메뉴 건너뛰기




Volumn 10, Issue 2, 2015, Pages 441-478

Searching multiregression dynamic models of resting-state fMRI networks using Integer programming

Author keywords

Bayesian Network; Functional magnetic resonance imaging (fMRI); Integer Program algorithm; Model selection; Multiregression Dynamic Model

Indexed keywords


EID: 84979987796     PISSN: 19360975     EISSN: 19316690     Source Type: Journal    
DOI: 10.1214/14-BA913     Document Type: Article
Times cited : (31)

References (73)
  • 1
    • 62249219958 scopus 로고    scopus 로고
    • Constraint Integer Programming.
    • Technische Universität Berlin.
    • Achterberg, T. (2007). "Constraint Integer Programming." Ph.D. thesis, Technische Universität Berlin.
    • (2007) Ph.D. thesis
    • Achterberg, T.1
  • 5
    • 0346401452 scopus 로고    scopus 로고
    • A robust method for detecting interdependences: application to intracranially recorded EEG
    • Arnhold, J., Grassberger, P., Lehnertz, K., and Elger, C. (1999). "A robust method for detecting interdependences: application to intracranially recorded EEG." Physica D: Nonlinear Phenomena, 134(4): 419-430.
    • (1999) Physica D: Nonlinear Phenomena , vol.134 , Issue.4 , pp. 419-430
    • Arnhold, J.1    Grassberger, P.2    Lehnertz, K.3    Elger, C.4
  • 6
    • 11844293410 scopus 로고    scopus 로고
    • Partial correlation and conditional correlation as measures of conditional independence
    • Baba, K., Shibata, R., and Sibuya, M. (2004). "Partial correlation and conditional correlation as measures of conditional independence." Australian & New Zealand Journal of Statistics, 46(4): 657-664.
    • (2004) Australian & New Zealand Journal of Statistics , vol.46 , Issue.4 , pp. 657-664
    • Baba, K.1    Shibata, R.2    Sibuya, M.3
  • 8
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: a practical and powerful approach to multiple testing.
    • Series B (Methodological)
    • Benjamini, Y. and Hochberg, Y. (1995). "Controlling the false discovery rate: a practical and powerful approach to multiple testing." Journal of the Royal Statistical Society. Series B (Methodological), 289-300.
    • (1995) Journal of the Royal Statistical Society. , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 9
    • 84873486762 scopus 로고    scopus 로고
    • A nonstationary nonparametric Bayesian approach to dynamically modeling effective connectivity in functional magnetic resonance imaging experiments
    • Bhattacharya, S. and Maitra, R. (2011). "A nonstationary nonparametric Bayesian approach to dynamically modeling effective connectivity in functional magnetic resonance imaging experiments." The Annals of Applied Statistics, 5(2B): 1183-1206.
    • (2011) The Annals of Applied Statistics , vol.5 , Issue.2 , pp. 1183-1206
    • Bhattacharya, S.1    Maitra, R.2
  • 10
    • 33645775748 scopus 로고    scopus 로고
    • A Bayesian approach to modeling dynamic effective connectivity with fMRI data
    • Bhattacharya, S., Ringo Ho, M.-H., and Purkayastha, S. (2006). "A Bayesian approach to modeling dynamic effective connectivity with fMRI data." Neuroimage, 30(3): 794-812.
    • (2006) Neuroimage , vol.30 , Issue.3 , pp. 794-812
    • Bhattacharya, S.1    Ringo Ho, M.-H.2    Purkayastha, S.3
  • 11
    • 75249093217 scopus 로고    scopus 로고
    • Time-frequency dynamics of resting-state brain connectivity measured with fMRI
    • Chang, C. and Glover, G. H. (2010). "Time-frequency dynamics of resting-state brain connectivity measured with fMRI." Neuroimage, 50(1): 81-98.
    • (2010) Neuroimage , vol.50 , Issue.1 , pp. 81-98
    • Chang, C.1    Glover, G.H.2
  • 12
    • 52049095479 scopus 로고    scopus 로고
    • Mapping and correction of vascular hemodynamic latency in the BOLD signal
    • Chang, C., Thomason, M. E., and Glover, G. H. (2008). "Mapping and correction of vascular hemodynamic latency in the BOLD signal." Neuroimage, 43(1): 90-102.
    • (2008) Neuroimage , vol.43 , Issue.1 , pp. 90-102
    • Chang, C.1    Thomason, M.E.2    Glover, G.H.3
  • 13
  • 14
    • 84933474988 scopus 로고    scopus 로고
    • Moment priors for Bayesian model choice with applications to directed acyclic graphs.
    • Consonni, G. and La Rocca, L. (2011). "Moment priors for Bayesian model choice with applications to directed acyclic graphs." Bayesian Statistics 9, 9: 119.
    • (2011) Bayesian Statistics , vol.9 , Issue.9 , pp. 119
    • Consonni, G.1    La Rocca, L.2
  • 15
    • 84873464244 scopus 로고    scopus 로고
    • A simple greedy algorithm for reconstructing pedigrees.
    • Cowell, R. G. (2013). "A simple greedy algorithm for reconstructing pedigrees." Theoretical Population Biology, 83: 55-63.
    • (2013) Theoretical Population Biology , vol.83 , pp. 55-63
    • Cowell, R.G.1
  • 17
    • 84861338060 scopus 로고    scopus 로고
    • Dynamic connectivity regression: determining state-related changes in brain connectivity
    • Cribben, I., Haraldsdottir, R., Atlas, L. Y., Wager, T. D., and Lindquist, M. A. (2012). "Dynamic connectivity regression: determining state-related changes in brain connectivity." Neuroimage, 61(4): 907-920.
    • (2012) Neuroimage , vol.61 , Issue.4 , pp. 907-920
    • Cribben, I.1    Haraldsdottir, R.2    Atlas, L.Y.3    Wager, T.D.4    Lindquist, M.A.5
  • 19
    • 80053158367 scopus 로고    scopus 로고
    • Bayesian Network Learning with Cutting Planes.
    • Cozman, F. G. and Pfeffer, A. (eds.). Barcelona: AUAI Press.
    • Cussens, J. (2011). "Bayesian Network Learning with Cutting Planes." In Cozman, F. G. and Pfeffer, A. (eds.), Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence (UAI 2011), 153-160. Barcelona: AUAI Press. URL http://uai.sis.pitt.edu/papers/11/p153-cussens.pdf.
    • (2011) Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence (UAI 2011) , pp. 153-160
    • Cussens, J.1
  • 20
    • 70349243080 scopus 로고    scopus 로고
    • Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models
    • Daunizeau, J., Friston, K., and Kiebel, S. (2009). "Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models." Physica D: Nonlinear Phenomena, 238(21): 2089-2118.
    • (2009) Physica D: Nonlinear Phenomena , vol.238 , Issue.21 , pp. 2089-2118
    • Daunizeau, J.1    Friston, K.2    Kiebel, S.3
  • 21
    • 70349976267 scopus 로고    scopus 로고
    • A comparative study of synchrony measures for the early diagnosis of Alzheimer's disease based on EEG
    • Dauwels, J., Vialatte, F., Musha, T., and Cichocki, A. (2010). "A comparative study of synchrony measures for the early diagnosis of Alzheimer's disease based on EEG." NeuroImage, 49(1): 668-693.
    • (2010) NeuroImage , vol.49 , Issue.1 , pp. 668-693
    • Dauwels, J.1    Vialatte, F.2    Musha, T.3    Cichocki, A.4
  • 23
    • 84885193306 scopus 로고    scopus 로고
    • Utility of Partial Correlation for Characterising Brain Dynamics: MVPA-based Assessment of Regularisation and Network Selection.
    • 2013 International Workshop on. IEEE.
    • Duff, E., Makin, T., Madugula, S., Smith, S. M., and Woolrich, M. W. (2013). "Utility of Partial Correlation for Characterising Brain Dynamics: MVPA-based Assessment of Regularisation and Network Selection." In Pattern Recognition in Neuroimaging (PRNI), 2013 International Workshop on, 58-61. IEEE.
    • (2013) Pattern Recognition in Neuroimaging (PRNI) , pp. 58-61
    • Duff, E.1    Makin, T.2    Madugula, S.3    Smith, S.M.4    Woolrich, M.W.5
  • 25
    • 81355137473 scopus 로고    scopus 로고
    • Functional and effective connectivity: a review
    • Friston, K. J. (2011). "Functional and effective connectivity: a review." Brain Connectivity, 1(1): 13-36.
    • (2011) Brain Connectivity , vol.1 , Issue.1 , pp. 13-36
    • Friston, K.J.1
  • 26
    • 0041924877 scopus 로고    scopus 로고
    • Dynamic causal modelling
    • Friston, K. J., Harrison, L., and Penny, W. (2003). "Dynamic causal modelling." Neuroimage, 19(4): 1273-1302.
    • (2003) Neuroimage , vol.19 , Issue.4 , pp. 1273-1302
    • Friston, K.J.1    Harrison, L.2    Penny, W.3
  • 28
    • 73449105078 scopus 로고    scopus 로고
    • A novel extended Granger causal model approach demonstrates brain hemispheric differences during face recognition learning
    • Ge, T., Kendrick, K. M., and Feng, J. (2009). "A novel extended Granger causal model approach demonstrates brain hemispheric differences during face recognition learning." PLoS computational biology, 5(11): e1000570.
    • (2009) PLoS computational biology , vol.5 , Issue.11
    • Ge, T.1    Kendrick, K.M.2    Feng, J.3
  • 29
    • 0000351727 scopus 로고
    • Investigating causal relations by econometric models and cross-spectral methods
    • Granger, C. W. (1969). "Investigating causal relations by econometric models and cross-spectral methods." Econometrica: Journal of the Econometric Society, 37(3): 424-438.
    • (1969) Econometrica: Journal of the Econometric Society , vol.37 , Issue.3 , pp. 424-438
    • Granger, C.W.1
  • 30
    • 3643049402 scopus 로고
    • Dynamic linear model diagnostics
    • Harrison, J. and West, M. (1991). "Dynamic linear model diagnostics." Biometrika, 78(4): 797-808.
    • (1991) Biometrika , vol.78 , Issue.4 , pp. 797-808
    • Harrison, J.1    West, M.2
  • 31
    • 77955306267 scopus 로고    scopus 로고
    • Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data
    • Havlicek, M., Jan, J., Brazdil, M., and Calhoun, V. D. (2010). "Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data." Neuroimage, 53(1): 65-77.
    • (2010) Neuroimage , vol.53 , Issue.1 , pp. 65-77
    • Havlicek, M.1    Jan, J.2    Brazdil, M.3    Calhoun, V.D.4
  • 32
    • 33645507298 scopus 로고    scopus 로고
    • A quantitative study of gene regulation involved in the immune response of anopheline mosquitoes: An application of Bayesian hierarchical clustering of curves
    • Heard, N. A., Holmes, C. C., and Stephens, D. A. (2006). "A quantitative study of gene regulation involved in the immune response of anopheline mosquitoes: An application of Bayesian hierarchical clustering of curves." Journal of the American Statistical Association, 101(473): 18-29.
    • (2006) Journal of the American Statistical Association , vol.101 , Issue.473 , pp. 18-29
    • Heard, N.A.1    Holmes, C.C.2    Stephens, D.A.3
  • 40
  • 43
    • 0042496102 scopus 로고    scopus 로고
    • Graphical Models: Selecting causal and statistical models.
    • Carnegie Mellon University.
    • Meek, C. (1997). "Graphical Models: Selecting causal and statistical models." Ph.D. thesis, Carnegie Mellon University.
    • (1997) Ph.D. thesis
    • Meek, C.1
  • 44
    • 33645218351 scopus 로고    scopus 로고
    • A Bayesian approach to determining connectivity of the human brain
    • Patel, R. S., Bowman, F. D., and Rilling, J. K. (2006). "A Bayesian approach to determining connectivity of the human brain." Human brain mapping, 27(3): 267- 276.
    • (2006) Human brain mapping , vol.27 , Issue.3 , pp. 267- 276
    • Patel, R.S.1    Bowman, F.D.2    Rilling, J.K.3
  • 46
    • 77649325496 scopus 로고    scopus 로고
    • Causal inference in statistics: An overview.
    • Pearl, J. (2009). "Causal inference in statistics: An overview." Statistics Surveys, 3: 96-146.
    • (2009) Statistics Surveys , vol.3 , pp. 96-146
    • Pearl, J.1
  • 48
    • 27844612542 scopus 로고    scopus 로고
    • Nonlinear multivariate analysis of neurophysiological signals
    • Pereda, E., Quiroga, R. Q., and Bhattacharya, J. (2005). "Nonlinear multivariate analysis of neurophysiological signals." Progress in neurobiology, 77(1): 1-37.
    • (2005) Progress in neurobiology , vol.77 , Issue.1 , pp. 1-37
    • Pereda, E.1    Quiroga, R.Q.2    Bhattacharya, J.3
  • 51
    • 66549102138 scopus 로고    scopus 로고
    • Intervention and causality: forecasting traffic flows using a dynamic Bayesian network
    • Queen, C. M. and Albers, C. J. (2009). "Intervention and causality: forecasting traffic flows using a dynamic Bayesian network." Journal of the American Statistical Association, 104(486): 669-681.
    • (2009) Journal of the American Statistical Association , vol.104 , Issue.486 , pp. 669-681
    • Queen, C.M.1    Albers, C.J.2
  • 52
    • 0039916958 scopus 로고
    • Multiregression dynamic models.
    • Series B (Methodological)
    • Queen, C. M. and Smith, J. Q. (1993). "Multiregression dynamic models." Journal of the Royal Statistical Society. Series B (Methodological), 55(4): 849-870.
    • (1993) Journal of the Royal Statistical Society , vol.55 , Issue.4 , pp. 849-870
    • Queen, C.M.1    Smith, J.Q.2
  • 53
    • 41449099887 scopus 로고    scopus 로고
    • Forecast covariances in the linear multiregression dynamic model
    • Queen, C. M., Wright, B. J., and Albers, C. J. (2008). "Forecast covariances in the linear multiregression dynamic model." Journal of Forecasting, 27(2): 175-191.
    • (2008) Journal of Forecasting , vol.27 , Issue.2 , pp. 175-191
    • Queen, C.M.1    Wright, B.J.2    Albers, C.J.3
  • 54
    • 85035246836 scopus 로고    scopus 로고
    • Performance of different synchronization measures in real data: a case study on electroencephalographic signals
    • Quian Quiroga, R., Kraskov, A., Kreuz, T., and Grassberger, P. (2002). "Performance of different synchronization measures in real data: a case study on electroencephalographic signals." Physical Review E, 65(4): 041903.
    • (2002) Physical Review E , vol.65 , Issue.4
    • Quian Quiroga, R.1    Kraskov, A.2    Kreuz, T.3    Grassberger, P.4
  • 56
    • 80051780742 scopus 로고    scopus 로고
    • The identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution
    • Roebroeck, A., Formisano, E., and Goebel, R. (2011). "The identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution." Neuroimage, 58(2): 296-302.
    • (2011) Neuroimage , vol.58 , Issue.2 , pp. 296-302
    • Roebroeck, A.1    Formisano, E.2    Goebel, R.3
  • 57
    • 78649648075 scopus 로고    scopus 로고
    • Multivariate dynamical systems models for estimating causal interactions in fMRI
    • Ryali, S., Supekar, K., Chen, T., and Menon, V. (2011). "Multivariate dynamical systems models for estimating causal interactions in fMRI." Neuroimage, 54(2): 807-823.
    • (2011) Neuroimage , vol.54 , Issue.2 , pp. 807-823
    • Ryali, S.1    Supekar, K.2    Chen, T.3    Menon, V.4
  • 58
    • 84894384080 scopus 로고    scopus 로고
    • Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers.
    • Salimi-Khorshidi, G., Douaud, G., Beckmann, C. F., Glasser, M. F., Griffanti, L., and Smith, S. M. (2014). "Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers." NeuroImage, 90: 449-468.
    • (2014) NeuroImage , vol.90 , pp. 449-468
    • Salimi-Khorshidi, G.1    Douaud, G.2    Beckmann, C.F.3    Glasser, M.F.4    Griffanti, L.5    Smith, S.M.6
  • 59
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. et al. (1978). "Estimating the dimension of a model." The annals of statistics, 6(2): 461-464.
    • (1978) The annals of statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 61
    • 84984500213 scopus 로고
    • Diagnostic checks of non-standard time series models
    • Smith, J. (1985). "Diagnostic checks of non-standard time series models." Journal of Forecasting, 4(3): 283-291.
    • (1985) Journal of Forecasting , vol.4 , Issue.3 , pp. 283-291
    • Smith, J.1
  • 62
    • 77954383250 scopus 로고    scopus 로고
    • Identification and validation of effective connectivity networks in functional magnetic resonance imaging using switching linear dynamic systems
    • Smith, J. F., Pillai, A., Chen, K., and Horwitz, B. (2010). "Identification and validation of effective connectivity networks in functional magnetic resonance imaging using switching linear dynamic systems." Neuroimage, 52(3): 1027-1040.
    • (2010) Neuroimage , vol.52 , Issue.3 , pp. 1027-1040
    • Smith, J.F.1    Pillai, A.2    Chen, K.3    Horwitz, B.4
  • 63
    • 84980001835 scopus 로고    scopus 로고
    • Effective connectivity modeling for fMRI: six issues and possible solutions using linear dynamic systems.
    • Smith, J. F., Pillai, A., Chen, K., and Horwitz, B. (2011a). "Effective connectivity modeling for fMRI: six issues and possible solutions using linear dynamic systems." Frontiers in systems neuroscience, 5(104).
    • (2011) Frontiers in systems neuroscience , vol.5 , Issue.104
    • Smith, J.F.1    Pillai, A.2    Chen, K.3    Horwitz, B.4
  • 67
    • 0042031057 scopus 로고    scopus 로고
    • Enumeration of labelled chain graphs and labelled essential directed acyclic graphs
    • Steinsky, B. (2003). "Enumeration of labelled chain graphs and labelled essential directed acyclic graphs." Discrete Mathematics, 270(1): 267-278.
    • (2003) Discrete Mathematics , vol.270 , Issue.1 , pp. 267-278
    • Steinsky, B.1
  • 70
    • 80051795744 scopus 로고    scopus 로고
    • Effective connectivity: influence, causality and biophysical modeling
    • Valdés-Sosa, P. A., Roebroeck, A., Daunizeau, J., and Friston, K. (2011). "Effective connectivity: influence, causality and biophysical modeling." Neuroimage, 58(2): 339- 361.
    • (2011) Neuroimage , vol.58 , Issue.2 , pp. 339- 361
    • Valdés-Sosa, P.A.1    Roebroeck, A.2    Daunizeau, J.3    Friston, K.4
  • 73
    • 84902206379 scopus 로고    scopus 로고
    • Inferring functional interaction and transition patterns via dynamic Bayesian variable partition models.
    • Zhang, J., Li, X., Li, C., Lian, Z., Huang, X., Zhong, G., Zhu, D., Li, K., Jin, C., Hu, X., et al. (2014). "Inferring functional interaction and transition patterns via dynamic Bayesian variable partition models." Human brain mapping, 35: 3314-3331.
    • (2014) Human brain mapping , vol.35 , pp. 3314-3331
    • Zhang, J.1    Li, X.2    Li, C.3    Lian, Z.4    Huang, X.5    Zhong, G.6    Zhu, D.7    Li, K.8    Jin, C.9    Hu, X.10


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.