 11
    • 84957604139 scopus 로고    scopus 로고
    • Contour tracking by stochastic propagation of conditional density
    • Springer
    • Michael Isard and Andrew Blake. Contour tracking by stochastic propagation of conditional density. In European Conference on Computer Vision, pages 343-356, Springer, 1996.
    • (1996) European Conference on Computer Vision , pp. 343-356
    • Isard, M.1    Blake, A.2
  • 14
    • 77953839617 scopus 로고    scopus 로고
    • Inferring signaling pathway topologies from mulitple perturbation measurement of specific biochemical species
    • Tian-Rui Xu et al. Inferring signaling pathway topologies from mulitple perturbation measurement of specific biochemical species. Science Signalling, 3(113), 2010.
    • (2010) Science Signalling , vol.3 , Issue.113
    • Xu, T.-R.1
  • 16
    • 32344446687 scopus 로고
    • Understanding the Metropolis-Hasting algorithm
    • Siddhartha Chib. Understanding the Metropolis-Hasting algorithm. The American Statistican, 49(4):327-335, 1995.
    • (1995) The American Statistican , vol.49 , Issue.4 , pp. 327-335
    • Chib, S.1
  • 23
    • 60149097657 scopus 로고    scopus 로고
    • Probabilistic assignment of formulas to mass peaks in metabolomics experiments
    • Simon Rogers, Richard Scheltema, Mark Girolami, and Rainer Breitling. Probabilistic assignment of formulas to mass peaks in metabolomics experiments. Bioinformatics, 25(4):512-518, 2009.
    • (2009) Bioinformatics , vol.25 , Issue.4 , pp. 512-518
    • Rogers, S.1    Scheltema, R.2    Girolami, M.3    Breitling, R.4
  • 24
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Michael Tipping and Alex Smola. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1:211-244, 2001.
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M.1    Smola, A.2
  • 29
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • T. Furey et al. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 16(10):906-914, 2000.
    • (2000) Bioinformatics , vol.16 , Issue.10 , pp. 906-914
    • Furey, T.1
  • 33
  • 35
    • 77950369345 scopus 로고    scopus 로고
    • Data clustering: 50 years beyond k-means
    • Anil K. Jain. Data clustering: 50 years beyond k-means. Pattern Recognition Letters, 31:651-666, 2010.
    • (2010) Pattern Recognition Letters , vol.31 , pp. 651-666
    • Jain, A.K.1
  • 36
    • 0004161991 scopus 로고
    • Prentice Hall, A clustering textbook that is now out of print but available free from the authors’ website
    • Anil K. Jain and R.C. Dubes. Algorithms For Clustering Data. Prentice Hall, 1988. A clustering textbook that is now out of print but available free from the authors’ website: http://www.cse.msu.edu/~jain/Clustering_ Jain_Dubes.pdf
    • (1988) Algorithms For Clustering Data.
    • Jain, A.K.1    Dubes, R.C.2
  • 42
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • Michael Jordan, Z. Ghahramani, T.S. Jaakkola, and L.K. Saul. An introduction to variational methods for graphical models. Machine Learning, 37:183-233, 1999.
    • (1999) Machine Learning , vol.37 , pp. 183-233
    • Jordan, M.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 43
    • 55949104732 scopus 로고    scopus 로고
    • Probabilistic approaches to detecting dependencies between data sets
    • Arto Klami and Samuel Kaski. Probabilistic approaches to detecting dependencies between data sets. Neurocomputing, 72:39-46, 2008.
    • (2008) Neurocomputing , vol.72 , pp. 39-46
    • Klami, A.1    Kaski, S.2
  • 44
    • 0033556862 scopus 로고    scopus 로고
    • A unifying review of linear Gaussian models
    • S. Roweis and Z. Ghahramani. A unifying review of linear Gaussian models. Neural Computation, 11(2):305-345, 1999.
    • (1999) Neural Computation , vol.11 , Issue.2 , pp. 305-345
    • Roweis, S.1    Ghahramani, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.