메뉴 건너뛰기




Volumn 36, Issue 10, 2016, Pages 2088-2099

MYOSLID is a novel serum response factor-dependent long noncoding RNA that amplifies the vascular smooth muscle differentiation program

Author keywords

long noncoding RNA; myocardin; phenotype; stress fiber; vascular smooth muscle

Indexed keywords

LONG UNTRANSLATED RNA; MYOCARDIN; MYOSLID PROTEIN; SERUM RESPONSE FACTOR; SMAD PROTEIN; SMAD2 PROTEIN; TRANSCRIPTION FACTOR; TRANSFORMING GROWTH FACTOR BETA; TRANSFORMING GROWTH FACTOR BETA1; UNCLASSIFIED DRUG; LONG NON-CODING RNA MYOSLID, HUMAN; MKL1 PROTEIN, HUMAN; NUCLEAR PROTEIN; SMAD2 PROTEIN, HUMAN; TGFB1 PROTEIN, HUMAN; TRANSACTIVATOR PROTEIN;

EID: 84979708484     PISSN: 10795642     EISSN: 15244636     Source Type: Journal    
DOI: 10.1161/ATVBAHA.116.307879     Document Type: Article
Times cited : (96)

References (43)
  • 1
    • 0031869874 scopus 로고    scopus 로고
    • Phenotypic modulation of smooth muscle cells during formation of neointimal thickenings following vascular injury
    • Thyberg J. Phenotypic modulation of smooth muscle cells during formation of neointimal thickenings following vascular injury. Histol Histopathol. 1998;13:871-891.
    • (1998) Histol Histopathol. , vol.13 , pp. 871-891
    • Thyberg, J.1
  • 2
    • 3042588831 scopus 로고    scopus 로고
    • Molecular regulation of vascular smooth muscle cell differentiation in development and disease
    • Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev. 2004;84:767-801. doi: 10.1152/physrev.00041.2003.
    • (2004) Physiol Rev. , vol.84 , pp. 767-801
    • Owens, G.K.1    Kumar, M.S.2    Wamhoff, B.R.3
  • 3
    • 84908086513 scopus 로고    scopus 로고
    • Previously differentiated medial vascular smooth muscle cells contribute to neointima formation following vascular injury
    • Herring BP, Hoggatt AM, Burlak C, Offermanns S. Previously differentiated medial vascular smooth muscle cells contribute to neointima formation following vascular injury. Vasc Cell. 2014;6:21. doi: 10.1186/2045-824X-6-21.
    • (2014) Vasc Cell. , vol.6 , pp. 21
    • Herring, B.P.1    Hoggatt, A.M.2    Burlak, C.3    Offermanns, S.4
  • 5
  • 6
    • 0036773632 scopus 로고    scopus 로고
    • Myocardin: A component of a molecular switch for smooth muscle differentiation
    • Chen J, Kitchen CM, Streb JW, Miano JM. Myocardin: a component of a molecular switch for smooth muscle differentiation. J Mol Cell Cardiol. 2002;34:1345-1356.
    • (2002) J Mol Cell Cardiol. , vol.34 , pp. 1345-1356
    • Chen, J.1    Kitchen, C.M.2    Streb, J.W.3    Miano, J.M.4
  • 7
    • 70450273104 scopus 로고    scopus 로고
    • The smooth muscle cell-restricted KCNMB1 ion channel subunit is a direct transcriptional target of serum response factor and myocardin
    • Long X, Tharp DL, Georger MA, Slivano OJ, Lee MY, Wamhoff BR, Bowles DK, Miano JM. The smooth muscle cell-restricted KCNMB1 ion channel subunit is a direct transcriptional target of serum response factor and myocardin. J Biol Chem. 2009;284:33671-33682. doi: 10.1074/jbc. M109.050419.
    • (2009) J Biol Chem. , vol.284 , pp. 33671-33682
    • Long, X.1    Tharp, D.L.2    Georger, M.A.3    Slivano, O.J.4    Lee, M.Y.5    Wamhoff, B.R.6    Bowles, D.K.7    Miano, J.M.8
  • 8
    • 84856078064 scopus 로고    scopus 로고
    • Leiomodin 1, a new serum response factor-dependent target gene expressed preferentially in differentiated smooth muscle cells
    • Nanda V, Miano JM. Leiomodin 1, a new serum response factor-dependent target gene expressed preferentially in differentiated smooth muscle cells. J Biol Chem. 2012;287:2459-2467. doi: 10.1074/jbc.M111.302224.
    • (2012) J Biol Chem. , vol.287 , pp. 2459-2467
    • Nanda, V.1    Miano, J.M.2
  • 9
    • 48349105804 scopus 로고    scopus 로고
    • Do two mutually exclusive gene modules define the phenotypic diversity of mammalian smooth muscle?
    • Larsson E, McLean SE, Mecham RP, Lindahl P, Nelander S. Do two mutually exclusive gene modules define the phenotypic diversity of mammalian smooth muscle?. Mol Genet Genomics. 2008;280:127-137. doi: 10.1007/s00438-008-0349-y.
    • (2008) Mol Genet Genomics. , vol.280 , pp. 127-137
    • Larsson, E.1    McLean, S.E.2    Mecham, R.P.3    Lindahl, P.4    Nelander, S.5
  • 10
    • 68049083397 scopus 로고    scopus 로고
    • MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation
    • Cheng Y, Liu X, Yang J, Lin Y, Xu DZ, Lu Q, Deitch EA, Huo Y, Delphin ES, Zhang C. MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circ Res. 2009;105:158-166. doi: 10.1161/CIRCRESAHA.109.197517.
    • (2009) Circ Res. , vol.105 , pp. 158-166
    • Cheng, Y.1    Liu, X.2    Yang, J.3    Lin, Y.4    Xu, D.Z.5    Lu, Q.6    Deitch, E.A.7    Huo, Y.8    Delphin, E.S.9    Zhang, C.10
  • 12
    • 84888115595 scopus 로고    scopus 로고
    • MicroRNA-1 regulates sarcomere formation and suppresses smooth muscle gene expression in the mammalian heart
    • Heidersbach A, Saxby C, Carver-Moore K, Huang Y, Ang YS, de Jong PJ, Ivey KN, Srivastava D. microRNA-1 regulates sarcomere formation and suppresses smooth muscle gene expression in the mammalian heart. Elife. 2013;2:e01323. doi: 10.7554/eLife.01323.
    • (2013) Elife. , vol.2 , pp. e01323
    • Heidersbach, A.1    Saxby, C.2    Carver-Moore, K.3    Huang, Y.4    Ang, Y.S.5    De Jong, P.J.6    Ivey, K.N.7    Srivastava, D.8
  • 13
    • 79957655520 scopus 로고    scopus 로고
    • Can microRNAs control vascular smooth muscle phenotypic modulation and the response to injury?
    • Albinsson S, Sessa WC. Can microRNAs control vascular smooth muscle phenotypic modulation and the response to injury?. Physiol Genomics. 2011;43:529-533. doi: 10.1152/physiolgenomics.00146.2010.
    • (2011) Physiol Genomics. , vol.43 , pp. 529-533
    • Albinsson, S.1    Sessa, W.C.2
  • 14
    • 84879671055 scopus 로고    scopus 로고
    • Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs
    • Hangauer MJ, Vaughn IW, McManus MT. Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genet. 2013;9:e1003569. doi: 10.1371/journal.pgen.1003569.
    • (2013) PLoS Genet. , vol.9 , pp. e1003569
    • Hangauer, M.J.1    Vaughn, I.W.2    McManus, M.T.3
  • 18
    • 84905499238 scopus 로고    scopus 로고
    • A long noncoding RNA transcriptional regulatory circuit drives thermogenic adipocyte differentiation
    • Zhao XY, Li S, Wang GX, Yu Q, Lin JD. A long noncoding RNA transcriptional regulatory circuit drives thermogenic adipocyte differentiation. Mol Cell. 2014;55:372-382. doi: 10.1016/j.molcel.2014.06.004.
    • (2014) Mol Cell. , vol.55 , pp. 372-382
    • Zhao, X.Y.1    Li, S.2    Wang, G.X.3    Yu, Q.4    Lin, J.D.5
  • 19
    • 84939570237 scopus 로고    scopus 로고
    • Discovery, annotation, and functional analysis of long noncoding RNAs controlling cell-cycle gene expression and proliferation in breast cancer cells
    • Sun M, Gadad SS, Kim DS, Kraus WL. Discovery, annotation, and functional analysis of long noncoding RNAs controlling cell-cycle gene expression and proliferation in breast cancer cells. Mol Cell. 2015;59:698-711. doi: 10.1016/j.molcel.2015.06.023.
    • (2015) Mol Cell. , vol.59 , pp. 698-711
    • Sun, M.1    Gadad, S.S.2    Kim, D.S.3    Kraus, W.L.4
  • 20
    • 84924134321 scopus 로고    scopus 로고
    • Long noncoding RNAs in cardiovascular diseases
    • Uchida S, Dimmeler S. Long noncoding RNAs in cardiovascular diseases. Circ Res. 2015;116:737-750. doi: 10.1161/CIRCRESAHA.116.302521.
    • (2015) Circ Res. , vol.116 , pp. 737-750
    • Uchida, S.1    Dimmeler, S.2
  • 21
    • 84924268738 scopus 로고    scopus 로고
    • A cytoplasmic NF-?B interacting long noncoding RNA blocks I?B phosphorylation and suppresses breast cancer metastasis
    • Liu B, Sun L, Liu Q, Gong C, Yao Y, Lv X, Lin L, Yao H, Su F, Li D, Zeng M, Song E. A cytoplasmic NF-?B interacting long noncoding RNA blocks I?B phosphorylation and suppresses breast cancer metastasis. Cancer Cell. 2015;27:370-381. doi: 10.1016/j.ccell.2015.02.004.
    • (2015) Cancer Cell. , vol.27 , pp. 370-381
    • Liu, B.1    Sun, L.2    Liu, Q.3    Gong, C.4    Yao, Y.5    Lv, X.6    Lin, L.7    Yao, H.8    Su, F.9    Li, D.10    Zeng, M.11    Song, E.12
  • 22
    • 84899486799 scopus 로고    scopus 로고
    • The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation
    • Wang P, Xue Y, Han Y, Lin L, Wu C, Xu S, Jiang Z, Xu J, Liu Q, Cao X. The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science. 2014;344:310-313. doi: 10.1126/science.1251456.
    • (2014) Science. , vol.344 , pp. 310-313
    • Wang, P.1    Xue, Y.2    Han, Y.3    Lin, L.4    Wu, C.5    Xu, S.6    Jiang, Z.7    Xu, J.8    Liu, Q.9    Cao, X.10
  • 23
    • 84940467335 scopus 로고    scopus 로고
    • The short and long of noncoding sequences in the control of vascular cell phenotypes
    • Miano JM, Long X. The short and long of noncoding sequences in the control of vascular cell phenotypes. Cell Mol Life Sci. 2015;72:3457-3488. doi: 10.1007/s00018-015-1936-9.
    • (2015) Cell Mol Life Sci. , vol.72 , pp. 3457-3488
    • Miano, J.M.1    Long, X.2
  • 24
    • 84880792943 scopus 로고    scopus 로고
    • Novel long noncoding RNAs are regulated by angiotensin II in vascular smooth muscle cells
    • Leung A, Trac C, Jin W, Lanting L, Akbany A, Satrom P, Schones DE, Natarajan R. Novel long noncoding RNAs are regulated by angiotensin II in vascular smooth muscle cells. Circ Res. 2013;113:266-278. doi: 10.1161/CIRCRESAHA.112.300849.
    • (2013) Circ Res. , vol.113 , pp. 266-278
    • Leung, A.1    Trac, C.2    Jin, W.3    Lanting, L.4    Akbany, A.5    Satrom, P.6    Schones, D.E.7    Natarajan, R.8
  • 25
    • 84917729694 scopus 로고    scopus 로고
    • LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity
    • Wu G, Cai J, Han Y, et al. LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation. 2014;130:1452-1465. doi: 10.1161/CIRCULATIONAHA.114.011675.
    • (2014) Circulation. , vol.130 , pp. 1452-1465
    • Wu, G.1    Cai, J.2    Han, Y.3
  • 26
    • 84933047629 scopus 로고    scopus 로고
    • Myocardin in biology and disease
    • Miano JM. Myocardin in biology and disease. J Biomed Res. 2015;29:3-19. doi: 10.7555/JBR.29.20140151.
    • (2015) J Biomed Res. , vol.29 , pp. 3-19
    • Miano, J.M.1
  • 27
    • 79959446962 scopus 로고    scopus 로고
    • PhyloCSF: A comparative genomics method to distinguish protein coding and non-coding regions
    • Lin MF, Jungreis I, Kellis M. PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions. Bioinformatics. 2011;27:i275-i282. doi: 10.1093/bioinformatics/btr209.
    • (2011) Bioinformatics. , vol.27 , pp. i275-i282
    • Lin, M.F.1    Jungreis, I.2    Kellis, M.3
  • 28
    • 34548504321 scopus 로고    scopus 로고
    • A novel role of Brg1 in the regulation of SRF/MRTFA-dependent smooth muscle-specific gene expression
    • Zhang M, Fang H, Zhou J, Herring BP. A novel role of Brg1 in the regulation of SRF/MRTFA-dependent smooth muscle-specific gene expression. J Biol Chem. 2007;282:25708-25716. doi: 10.1074/jbc. M701925200.
    • (2007) J Biol Chem. , vol.282 , pp. 25708-25716
    • Zhang, M.1    Fang, H.2    Zhou, J.3    Herring, B.P.4
  • 29
    • 80052971048 scopus 로고    scopus 로고
    • Smooth muscle calponin: An unconventional CArG-dependent gene that antagonizes neointimal formation
    • Long X, Slivano OJ, Cowan SL, Georger MA, Lee TH, Miano JM. Smooth muscle calponin: an unconventional CArG-dependent gene that antagonizes neointimal formation. Arterioscler Thromb Vasc Biol. 2011;31:2172-2180. doi: 10.1161/ATVBAHA.111.232785.
    • (2011) Arterioscler Thromb Vasc Biol. , vol.31 , pp. 2172-2180
    • Long, X.1    Slivano, O.J.2    Cowan, S.L.3    Georger, M.A.4    Lee, T.H.5    Miano, J.M.6
  • 30
    • 80051944105 scopus 로고    scopus 로고
    • Transforming growth factor-beta1 (TGF-beta1) utilizes distinct pathways for the transcriptional activation of microRNA 143/145 in human coronary artery smooth muscle cells
    • Long X, Miano JM. Transforming growth factor-beta1 (TGF-beta1) utilizes distinct pathways for the transcriptional activation of microRNA 143/145 in human coronary artery smooth muscle cells. J Biol Chem. 2011;286:30119-30129. doi: 10.1074/jbc.M111.258814.
    • (2011) J Biol Chem. , vol.286 , pp. 30119-30129
    • Long, X.1    Miano, J.M.2
  • 31
    • 84940797293 scopus 로고    scopus 로고
    • Migration of smooth muscle cells from the arterial anastomosis of arteriovenous fistulas requires Notch activation to form neointima
    • Liang M, Wang Y, Liang A, Mitch WE, Roy-Chaudhury P, Han G, Cheng J. Migration of smooth muscle cells from the arterial anastomosis of arteriovenous fistulas requires Notch activation to form neointima. Kidney Int. 2015;88:490-502. doi: 10.1038/ki.2015.73.
    • (2015) Kidney Int. , vol.88 , pp. 490-502
    • Liang, M.1    Wang, Y.2    Liang, A.3    Mitch, W.E.4    Roy-Chaudhury, P.5    Han, G.6    Cheng, J.7
  • 32
    • 77951582061 scopus 로고    scopus 로고
    • Linking actin dynamics and gene transcription to drive cellular motile functions
    • Olson EN, Nordheim A. Linking actin dynamics and gene transcription to drive cellular motile functions. Nat Rev Mol Cell Biol. 2010;11:353-365. doi: 10.1038/nrm2890.
    • (2010) Nat Rev Mol Cell Biol. , vol.11 , pp. 353-365
    • Olson, E.N.1    Nordheim, A.2
  • 33
    • 0038737042 scopus 로고    scopus 로고
    • Actin dynamics control SRF activity by regulation of its coactivator MAL
    • Miralles F, Posern G, Zaromytidou AI, Treisman R. Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell. 2003;113:329-342.
    • (2003) Cell. , vol.113 , pp. 329-342
    • Miralles, F.1    Posern, G.2    Zaromytidou, A.I.3    Treisman, R.4
  • 34
    • 84918515802 scopus 로고    scopus 로고
    • Myocardinrelated transcription factors control the motility of epicardium-derived cells and the maturation of coronary vessels
    • Trembley MA, Velasquez LS, de Mesy Bentley KL, Small EM. Myocardinrelated transcription factors control the motility of epicardium-derived cells and the maturation of coronary vessels. Development. 2015;142:21-30. doi: 10.1242/dev.116418.
    • (2015) Development. , vol.142 , pp. 21-30
    • Trembley, M.A.1    Velasquez, L.S.2    De Mesy Bentley, K.L.3    Small, E.M.4
  • 35
    • 81155159182 scopus 로고    scopus 로고
    • Mechanisms of TGF-b-induced differentiation in human vascular smooth muscle cells
    • Tang Y, Yang X, Friesel RE, Vary CP, Liaw L. Mechanisms of TGF-b-induced differentiation in human vascular smooth muscle cells. J Vasc Res. 2011;48:485-494. doi: 10.1159/000327776.
    • (2011) J Vasc Res. , vol.48 , pp. 485-494
    • Tang, Y.1    Yang, X.2    Friesel, R.E.3    Vary, C.P.4    Liaw, L.5
  • 36
    • 0015271630 scopus 로고
    • So much "junk" DNA in our genome
    • Ohno S. So much "junk" DNA in our genome. Brookhaven Symp Biol. 1972;23:366-370.
    • (1972) Brookhaven Symp Biol. , vol.23 , pp. 366-370
    • Ohno, S.1
  • 37
    • 2442716332 scopus 로고    scopus 로고
    • Transforming growth factor-beta-induced differentiation of smooth muscle from a neural crest stem cell line
    • Chen S, Lechleider RJ. Transforming growth factor-beta-induced differentiation of smooth muscle from a neural crest stem cell line. Circ Res. 2004;94:1195-1202. doi: 10.1161/01.RES.0000126897.41658.81.
    • (2004) Circ Res. , vol.94 , pp. 1195-1202
    • Chen, S.1    Lechleider, R.J.2
  • 39
    • 84855976300 scopus 로고    scopus 로고
    • Genetic variants at the 9p21 locus contribute to atherosclerosis through modulation of ANRIL and CDKN2A/B
    • Congrains A, Kamide K, Oguro R, et al. Genetic variants at the 9p21 locus contribute to atherosclerosis through modulation of ANRIL and CDKN2A/B. Atherosclerosis. 2012;220:449-455. doi: 10.1016/j. atherosclerosis.2011.11.017.
    • (2012) Atherosclerosis. , vol.220 , pp. 449-455
    • Congrains, A.1    Kamide, K.2    Oguro, R.3
  • 40
    • 84887096448 scopus 로고    scopus 로고
    • Ten-eleven translocation-2 (TET2) is a master regulator of smooth muscle cell plasticity
    • Liu R, Jin Y, Tang WH, Qin L, Zhang X, Tellides G, Hwa J, Yu J, Martin KA. Ten-eleven translocation-2 (TET2) is a master regulator of smooth muscle cell plasticity. Circulation. 2013;128:2047-2057. doi: 10.1161/CIRCULATIONAHA.113.002887.
    • (2013) Circulation. , vol.128 , pp. 2047-2057
    • Liu, R.1    Jin, Y.2    Tang, W.H.3    Qin, L.4    Zhang, X.5    Tellides, G.6    Hwa, J.7    Yu, J.8    Martin, K.A.9
  • 41
    • 80053153925 scopus 로고    scopus 로고
    • Identifying functional single nucleotide polymorphisms in the human CArGome
    • Benson CC, Zhou Q, Long X, Miano JM. Identifying functional single nucleotide polymorphisms in the human CArGome. Physiol Genomics. 2011;43:1038-1048. doi: 10.1152/physiolgenomics.00098. 2011.
    • (2011) Physiol Genomics. , vol.43 , pp. 1038-1048
    • Benson, C.C.1    Zhou, Q.2    Long, X.3    Miano, J.M.4
  • 43
    • 77952919493 scopus 로고    scopus 로고
    • Notch and transforming growth factor-beta (TGFbeta) signaling pathways cooperatively regulate vascular smooth muscle cell differentiation
    • Tang Y, Urs S, Boucher J, Bernaiche T, Venkatesh D, Spicer DB, Vary CP, Liaw L. Notch and transforming growth factor-beta (TGFbeta) signaling pathways cooperatively regulate vascular smooth muscle cell differentiation. J Biol Chem. 2010;285:17556-17563. doi: 10.1074/jbc. M109.076414.
    • (2010) J Biol Chem. , vol.285 , pp. 17556-17563
    • Tang, Y.1    Urs, S.2    Boucher, J.3    Bernaiche, T.4    Venkatesh, D.5    Spicer, D.B.6    Vary, C.P.7    Liaw, L.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.