메뉴 건너뛰기




Volumn , Issue , 2013, Pages 29-42

BlinkDB: Queries with bounded errors and bounded response times on very large data

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTIVE OPTIMIZATION; APPROXIMATE QUERY; DYNAMIC SAMPLE SELECTION; INTERACTIVE QUERIES; MASSIVELY PARALLELS; TIME REQUIREMENTS; TPC-H BENCHMARKS; VIDEO DISTRIBUTION;

EID: 84877703682     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2465351.2465355     Document Type: Conference Paper
Times cited : (624)

References (26)
  • 2
    • 84877713759 scopus 로고    scopus 로고
    • Apache Hadoop Mapreduce Project. http://hadoop.apache.org/mapreduce/.
  • 4
    • 0040885649 scopus 로고    scopus 로고
    • Congressional samples for approximate answering of group-by queries
    • May
    • S. Acharya, P. B. Gibbons, and V. Poosala. Congressional samples for approximate answering of group-by queries. In ACM SIGMOD, May 2000.
    • (2000) ACM SIGMOD
    • Acharya, S.1    Gibbons, P.B.2    Poosala, V.3
  • 8
    • 85076916744 scopus 로고    scopus 로고
    • Reining in the outliers in map-reduce clusters using mantri
    • G. Ananthanarayanan, S. Kandula, A. G. Greenberg, et al. Reining in the outliers in map-reduce clusters using mantri. In OSDI, pages 265-278, 2010.
    • (2010) OSDI , pp. 265-278
    • Ananthanarayanan, G.1    Kandula, S.2    Greenberg, A.G.3
  • 9
    • 84877697341 scopus 로고    scopus 로고
    • Dynamic sample selection for approximate query processing
    • B. Babcock, S. Chaudhuri, and G. Das. Dynamic sample selection for approximate query processing. In VLDB, 2003.
    • (2003) VLDB
    • Babcock, B.1    Chaudhuri, S.2    Das, G.3
  • 10
    • 34547483963 scopus 로고    scopus 로고
    • Optimized stratified sampling for approximate query processing
    • S. Chaudhuri, G. Das, and V. Narasayya. Optimized stratified sampling for approximate query processing. TODS, 2007.
    • (2007) TODS
    • Chaudhuri, S.1    Das, G.2    Narasayya, V.3
  • 13
    • 84862681431 scopus 로고    scopus 로고
    • Shark: Fast Data Analysis Using Coarse-grained Distributed Memory
    • C. Engle, A. Lupher, R. Xin, M. Zaharia, et al. Shark: Fast Data Analysis Using Coarse-grained Distributed Memory. In SIGMOD, 2012.
    • (2012) SIGMOD
    • Engle, C.1    Lupher, A.2    Xin, R.3    Zaharia, M.4
  • 14
    • 84944315044 scopus 로고    scopus 로고
    • Approximate query processing: Taming the terabytes
    • Tutorial
    • M. Garofalakis and P. Gibbons. Approximate query processing: Taming the terabytes. In VLDB, 2001. Tutorial.
    • (2001) VLDB
    • Garofalakis, M.1    Gibbons, P.2
  • 19
    • 84863769684 scopus 로고    scopus 로고
    • Online Aggregation for Large MapReduce Jobs
    • N. Pansare, V. R. Borkar, C. Jermaine, and T. Condie. Online Aggregation for Large MapReduce Jobs. PVLDB, 4(11):1135-1145, 2011.
    • (2011) PVLDB , vol.4 , Issue.11 , pp. 1135-1145
    • Pansare, N.1    Borkar, V.R.2    Jermaine, C.3    Condie, T.4
  • 20
    • 84947550227 scopus 로고    scopus 로고
    • Promise: Predicting query behavior to enable predictive caching strategies for olap systems
    • Springer-Verlag
    • C. Sapia. Promise: Predicting query behavior to enable predictive caching strategies for olap systems. DaWaK, pages 224-233. Springer-Verlag, 2000.
    • (2000) DaWaK , pp. 224-233
    • Sapia, C.1
  • 21
    • 80053524157 scopus 로고    scopus 로고
    • SciBORQ: Scientific data management with Bounds On Runtime and Quality
    • L. Sidirourgos, M. L. Kersten, and P. A. Boncz. SciBORQ: Scientific data management with Bounds On Runtime and Quality. In CIDR'11, 2011.
    • (2011) CIDR'11
    • Sidirourgos, L.1    Kersten, M.L.2    Boncz, P.A.3
  • 22
    • 84868325513 scopus 로고    scopus 로고
    • Hive: A warehousing solution over a map-reduce framework
    • A. Thusoo, J. S. Sarma, N. Jain, et al. Hive: a warehousing solution over a map-reduce framework. PVLDB, 2(2), 2009.
    • (2009) PVLDB , vol.2 , Issue.2
    • Thusoo, A.1    Sarma, J.S.2    Jain, N.3
  • 23
    • 80055059399 scopus 로고    scopus 로고
    • Optimal random sampling from distributed streams revisited
    • S. Tirthapura and D. Woodruff. Optimal random sampling from distributed streams revisited. Distributed Computing, pages 283-297, 2011.
    • (2011) Distributed Computing , pp. 283-297
    • Tirthapura, S.1    Woodruff, D.2
  • 24
    • 0347087667 scopus 로고    scopus 로고
    • Approximate computation of multidimensional aggregates of sparse data using wavelets
    • J. S. Vitter and M. Wang. Approximate computation of multidimensional aggregates of sparse data using wavelets. SIGMOD, 1999.
    • (1999) SIGMOD
    • Vitter, J.S.1    Wang, M.2
  • 25
    • 85040175609 scopus 로고    scopus 로고
    • Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing
    • M. Zaharia et al. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In NSDI, 2012.
    • (2012) NSDI
    • Zaharia, M.1
  • 26
    • 63649104440 scopus 로고    scopus 로고
    • Improving MapReduce Performance in Heterogeneous Environments
    • M. Zaharia, A. Konwinski, A. D. Joseph, et al. Improving MapReduce Performance in Heterogeneous Environments. In OSDI, 2008.
    • (2008) OSDI
    • Zaharia, M.1    Konwinski, A.2    Joseph, A.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.