메뉴 건너뛰기




Volumn , Issue , 2014, Pages 265-276

Materialization optimizations for feature selection workloads

Author keywords

Feature selection; Materialization; Statistical analytics

Indexed keywords

DATABASE SYSTEMS; FEATURE EXTRACTION; INFORMATION MANAGEMENT;

EID: 84904317928     PISSN: 07308078     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2588555.2593678     Document Type: Conference Paper
Times cited : (60)

References (32)
  • 1
    • 84904276438 scopus 로고    scopus 로고
    • Apache Mahout. mahout.apache.org
    • Apache Mahout. mahout.apache.org.
  • 3
    • 84885390934 scopus 로고    scopus 로고
    • oracle.com/technetwork/database/options/ advanced-analytics/odm
    • Oracle Data Mining. oracle.com/technetwork/database/options/ advanced-analytics/odm.
    • Oracle Data Mining
  • 4
    • 84904287765 scopus 로고    scopus 로고
    • docs.oracle.com/cd/ E27988-01/doc/doc.112/e26499.pdf
    • Oracle R Enterprise. docs.oracle.com/cd/E27988-01/doc/doc.112/e26499.pdf.
    • Oracle R Enterprise
  • 5
    • 84904354518 scopus 로고    scopus 로고
    • help.sap.com/hana/hana-dev-r-emb-en.pdf
    • SAP HANA and R. help.sap.com/hana/hana-dev-r-emb-en.pdf.
    • SAP HANA and R.
  • 9
    • 85117332702 scopus 로고    scopus 로고
    • ScaLAPACK: A portable linear algebra library for distributed memory computers - Design issues and performance
    • L. S. Blackford and et al. ScaLAPACK: A portable linear algebra library for distributed memory computers - design issues and performance. In SuperComputing, 1996.
    • (1996) SuperComputing
    • Blackford, L.S.1
  • 10
    • 48849085774 scopus 로고    scopus 로고
    • The tradeoffs of large scale learning
    • L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In NIPS, 2007.
    • (2007) NIPS
    • Bottou, L.1    Bousquet, O.2
  • 13
    • 84055213478 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • S. Boyd and et al. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn., 2011.
    • (2011) Found. Trends Mach. Learn.
    • Boyd, S.1
  • 14
    • 79951737507 scopus 로고    scopus 로고
    • Overview of sciDB: Large scale array storage, processing and analysis
    • P. G. Brown. Overview of sciDB: Large scale array storage, processing and analysis. In SIGMOD, 2010.
    • (2010) SIGMOD
    • Brown, P.G.1
  • 15
    • 84868307166 scopus 로고    scopus 로고
    • MAD skills: New analysis practices for big data
    • J. Cohen and et al. MAD skills: New analysis practices for big data. PVLDB, 2009.
    • (2009) PVLDB
    • Cohen, J.1
  • 16
    • 79961063910 scopus 로고    scopus 로고
    • Tall and skinny qr factorizations in mapreduce architectures
    • P. G. Constantine and D. F. Gleich. Tall and skinny qr factorizations in mapreduce architectures. In MapReduce, 2011.
    • (2011) MapReduce
    • Constantine, P.G.1    Gleich, D.F.2
  • 17
    • 79957859069 scopus 로고    scopus 로고
    • SystemML: Declarative machine learning on MapReduce
    • A. Ghoting and et al. SystemML: Declarative machine learning on MapReduce. In ICDE, 2011.
    • (2011) ICDE
    • Ghoting, A.1
  • 18
    • 0000924593 scopus 로고
    • Numerical methods for solving linear least squares problems
    • G. Golub. Numerical methods for solving linear least squares problems. Numerische Mathematik, 1965.
    • (1965) Numerische Mathematik
    • Golub, G.1
  • 19
    • 0027221223 scopus 로고
    • The Volcano optimizer generator: Extensibility and efficient search
    • G. Graefe and W. J. McKenna. The Volcano optimizer generator: Extensibility and efficient search. In ICDE, 1993.
    • (1993) ICDE
    • Graefe, G.1    McKenna, W.J.2
  • 20
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon and A. Elisseeff. An introduction to variable and feature selection. JMLR, 2003.
    • (2003) JMLR
    • Guyon, I.1    Elisseeff, A.2
  • 23
    • 84873199454 scopus 로고    scopus 로고
    • The MADlib analytics library or MAD skills, the SQL
    • J. Hellerstein and et al. The MADlib analytics library or MAD skills, the SQL. In PVLDB, 2012.
    • (2012) PVLDB
    • Hellerstein, J.1
  • 24
    • 85099325734 scopus 로고
    • Irrelevant features and the subset selection problem
    • G. H. John and et al. Irrelevant features and the subset selection problem. In ICML, 1994.
    • (1994) ICML
    • John, G.H.1
  • 25
    • 84867627474 scopus 로고    scopus 로고
    • Enterprise data analysis and visualization: An interview study
    • S. Kandel and et al. Enterprise data analysis and visualization: An interview study. IEEE Trans. Vis. Comput. Graph., 2012.
    • (2012) IEEE Trans. Vis. Comput. Graph.
    • Kandel, S.1
  • 26
    • 85084017339 scopus 로고    scopus 로고
    • MLbase: A distributed machine-learning system
    • T. Kraska and et al. MLbase: A distributed machine-learning system. In CIDR, 2013.
    • (2013) CIDR
    • Kraska, T.1
  • 27
    • 77951686690 scopus 로고    scopus 로고
    • Universal ∈-approximators for integrals
    • M. Langberg and L. J. Schulman. Universal ∈-approximators for integrals. In SODA, 2010.
    • (2010) SODA
    • Langberg, M.1    Schulman, L.J.2
  • 28
    • 0028288815 scopus 로고
    • Efficient organization of large multidimensional arrays
    • S. Sarawagi and M. Stonebraker. Efficient organization of large multidimensional arrays. In ICDE, 1994.
    • (1994) ICDE
    • Sarawagi, S.1    Stonebraker, M.2
  • 29
    • 56449110590 scopus 로고    scopus 로고
    • SVM optimization: Inverse dependence on training set size
    • S. Shalev-Shwartz and N. Srebro. SVM optimization: Inverse dependence on training set size. In ICML, 2008.
    • (2008) ICML
    • Shalev-Shwartz, S.1    Srebro, N.2
  • 30
    • 73449122656 scopus 로고    scopus 로고
    • Parallel large scale feature selection for logistic regression
    • S. Singh and et al. Parallel large scale feature selection for logistic regression. In SDM, 2009.
    • (2009) SDM
    • Singh, S.1
  • 31
    • 84880660520 scopus 로고    scopus 로고
    • Intel "big data" science and technology center vision and execution plan
    • M. Stonebraker and et al. Intel "big data" science and technology center vision and execution plan. SIGMOD Rec., 2013.
    • (2013) SIGMOD Rec.
    • Stonebraker, M.1
  • 32
    • 77952773120 scopus 로고    scopus 로고
    • I/O-efficient statistical computing with RIOT
    • Y. Zhang and et al. I/O-efficient statistical computing with RIOT. In ICDE, 2010.
    • (2010) ICDE
    • Zhang, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.