-
2
-
-
84874897667
-
Therapeutic nanoparticles in clinics and under clinical evaluation
-
Schutz CA, Juillerat-Jeanneret L, Mueller H, Lynch I, Riediker M, Consortium N. Therapeutic nanoparticles in clinics and under clinical evaluation. Nanomedicine (Lond). 2013; 8: 449-67.
-
(2013)
Nanomedicine (Lond).
, vol.8
, pp. 449-467
-
-
Schutz, C.A.1
Juillerat-Jeanneret, L.2
Mueller, H.3
Lynch, I.4
Riediker, M.5
Consortium, N.6
-
3
-
-
84858665432
-
Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile
-
Hrkach J, Von HoffD, Ali MM, Andrianova E, Auer J, Campbell T, et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med. 2012; 4: 128ra39.
-
(2012)
Sci Transl Med.
, vol.4
, pp. 128-139
-
-
Hrkach, J.1
Von Hoff, D.2
Ali, M.M.3
Andrianova, E.4
Auer, J.5
Campbell, T.6
-
4
-
-
84954558187
-
Triple-layered pH-responsive micelleplexes loaded with siRNA and cisplatin prodrug for NF-Kappa B targeted treatment of metastatic breast cancer
-
Yu H, Guo C, Feng B, Liu J, Chen X, Wang D, et al. Triple-layered pH-responsive micelleplexes loaded with siRNA and cisplatin prodrug for NF-Kappa B targeted treatment of metastatic breast cancer. Theranostics. 2016; 6: 14-27.
-
(2016)
Theranostics.
, vol.6
, pp. 14-27
-
-
Yu, H.1
Guo, C.2
Feng, B.3
Liu, J.4
Chen, X.5
Wang, D.6
-
5
-
-
36849067019
-
Nanocarriers as an emerging platform for cancer therapy
-
Peer D, Karp JM, Hong S, FaroKHzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007; 2: 751-60.
-
(2007)
Nat Nanotechnol.
, vol.2
, pp. 751-760
-
-
Peer, D.1
Karp, J.M.2
Hong, S.3
Faro, K.4
Hzad, O.C.5
Margalit, R.6
Langer, R.7
-
6
-
-
84873268296
-
The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo
-
Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliver Rev. 2013; 65: 71-9.
-
(2013)
Adv Drug Deliver Rev.
, vol.65
, pp. 71-79
-
-
Maeda, H.1
Nakamura, H.2
Fang, J.3
-
8
-
-
0017178490
-
Effect of adriamycin on DNA, RNA, and protein-synthesis in cell-free systems and intact-cells
-
Momparler RL, Karon M, Siegel SE, Avila F. Effect of adriamycin on DNA, RNA, and protein-synthesis in cell-free systems and intact-cells. Cancer Res. 1976; 36: 2891-5.
-
(1976)
Cancer Res.
, vol.36
, pp. 2891-2895
-
-
Momparler, R.L.1
Karon, M.2
Siegel, S.E.3
Avila, F.4
-
9
-
-
84906544769
-
Cisplatin in cancer therapy: Molecular mechanisms of action
-
Dasari S, Tchounwou PB. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur J Pharmacol. 2014; 740: 364-78.
-
(2014)
Eur J Pharmacol.
, vol.740
, pp. 364-378
-
-
Dasari, S.1
Tchounwou, P.B.2
-
10
-
-
0028708677
-
Taxol (paclitaxel): mechanisms of action
-
Horwitz SB. Taxol (paclitaxel): mechanisms of action. Ann Oncol. 1994; 5(Suppl 6): S3-6.
-
(1994)
Ann Oncol.
, vol.5
, pp. S3-S6
-
-
Horwitz, S.B.1
-
12
-
-
77955251549
-
The effects of particle size and molecular targeting on the intratumoral and subcellular distribution of polymeric nanoparticles
-
Lee H, Fonge H, Hoang B, Reilly RM, Allen C. The effects of particle size and molecular targeting on the intratumoral and subcellular distribution of polymeric nanoparticles. Mol Pharmaceut. 2010; 7: 1195-208.
-
(2010)
Mol Pharmaceut.
, vol.7
, pp. 1195-1208
-
-
Lee, H.1
Fonge, H.2
Hoang, B.3
Reilly, R.M.4
Allen, C.5
-
13
-
-
84871981690
-
Superior penetration and retention behavior of 50 nm gold nanoparticles in tumors
-
Huo S, Ma H, Huang K, Liu J, Wei T, Jin S, et al. Superior penetration and retention behavior of 50 nm gold nanoparticles in tumors. Cancer Res. 2013; 73: 319-30.
-
(2013)
Cancer Res.
, vol.73
, pp. 319-330
-
-
Huo, S.1
Ma, H.2
Huang, K.3
Liu, J.4
Wei, T.5
Jin, S.6
-
14
-
-
84894608275
-
Oligo(ethylene glycol)-based thermosensitive dendrimers and their tumor accumulation and penetration
-
Wu W, Driessen W, Jiang X. Oligo(ethylene glycol)-based thermosensitive dendrimers and their tumor accumulation and penetration. J Am Chem Soc. 2014; 136: 3145-55.
-
(2014)
J Am Chem Soc.
, vol.136
, pp. 3145-3155
-
-
Wu, W.1
Driessen, W.2
Jiang, X.3
-
15
-
-
84903475162
-
Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency
-
Sykes EA, Chen J, Zheng G, Chan WC. Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. Acs Nano. 2014; 8: 5696-706.
-
(2014)
Acs Nano.
, vol.8
, pp. 5696-5706
-
-
Sykes, E.A.1
Chen, J.2
Zheng, G.3
Chan, W.C.4
-
16
-
-
0028304405
-
Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft
-
Yuan F, Leunig M, Huang SK, Berk DA, Papahadjopoulos D, Jain RK. Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res. 1994; 54: 3352-56.
-
(1994)
Cancer Res.
, vol.54
, pp. 3352-3356
-
-
Yuan, F.1
Leunig, M.2
Huang, S.K.3
Berk, D.A.4
Papahadjopoulos, D.5
Jain, R.K.6
-
17
-
-
84896734996
-
Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target?
-
Kobayashi H, Watanabe R, Choyke PL. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics. 2013; 4: 81-9.
-
(2013)
Theranostics.
, vol.4
, pp. 81-89
-
-
Kobayashi, H.1
Watanabe, R.2
Choyke, P.L.3
-
18
-
-
0030951899
-
Combretastatin A-4, an agent that displays potent and selective toxicity toward tumor vasculature
-
Dark GG, Hill SA, Prise VE, Tozer GM, Pettit GR, Chaplin DJ. Combretastatin A-4, an agent that displays potent and selective toxicity toward tumor vasculature. Cancer Res. 1997; 57: 1829-34.
-
(1997)
Cancer Res.
, vol.57
, pp. 1829-1834
-
-
Dark, G.G.1
Hill, S.A.2
Prise, V.E.3
Tozer, G.M.4
Pettit, G.R.5
Chaplin, D.J.6
-
19
-
-
27644466314
-
Combretastatin A4 phosphate induces rapid regression of tumor neovessels and growth through interference with vascular endothelial-cadherin signaling
-
Vincent L, Kermani P, Young LM, Cheng J, Zhang F, Shido K, et al. Combretastatin A4 phosphate induces rapid regression of tumor neovessels and growth through interference with vascular endothelial-cadherin signaling. J Clin Invest. 2005; 115: 2992-3006.
-
(2005)
J Clin Invest.
, vol.115
, pp. 2992-3006
-
-
Vincent, L.1
Kermani, P.2
Young, L.M.3
Cheng, J.4
Zhang, F.5
Shido, K.6
-
20
-
-
84951115668
-
A cooperative polymeric platform for tumor-targeted drug delivery
-
Song W, Tang Z, Zhang D, Li M, Gu J, Chen X. A cooperative polymeric platform for tumor-targeted drug delivery. Chem Sci. 2016; 7: 728-736.
-
(2016)
Chem Sci.
, vol.7
, pp. 728-736
-
-
Song, W.1
Tang, Z.2
Zhang, D.3
Li, M.4
Gu, J.5
Chen, X.6
-
21
-
-
2642571660
-
Vascular-targeting therapies for treatment of malignant disease
-
Siemann DW, Chaplin DJ, Horsman MR. Vascular-targeting therapies for treatment of malignant disease. Cancer. 2004; 100: 2491-99.
-
(2004)
Cancer.
, vol.100
, pp. 2491-2499
-
-
Siemann, D.W.1
Chaplin, D.J.2
Horsman, M.R.3
-
22
-
-
77958507144
-
Temporal aspects of the action of ASA404 (vadimezan; DMXAA)
-
Baguley BC, Siemann DW. Temporal aspects of the action of ASA404 (vadimezan; DMXAA). Expert Opin Inv Drug. 2010; 19: 1413-25.
-
(2010)
Expert Opin Inv Drug.
, vol.19
, pp. 1413-1425
-
-
Baguley, B.C.1
Siemann, D.W.2
-
23
-
-
0035417875
-
Mechanisms associated with tumor vascular shut-down induced by combretastatin A-4 phosphate: Intravital microscopy and measurement of vascular permeability
-
Tozer GM, Prise VE, Wilson J, Cemazar M, Shan SQ, Dewhirst MW, et al. Mechanisms associated with tumor vascular shut-down induced by combretastatin A-4 phosphate: Intravital microscopy and measurement of vascular permeability. Cancer Res. 2001; 61: 6413-22.
-
(2001)
Cancer Res.
, vol.61
, pp. 6413-6422
-
-
Tozer, G.M.1
Prise, V.E.2
Wilson, J.3
Cemazar, M.4
Shan, S.Q.5
Dewhirst, M.W.6
-
24
-
-
19344378137
-
Vascular disrupting agents: A new class of drug in cancer therapy
-
Gaya AM, Rustin GJS. Vascular disrupting agents: A new class of drug in cancer therapy. Clin Oncol (R Coll Radiol). 2005; 17: 277-90.
-
(2005)
Clin Oncol (R Coll Radiol).
, vol.17
, pp. 277-290
-
-
Gaya, A.M.1
Rustin, G.J.S.2
-
25
-
-
0036891515
-
The development of combretastatin A4 phosphate as a vascular targeting agent
-
Chaplin DJ, Hill SA. The development of combretastatin A4 phosphate as a vascular targeting agent. Int J Radiat Oncol. 2002; 54: 1491-96.
-
(2002)
Int J Radiat Oncol.
, vol.54
, pp. 1491-1496
-
-
Chaplin, D.J.1
Hill, S.A.2
-
26
-
-
65549090459
-
A review and update of the current status of the vasculature-disabling agent combretastatin-A4 phosphate (CA4P)
-
Siemann DW, Chaplin DJ, Walicke PA. A review and update of the current status of the vasculature-disabling agent combretastatin-A4 phosphate (CA4P). Expert Opin Inv Drug. 2009; 18: 189-97.
-
(2009)
Expert Opin Inv Drug.
, vol.18
, pp. 189-197
-
-
Siemann, D.W.1
Chaplin, D.J.2
Walicke, P.A.3
-
27
-
-
84939267405
-
Coadministration of vascular disrupting agents and nanomedicines to eradicate tumors from peripheral and central regions
-
Song W, Tang Z, Zhang D, Yu H, Chen X. Coadministration of vascular disrupting agents and nanomedicines to eradicate tumors from peripheral and central regions. Small. 2015; 11: 3755-61.
-
(2015)
Small.
, vol.11
, pp. 3755-3761
-
-
Song, W.1
Tang, Z.2
Zhang, D.3
Yu, H.4
Chen, X.5
-
28
-
-
0035064594
-
Effects of combretastatin A4 phosphate on endothelial cell morphology in vitro and relationship to tumour vascular targeting activity in vivo
-
Galbraith SM, Chaplin DJ, Lee F, Stratford MRL, Locke RJ, Vojnovic B, et al. Effects of combretastatin A4 phosphate on endothelial cell morphology in vitro and relationship to tumour vascular targeting activity in vivo. Anticancer Res. 2001; 21: 93-102.
-
(2001)
Anticancer Res.
, vol.21
, pp. 93-102
-
-
Galbraith, S.M.1
Chaplin, D.J.2
Lee, F.3
Stratford, M.R.L.4
Locke, R.J.5
Vojnovic, B.6
-
29
-
-
0032758736
-
In vivo and in vitro evaluation of combretastatin A-4 and its sodium phosphate prodrug
-
Grosios K, Holwell SE, McGown AT, Pettit GR, Bibby MC. In vivo and in vitro evaluation of combretastatin A-4 and its sodium phosphate prodrug. Br J Cancer. 1999; 81: 1318-27.
-
(1999)
Br J Cancer.
, vol.81
, pp. 1318-1327
-
-
Grosios, K.1
Holwell, S.E.2
McGown, A.T.3
Pettit, G.R.4
Bibby, M.C.5
-
30
-
-
84880937489
-
Sequential systemic administrations of combretastatin A4 Phosphate and radioiodinated hypericin exert synergistic targeted theranostic effects with prolonged survival on SCID mice carrying bifocal tumor xenografts
-
Li J, Cona MM, Chen F, Feng Y, Zhou L, Zhang G, et al. Sequential systemic administrations of combretastatin A4 Phosphate and radioiodinated hypericin exert synergistic targeted theranostic effects with prolonged survival on SCID mice carrying bifocal tumor xenografts. Theranostics. 2013; 3: 127-37.
-
(2013)
Theranostics.
, vol.3
, pp. 127-137
-
-
Li, J.1
Cona, M.M.2
Chen, F.3
Feng, Y.4
Zhou, L.5
Zhang, G.6
-
31
-
-
23144456813
-
Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system
-
Sengupta S, Eavarone D, Capila I, Zhao GL, Watson N, Kiziltepe T, et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature. 2005; 436: 568-72.
-
(2005)
Nature.
, vol.436
, pp. 568-572
-
-
Sengupta, S.1
Eavarone, D.2
Capila, I.3
Zhao, G.L.4
Watson, N.5
Kiziltepe, T.6
-
32
-
-
79951953022
-
Materializing sequential killing of tumor vasculature and tumor cells via targeted polymeric micelle system
-
Wang Y, Yang T, Wang X, Dai W, Wang J, Zhang X, et al. Materializing sequential killing of tumor vasculature and tumor cells via targeted polymeric micelle system. J Control Release. 2011; 149: 299-306.
-
(2011)
J Control Release.
, vol.149
, pp. 299-306
-
-
Wang, Y.1
Yang, T.2
Wang, X.3
Dai, W.4
Wang, J.5
Zhang, X.6
-
33
-
-
34547585979
-
Biodegradable polymers as biomaterials
-
Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Poly Sci. 2007; 32: 762-798.
-
(2007)
Prog Poly Sci.
, vol.32
, pp. 762-798
-
-
Nair, L.S.1
Laurencin, C.T.2
-
34
-
-
84855317907
-
Biodegradable synthetic polymers: Preparation, functionalization and biomedical application
-
Tian H, Tang Z, Zhuang X, Chen X, Jing X. Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Prog Poly Sci. 2012; 37: 237-280.
-
(2012)
Prog Poly Sci.
, vol.37
, pp. 237-280
-
-
Tian, H.1
Tang, Z.2
Zhuang, X.3
Chen, X.4
Jing, X.5
-
35
-
-
84862826220
-
Stimuli-sensitive synthetic polypeptide-based materials for drug and gene delivery
-
He C, Zhuang X, Tang Z, Tian H, Chen X. Stimuli-sensitive synthetic polypeptide-based materials for drug and gene delivery. Adv Healthc Mater. 2012; 1: 48-78.
-
(2012)
Adv Healthc Mater.
, vol.1
, pp. 48-78
-
-
He, C.1
Zhuang, X.2
Tang, Z.3
Tian, H.4
Chen, X.5
-
36
-
-
0037072529
-
Poly(L-glutamic acid) -anticancer drug conjugates
-
Li C. Poly(L-glutamic acid) -anticancer drug conjugates. Adv Drug Deliver Rev. 2002; 54: 695-713.
-
(2002)
Adv Drug Deliver Rev.
, vol.54
, pp. 695-713
-
-
Li, C.1
-
37
-
-
29944433355
-
A Phase I study of CT-2103, a polymer-conjugated paclitaxel, and carboplatin in patients with advanced solid tumors
-
Nemunaitis J, Cunningham C, Senzer N, Gray M, Oldham F, Pippen J, et al. A. Phase I study of CT-2103, a polymer-conjugated paclitaxel, and carboplatin in patients with advanced solid tumors. Cancer Invest. 2005; 23: 671-76.
-
(2005)
Cancer Invest.
, vol.23
, pp. 671-676
-
-
Nemunaitis, J.1
Cunningham, C.2
Senzer, N.3
Gray, M.4
Oldham, F.5
Pippen, J.6
-
38
-
-
33750549679
-
Novel SN-38-incorporating polymeric micelles, NK012, eradicate vascular endothelial growth factor-secreting bulky tumors
-
Koizumi F, Kitagawa M, Negishi T, Onda T, Matsumoto S.-I, Hamaguchi T, et al. Novel SN-38-incorporating polymeric micelles, NK012, eradicate vascular endothelial growth factor-secreting bulky tumors. Cancer Res. 2006; 66: 10048-56.
-
(2006)
Cancer Res.
, vol.66
, pp. 10048-10056
-
-
Koizumi, F.1
Kitagawa, M.2
Negishi, T.3
Onda, T.4
Matsumoto, S.-I.5
Hamaguchi, T.6
-
39
-
-
19344369608
-
Synthesis of a novel PEG-block-poly(aspartic acid-stat-phenylalanine) copolymer shows potential for formation of a micellar drug carrier
-
Prompruk K, Govender T, Zhang S, Xiong CD, Stolnik S. Synthesis of a novel PEG-block-poly(aspartic acid-stat-phenylalanine) copolymer shows potential for formation of a micellar drug carrier. Int J Pharm. 2005; 297: 242-53.
-
(2005)
Int J Pharm.
, vol.297
, pp. 242-253
-
-
Prompruk, K.1
Govender, T.2
Zhang, S.3
Xiong, C.D.4
Stolnik, S.5
-
40
-
-
84869054417
-
Self-assembled cationic micelles based on PEG-PLL-PLLeu hybrid polypeptides as highly effective gene vectors
-
Deng J, Gao N, Wang Y, Yi H, Fang S, Ma Y, et al. Self-assembled cationic micelles based on PEG-PLL-PLLeu hybrid polypeptides as highly effective gene vectors. Biomacromolecules. 2012; 13: 3795-804.
-
(2012)
Biomacromolecules.
, vol.13
, pp. 3795-3804
-
-
Deng, J.1
Gao, N.2
Wang, Y.3
Yi, H.4
Fang, S.5
Ma, Y.6
-
41
-
-
84887185910
-
Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efficient drug delivery system for cancer therapy
-
Lv S, Li M, Tang Z, Song W, Sun H, Liu H, et al. Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efficient drug delivery system for cancer therapy. Acta Biomater. 2013; 9: 9330-42.
-
(2013)
Acta Biomater.
, vol.9
, pp. 9330-9342
-
-
Lv, S.1
Li, M.2
Tang, Z.3
Song, W.4
Sun, H.5
Liu, H.6
-
42
-
-
33846490802
-
A novel polymer-paclitaxel conjugate based on amphiphilic triblock copolymer
-
Xie Z, Guan H, Chen X, Lu C, Chen L, Hu X, et al. A novel polymer-paclitaxel conjugate based on amphiphilic triblock copolymer. J Control Release. 2007; 117: 210-16.
-
(2007)
J Control Release.
, vol.117
, pp. 210-216
-
-
Xie, Z.1
Guan, H.2
Chen, X.3
Lu, C.4
Chen, L.5
Hu, X.6
-
43
-
-
0037133086
-
Anticancer drug delivery systems: multi-loaded N-4-acyl poly(ethylene glycol) prodrugs of ara-C
-
Choe YH, Conover CD, Wu DC, Royzen M, Gervacio Y, Borowski V, et al. Anticancer drug delivery systems: multi-loaded N-4-acyl poly(ethylene glycol) prodrugs of ara-C. II. Efficacy in ascites and solid tumors. J Control Release. 2002; 79: 55-70.
-
(2002)
II. Efficacy in ascites and solid tumors. J Control Release.
, vol.79
, pp. 55-70
-
-
Choe, Y.H.1
Conover, C.D.2
Wu, D.C.3
Royzen, M.4
Gervacio, Y.5
Borowski, V.6
-
44
-
-
83555166219
-
Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size
-
Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol. 2011; 6: 815-23.
-
(2011)
Nat Nanotechnol.
, vol.6
, pp. 815-823
-
-
Cabral, H.1
Matsumoto, Y.2
Mizuno, K.3
Chen, Q.4
Murakami, M.5
Kimura, M.6
-
45
-
-
84908281926
-
Investigating the optimal size of anticancer nanomedicine
-
Tang L, Yang XJ, Yin Q, Cai KM, Wang H, Chaudhury I, et al. Investigating the optimal size of anticancer nanomedicine. P Natl Acad Sci USA. 2014; 111: 15344-49.
-
(2014)
P Natl Acad Sci USA.
, vol.111
, pp. 15344-15349
-
-
Tang, L.1
Yang, X.J.2
Yin, Q.3
Cai, K.M.4
Wang, H.5
Chaudhury, I.6
-
46
-
-
84938100046
-
The role of micelle size in tumor accumulation, penetration, and treatment
-
Wang J, Mao W, Lock LL, Tang J, Sui M, Sun W, et al. The role of micelle size in tumor accumulation, penetration, and treatment. ACS Nano. 2015; 9: 7195-206.
-
(2015)
ACS Nano.
, vol.9
, pp. 7195-7206
-
-
Wang, J.1
Mao, W.2
Lock, L.L.3
Tang, J.4
Sui, M.5
Sun, W.6
-
47
-
-
84914129134
-
Integration of nanoassembly functions for an effective delivery cascade for cancer drugs
-
Sun Q, Sun X, Ma X, Zhou Z, Jin E, Zhang B, et al. Integration of nanoassembly functions for an effective delivery cascade for cancer drugs. Adv Mater. 2014; 26: 7615-21.
-
(2014)
Adv Mater.
, vol.26
, pp. 7615-7621
-
-
Sun, Q.1
Sun, X.2
Ma, X.3
Zhou, Z.4
Jin, E.5
Zhang, B.6
-
48
-
-
77952390124
-
A tumor-acidity-activated charge-conversional nanogel as an intelligent vehicle for promoted tumoral-cell uptake and drug delivery
-
Du JZ, Sun TM, Song WJ, Wu J, Wang J. A tumor-acidity-activated charge-conversional nanogel as an intelligent vehicle for promoted tumoral-cell uptake and drug delivery. Angew Chem Int Ed Engl. 2010; 49: 3621-26.
-
(2010)
Angew Chem Int Ed Engl.
, vol.49
, pp. 3621-3626
-
-
Du, J.Z.1
Sun, T.M.2
Song, W.J.3
Wu, J.4
Wang, J.5
-
49
-
-
72849150441
-
Charge-reversal drug conjugate for targeted cancer cell nuclear drug delivery
-
Zhou Z, Shen Y, Tang J, Fan M, Van Kirk EA, Murdoch WJ, et al. Charge-reversal drug conjugate for targeted cancer cell nuclear drug delivery. Adv Funct Mater. 2009; 19: 3580-89.
-
(2009)
Adv Funct Mater.
, vol.19
, pp. 3580-3589
-
-
Zhou, Z.1
Shen, Y.2
Tang, J.3
Fan, M.4
Van Kirk, E.A.5
Murdoch, W.J.6
-
50
-
-
0031964923
-
Modulation of enhanced vascular permeability in tumors by a bradykinin antagonist, a cyclooxygenase inhibitor, and a nitric oxide scavenger
-
Wu J, Akaike T, Maeda H. Modulation of enhanced vascular permeability in tumors by a bradykinin antagonist, a cyclooxygenase inhibitor, and a nitric oxide scavenger. Cancer Res. 1998; 58: 159-65.
-
(1998)
Cancer Res.
, vol.58
, pp. 159-165
-
-
Wu, J.1
Akaike, T.2
Maeda, H.3
-
51
-
-
0033588842
-
New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF
-
Holash J, Wiegand SJ, Yancopoulos GD. New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene. 1999; 18: 5356-62.
-
(1999)
Oncogene.
, vol.18
, pp. 5356-5362
-
-
Holash, J.1
Wiegand, S.J.2
Yancopoulos, G.D.3
-
52
-
-
14044279276
-
Comparison of tumor blood perfusion assessed by dynamic contrast-enhanced MRI with tumor blood supply assessed by invasive imaging
-
GraffBA, Benjaminsen IC, Brurberg KG, Ruud EBM, Rofstad EK. Comparison of tumor blood perfusion assessed by dynamic contrast-enhanced MRI with tumor blood supply assessed by invasive imaging. J Magn Reson Imaging. 2005; 21: 272-81.
-
(2005)
J Magn Reson Imaging.
, vol.21
, pp. 272-281
-
-
Graff, B.A.1
Benjaminsen, I.C.2
Brurberg, K.G.3
Ruud, E.B.M.4
Rofstad, E.K.5
|