메뉴 건너뛰기




Volumn 101, Issue , 2016, Pages 572-591

Big Data for supply chain management in the service and manufacturing sectors: Challenges, opportunities, and future perspectives

Author keywords

Big Data; Manufacturing sector; Service applications; Supply Chain Management (SCM)

Indexed keywords

DATA ACQUISITION; DATA HANDLING; DATA VISUALIZATION; DECISION MAKING; DIGITAL STORAGE; MANUFACTURE; SUPPLY CHAIN MANAGEMENT;

EID: 84978977044     PISSN: 03608352     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cie.2016.07.013     Document Type: Article
Times cited : (461)

References (142)
  • 1
    • 84999910651 scopus 로고    scopus 로고
    • Big data storage: Defining big data and the type of storage it needs
    • TechTarget PODCAST
    • Adshead, A., Big data storage: Defining big data and the type of storage it needs. 2013, TechTarget PODCAST .
    • (2013)
    • Adshead, A.1
  • 3
    • 84926252951 scopus 로고    scopus 로고
    • An analysis of the direct and mediated effects of employee commitment and supply chain integration on organisational performance
    • Alfalla-Luque, R., Marin-Garcia, J.A., Medina-Lopez, C., An analysis of the direct and mediated effects of employee commitment and supply chain integration on organisational performance. International Journal of Production Economics 162 (2014), 242–257.
    • (2014) International Journal of Production Economics , vol.162 , pp. 242-257
    • Alfalla-Luque, R.1    Marin-Garcia, J.A.2    Medina-Lopez, C.3
  • 4
    • 84876025881 scopus 로고    scopus 로고
    • Making sense of big text: a visual-first approach for analysing text data using Leximancer and Discursis
    • Angus, D., Rintel, S., Wiles, J., Making sense of big text: a visual-first approach for analysing text data using Leximancer and Discursis. International Journal of Social Research Methodology 16:3 (2013), 261–267.
    • (2013) International Journal of Social Research Methodology , vol.16 , Issue.3 , pp. 261-267
    • Angus, D.1    Rintel, S.2    Wiles, J.3
  • 6
    • 84999981517 scopus 로고    scopus 로고
    • AustralianGovernment (2013). The Australian public service big data strategy (pp. 1–24).
    • AustralianGovernment (2013). The Australian public service big data strategy (pp. 1–24).
  • 7
    • 84961990876 scopus 로고    scopus 로고
    • A MapReduce solution for associative classification of big data
    • Bechini, A., Marcelloni, F., Segatori, A., A MapReduce solution for associative classification of big data. Information Sciences 332 (2016), 33–55.
    • (2016) Information Sciences , vol.332 , pp. 33-55
    • Bechini, A.1    Marcelloni, F.2    Segatori, A.3
  • 8
    • 84999961095 scopus 로고    scopus 로고
    • IDF: Intel announces A-Wear to push big data apps via Internet of Things
    • The INQUIRER
    • Bell, L., IDF: Intel announces A-Wear to push big data apps via Internet of Things. 2014, The INQUIRER .
    • (2014)
    • Bell, L.1
  • 10
    • 84999907186 scopus 로고    scopus 로고
    • Big data: What's your plan?
    • Insights & Publications
    • Biesdorf, S., Court, D., Willmott, P., Big data: What's your plan?. 2013, Insights & Publications .
    • (2013)
    • Biesdorf, S.1    Court, D.2    Willmott, P.3
  • 11
    • 84999902893 scopus 로고    scopus 로고
    • Rolls Royce shifts in higher gear with big data
    • BigData-Startup The Online Big Data Knowledge Platform
    • BigData-Startups, Rolls Royce shifts in higher gear with big data. 2013, BigData-Startup The Online Big Data Knowledge Platform .
    • (2013)
    • BigData-Startups1
  • 12
    • 84999956735 scopus 로고    scopus 로고
    • UPS spends 1 billion a year on big data: For what?
    • Bloomberg TV
    • Bloomberg, UPS spends 1 billion a year on big data: For what?. 2013, Bloomberg TV .
    • (2013)
    • Bloomberg1
  • 13
    • 84999933576 scopus 로고    scopus 로고
    • How big data has delivered for FedEx for 25 years
    • SAP Business Innovation
    • Capron, E., How big data has delivered for FedEx for 25 years. 2013, SAP Business Innovation .
    • (2013)
    • Capron, E.1
  • 15
    • 84929513110 scopus 로고    scopus 로고
    • Insights from hashtag# supplychain and Twitter analytics: Considering Twitter and Twitter data for supply chain practice and research
    • Chae, B.K., Insights from hashtag# supplychain and Twitter analytics: Considering Twitter and Twitter data for supply chain practice and research. International Journal of Production Economics 165 (2015), 247–259.
    • (2015) International Journal of Production Economics , vol.165 , pp. 247-259
    • Chae, B.K.1
  • 16
    • 84916597404 scopus 로고    scopus 로고
    • Business intelligence and analytics: from big data to big impact
    • Chen, H., Chiang, R.H., Storey, V.C., Business intelligence and analytics: from big data to big impact. MIS Quarterly 36:4 (2012), 1166–1189.
    • (2012) MIS Quarterly , vol.36 , Issue.4 , pp. 1166-1189
    • Chen, H.1    Chiang, R.H.2    Storey, V.C.3
  • 19
    • 84880820335 scopus 로고    scopus 로고
    • Customizing computational methods for visual analytics with big data
    • Choo, J., Park, H., Customizing computational methods for visual analytics with big data. Computer Graphics and Applications, IEEE 33:4 (2013), 22–28.
    • (2013) Computer Graphics and Applications, IEEE , vol.33 , Issue.4 , pp. 22-28
    • Choo, J.1    Park, H.2
  • 21
    • 84999958679 scopus 로고    scopus 로고
    • La Poste: pour ne plus perdre de courrier
    • Crochet-Damais, A., La Poste: pour ne plus perdre de courrier. Journal Du Net, 2013 .
    • (2013) Journal Du Net
    • Crochet-Damais, A.1
  • 22
    • 84999965007 scopus 로고    scopus 로고
    • Big data in the supply chain
    • CSCMP, Big data in the supply chain. , 2014.
    • (2014)
    • CSCMP1
  • 23
    • 84875989261 scopus 로고    scopus 로고
    • “Big Data” versus “Big Brother”: on the appropriate use of large-scale data collections in pediatrics
    • Currie, J., “Big Data” versus “Big Brother”: on the appropriate use of large-scale data collections in pediatrics. Pediatrics 131:Supplement 2 (2013), S127–S132.
    • (2013) Pediatrics , vol.131 , pp. S127-S132
    • Currie, J.1
  • 24
    • 84877583613 scopus 로고    scopus 로고
    • On the use of installed base information for spare parts logistics: a review of ideas and industry practice
    • Dekker, R., Pinçe, Ç., Zuidwijk, R., Jalil, M.N., On the use of installed base information for spare parts logistics: a review of ideas and industry practice. International Journal of Production Economics 143:2 (2013), 536–545.
    • (2013) International Journal of Production Economics , vol.143 , Issue.2 , pp. 536-545
    • Dekker, R.1    Pinçe, Ç.2    Zuidwijk, R.3    Jalil, M.N.4
  • 25
    • 84875024343 scopus 로고    scopus 로고
    • Crossing the qualitative-quantitative divide II Inventive approaches to big data, mobile methods, and rhythmanalysis
    • DeLyser, D., Sui, D., Crossing the qualitative-quantitative divide II Inventive approaches to big data, mobile methods, and rhythmanalysis. Progress in Human Geography 37:2 (2013), 293–305.
    • (2013) Progress in Human Geography , vol.37 , Issue.2 , pp. 293-305
    • DeLyser, D.1    Sui, D.2
  • 26
    • 84905969552 scopus 로고    scopus 로고
    • Applying real options to IT investment evaluation: The case of radio frequency identification (RFID) technology in the supply chain
    • Dimakopoulou, A.G., Pramatari, K.C., Tsekrekos, A.E., Applying real options to IT investment evaluation: The case of radio frequency identification (RFID) technology in the supply chain. International Journal of Production Economics 156 (2014), 191–207.
    • (2014) International Journal of Production Economics , vol.156 , pp. 191-207
    • Dimakopoulou, A.G.1    Pramatari, K.C.2    Tsekrekos, A.E.3
  • 28
    • 84999913802 scopus 로고    scopus 로고
    • Big data in Asia Pacific
    • Informationincognita
    • Drummonds, S., Big data in Asia Pacific. 2013, Informationincognita /.
    • (2013)
    • Drummonds, S.1
  • 29
    • 84929507264 scopus 로고    scopus 로고
    • Managing a big data project: The case of Ramco cements limited
    • Dutta, D., Bose, I., Managing a big data project: The case of Ramco cements limited. International Journal of Production Economics 165 (2015), 293–306.
    • (2015) International Journal of Production Economics , vol.165 , pp. 293-306
    • Dutta, D.1    Bose, I.2
  • 30
    • 84999962262 scopus 로고    scopus 로고
    • Altior's AltraSTAR – Hadoop storage accelerator and optimizer now certified on CDH4 (Cloudera's distribution including apache Hadoop version 4)
    • PRNewswire
    • Eatontown, N.J., Altior's AltraSTAR – Hadoop storage accelerator and optimizer now certified on CDH4 (Cloudera's distribution including apache Hadoop version 4). 2012, PRNewswire .
    • (2012)
    • Eatontown, N.J.1
  • 31
    • 84999896331 scopus 로고    scopus 로고
    • Communication on data-driven economy
    • EC, Communication on data-driven economy. , 2013.
    • (2013)
    • EC1
  • 32
    • 84871303690 scopus 로고    scopus 로고
    • The two waves of service-sector growth
    • Eichengreen, B., Gupta, P., The two waves of service-sector growth. Oxford Economic Papers 65:1 (2013), 96–123.
    • (2013) Oxford Economic Papers , vol.65 , Issue.1 , pp. 96-123
    • Eichengreen, B.1    Gupta, P.2
  • 34
    • 84900821282 scopus 로고    scopus 로고
    • Considering supply chain management's professional identity: The beautiful discipline (Or, “We Don't Cure Cancer, But We Do Make a Big Difference”)
    • Fawcett, S.E., Waller, M.A., Considering supply chain management's professional identity: The beautiful discipline (Or, “We Don't Cure Cancer, But We Do Make a Big Difference”). Journal of Business Logistics 34:3 (2013), 183–188.
    • (2013) Journal of Business Logistics , vol.34 , Issue.3 , pp. 183-188
    • Fawcett, S.E.1    Waller, M.A.2
  • 35
    • 84999893346 scopus 로고    scopus 로고
    • (2012). Big data in Healthcare Hype and Hope. Dr. Bonnie 360-Business Development for Digital Health, 1–56.
    • Feldman, B., Martin, E. M. & Skotnes, T. (2012). Big data in Healthcare Hype and Hope. Dr. Bonnie 360-Business Development for Digital Health, 1–56.
    • Feldman, B.1    Martin, E.M.2    Skotnes, T.3
  • 37
    • 0001037391 scopus 로고
    • Lasting improvements in manufacturing performance: In search of a new theory
    • Ferdows, K., De Meyer, A., Lasting improvements in manufacturing performance: In search of a new theory. Journal of Operations Management 9:2 (1990), 168–184.
    • (1990) Journal of Operations Management , vol.9 , Issue.2 , pp. 168-184
    • Ferdows, K.1    De Meyer, A.2
  • 38
    • 84999893033 scopus 로고    scopus 로고
    • Japan post prepares for IPO
    • Fukase, A., Japan post prepares for IPO. Wall Street J., 2013 .
    • (2013) Wall Street J.
    • Fukase, A.1
  • 39
    • 84999984908 scopus 로고    scopus 로고
    • How the financial services sector uses big data analytics to predict client behaviour
    • IT for Financial Services
    • Garel-Jones, P., How the financial services sector uses big data analytics to predict client behaviour. 2011, IT for Financial Services .
    • (2011)
    • Garel-Jones, P.1
  • 40
    • 84999903087 scopus 로고    scopus 로고
    • The rise of industrial big data
    • GE Intelligent Platforms
    • GE, The rise of industrial big data. 2014, GE Intelligent Platforms .
    • (2014)
    • GE1
  • 41
    • 84985935459 scopus 로고    scopus 로고
    • Obama administration unveils 200M big data R&D initiative
    • The Computing Community Consortium Blog
    • Gianchandani, E., Obama administration unveils 200M big data R&D initiative. 2012, The Computing Community Consortium Blog .
    • (2012)
    • Gianchandani, E.1
  • 42
    • 84916234602 scopus 로고    scopus 로고
    • A very short history of big data
    • June 6, 2012
    • GilPress, A very short history of big data. , 2012 June 6, 2012.
    • (2012)
    • GilPress1
  • 43
    • 84926369856 scopus 로고    scopus 로고
    • SmartCon: Smart Context Switching for Fast Storage IO Devices
    • Gim, J., Hwang, T., Won, Y., Kant, K., SmartCon: Smart Context Switching for Fast Storage IO Devices. ACM Transactions on Storage (TOS) 11:2 (2015), 5:1–5:25.
    • (2015) ACM Transactions on Storage (TOS) , vol.11 , Issue.2 , pp. 51-5:25
    • Gim, J.1    Hwang, T.2    Won, Y.3    Kant, K.4
  • 44
    • 84999986014 scopus 로고    scopus 로고
    • Global big data market in the financial services sector 2012–2016
    • Globe-Newswire, Global big data market in the financial services sector 2012–2016. , 2013.
    • (2013)
    • Globe-Newswire1
  • 45
    • 73549106347 scopus 로고    scopus 로고
    • Strategic foresight in public policy: Reviewing the experiences of the UK, Singapore, and the Netherlands
    • Habegger, B., Strategic foresight in public policy: Reviewing the experiences of the UK, Singapore, and the Netherlands. Futures 42:1 (2010), 49–58.
    • (2010) Futures , vol.42 , Issue.1 , pp. 49-58
    • Habegger, B.1
  • 46
    • 84868380397 scopus 로고    scopus 로고
    • Deal watch: ‘Big data’ deal for diabetes clinical trial modelling
    • Harrison, C., Deal watch: ‘Big data’ deal for diabetes clinical trial modelling. Nature Reviews Drug Discovery, 11(11), 2012, 822.
    • (2012) Nature Reviews Drug Discovery , vol.11 , Issue.11 , pp. 822
    • Harrison, C.1
  • 47
    • 84947610093 scopus 로고    scopus 로고
    • 50 Top open source tools for big data
    • Datamation
    • Harvey, C., 50 Top open source tools for big data. 2012, Datamation .
    • (2012)
    • Harvey, C.1
  • 49
    • 84901705764 scopus 로고    scopus 로고
    • Data quality for data science, predictive analytics, and big data in supply chain management: An introduction to the problem and suggestions for research and applications
    • Hazen, B.T., Boone, C.A., Ezell, J.D., Jones-Farmer, L.A., Data quality for data science, predictive analytics, and big data in supply chain management: An introduction to the problem and suggestions for research and applications. International Journal of Production Economics 154 (2014), 72–80.
    • (2014) International Journal of Production Economics , vol.154 , pp. 72-80
    • Hazen, B.T.1    Boone, C.A.2    Ezell, J.D.3    Jones-Farmer, L.A.4
  • 50
    • 84999958321 scopus 로고    scopus 로고
    • Facebook has the world's largest hadoop cluster!
    • Facebook Post
    • HDFS, Facebook has the world's largest hadoop cluster!. 2010, Facebook Post .
    • (2010)
    • HDFS1
  • 51
    • 84999979717 scopus 로고    scopus 로고
    • Merck optimizes manufacturing with big data analytics
    • InformationWeek Connecting the Business Technology Community
    • Henschen, D., Merck optimizes manufacturing with big data analytics. 2014, InformationWeek Connecting the Business Technology Community .
    • (2014)
    • Henschen, D.1
  • 52
    • 84999976128 scopus 로고    scopus 로고
    • IBM smarter storage: What a smart idea
    • Hill, D., IBM smarter storage: What a smart idea. Mesabi Group Commentary, 2012, 1–6.
    • (2012) Mesabi Group Commentary , pp. 1-6
    • Hill, D.1
  • 53
    • 84898602221 scopus 로고    scopus 로고
    • What is big data? - Bringing big data to the enterprise
    • IBM, What is big data? - Bringing big data to the enterprise. , 2013.
    • (2013)
    • IBM1
  • 54
    • 84999913293 scopus 로고    scopus 로고
    • China Ocean Shipping (Group) Company surges into new markets with IBM and SAP
    • IBM-SAP, China Ocean Shipping (Group) Company surges into new markets with IBM and SAP. , 2013.
    • (2013)
    • IBM-SAP1
  • 55
    • 84999929342 scopus 로고    scopus 로고
    • IntelCenter (2013). Big data visualization: turning big data into big insights. White Paper: 1–14.
    • IntelCenter (2013). Big data visualization: turning big data into big insights. White Paper: 1–14.
  • 58
    • 84999932214 scopus 로고    scopus 로고
    • Asia/Pacific big data technology and services 2013–2017 analysis and forecast: the journey to tech + transformation continues. Next Stop Is Innovation
    • Jimenez, D.-Z., Stires, C., Li, Q., Zhang, C., Sehgal, V., Arora, R., Asia/Pacific big data technology and services 2013–2017 analysis and forecast: the journey to tech + transformation continues. Next Stop Is Innovation. Market Analysis, 2013, 1–50.
    • (2013) Market Analysis , pp. 1-50
    • Jimenez, D.-Z.1    Stires, C.2    Li, Q.3    Zhang, C.4    Sehgal, V.5    Arora, R.6
  • 59
    • 84941077867 scopus 로고    scopus 로고
    • A domain knowledge based method on active and focused information service for decision support within big data environment
    • Jin, X., Zong, S., Li, Y., Wu, S., Yin, W., Ge, W., A domain knowledge based method on active and focused information service for decision support within big data environment. Procedia Computer Science 60 (2015), 93–102.
    • (2015) Procedia Computer Science , vol.60 , pp. 93-102
    • Jin, X.1    Zong, S.2    Li, Y.3    Wu, S.4    Yin, W.5    Ge, W.6
  • 60
    • 84999925231 scopus 로고    scopus 로고
    • (2013). Using mapreduce to speed up storm identification from big raw rainfall data. In The fourth international conference on cloud computing, GRIDs, and virtualization (pp. 49–55).
    • Jitkajornwanich, K., Gupta, U., Elmasri, R., Fegaras, L., & McEnery, J. (2013). Using mapreduce to speed up storm identification from big raw rainfall data. In The fourth international conference on cloud computing, GRIDs, and virtualization (pp. 49–55).
    • Jitkajornwanich, K.1    Gupta, U.2    Elmasri, R.3    Fegaras, L.4    McEnery, J.5
  • 63
    • 84980338925 scopus 로고    scopus 로고
    • Big data and analytics in healthcare: Introduction to the special section
    • Kankanhalli, A., Hahn, J., Tan, S., Gao, G., Big data and analytics in healthcare: Introduction to the special section. Information Systems Frontiers 18:2 (2016), 233–235.
    • (2016) Information Systems Frontiers , vol.18 , Issue.2 , pp. 233-235
    • Kankanhalli, A.1    Hahn, J.2    Tan, S.3    Gao, G.4
  • 65
    • 84923000821 scopus 로고    scopus 로고
    • Trends in manufacturing operations: Leveraging big data across the value chain
    • PROFIT ORACLE Technology Powered. Business Driven
    • Khatri, H., Trends in manufacturing operations: Leveraging big data across the value chain. 2013, PROFIT ORACLE Technology Powered. Business Driven .
    • (2013)
    • Khatri, H.1
  • 66
    • 84897562213 scopus 로고    scopus 로고
    • Big-data applications in the government sector
    • Kim, G.-H., Trimi, S., Chung, J.-H., Big-data applications in the government sector. Communications of the ACM 57:3 (2014), 78–85.
    • (2014) Communications of the ACM , vol.57 , Issue.3 , pp. 78-85
    • Kim, G.-H.1    Trimi, S.2    Chung, J.-H.3
  • 67
    • 84999887310 scopus 로고    scopus 로고
    • Hadoop founder says future of big data looks like, well, hadoop
    • VB Insight
    • Koetsier, J., Hadoop founder says future of big data looks like, well, hadoop. 2014, VB Insight .
    • (2014)
    • Koetsier, J.1
  • 68
    • 84999894915 scopus 로고    scopus 로고
    • Google LAUNCHES BigQuery streaming for real-time, big-data analytics
    • Techcrunch
    • Lardinois, F., Google LAUNCHES BigQuery streaming for real-time, big-data analytics. 2014, Techcrunch .
    • (2014)
    • Lardinois, F.1
  • 70
    • 84929455948 scopus 로고    scopus 로고
    • Ontology-based reasoning for the intelligent handling of customer complaints
    • Lee, C.-H., Wang, Y.-H., Trappey, A.J., Ontology-based reasoning for the intelligent handling of customer complaints. Computers & Industrial Engineering 84 (2015), 144–155.
    • (2015) Computers & Industrial Engineering , vol.84 , pp. 144-155
    • Lee, C.-H.1    Wang, Y.-H.2    Trappey, A.J.3
  • 72
    • 84991756964 scopus 로고    scopus 로고
    • Mapreduce is good enough? If all you have is a hammer, throw away everything that's not a nail!
    • Lin, J., Mapreduce is good enough? If all you have is a hammer, throw away everything that's not a nail!. Big Data 1:1 (2013), 28–37.
    • (2013) Big Data , vol.1 , Issue.1 , pp. 28-37
    • Lin, J.1
  • 73
    • 84999936608 scopus 로고    scopus 로고
    • Big potential in big data
    • Business Services
    • LMG, Big potential in big data. 2014, Business Services .
    • (2014)
    • LMG1
  • 74
    • 84999986392 scopus 로고    scopus 로고
    • Big data and analytics trends for 2014
    • ZDNet
    • Lohman, T., Big data and analytics trends for 2014. 2013, ZDNet .
    • (2013)
    • Lohman, T.1
  • 76
    • 84999963459 scopus 로고    scopus 로고
    • (2013). The commodification of patient opinion: The digital patient experience economy in the age of big data. Sydney Health & Society Group Working Paper, (3), 1–18.
    • Lupton, D. (2013). The commodification of patient opinion: The digital patient experience economy in the age of big data. Sydney Health & Society Group Working Paper, (3), 1–18.
    • Lupton, D.1
  • 77
    • 84999901469 scopus 로고    scopus 로고
    • 39 data visualization tools for big data
    • Cloud Computing
    • Lurie, A., 39 data visualization tools for big data. 2014, Cloud Computing .
    • (2014)
    • Lurie, A.1
  • 79
    • 84999960565 scopus 로고    scopus 로고
    • 5 ways the industrial internet will change manufacturing
    • Forbes
    • Markopoulos, J., 5 ways the industrial internet will change manufacturing. 2012, Forbes .
    • (2012)
    • Markopoulos, J.1
  • 80
    • 84946612173 scopus 로고    scopus 로고
    • The awesome ways big data is used today to change our world
    • Marr, B., The awesome ways big data is used today to change our world. , 2013.
    • (2013)
    • Marr, B.1
  • 81
    • 84933568067 scopus 로고    scopus 로고
    • Big data in logistics a DHL perspective on how to move beyond the hype
    • Martin, J., Moritz, G., Frank, W., Big data in logistics a DHL perspective on how to move beyond the hype. DHL Customer Solutions & Innovation, 2013, 1–30.
    • (2013) DHL Customer Solutions & Innovation , pp. 1-30
    • Martin, J.1    Moritz, G.2    Frank, W.3
  • 82
    • 84999918610 scopus 로고    scopus 로고
    • Inspiration day at the University of Waterloo Stratford, Campus
    • Mason, H., Inspiration day at the University of Waterloo Stratford, Campus. , 2014.
    • (2014)
    • Mason, H.1
  • 83
    • 84999942032 scopus 로고    scopus 로고
    • (2012). Visualizing communication on social media: Making big data accessible. arXiv preprint.
    • McKelvey, K., Rudnick, A., Conover, M. D., & Menczer, F. (2012). Visualizing communication on social media: Making big data accessible. arXiv preprint arXiv:1202.1367.
    • McKelvey, K.1    Rudnick, A.2    Conover, M.D.3    Menczer, F.4
  • 84
    • 84999948506 scopus 로고    scopus 로고
    • USPS tackles scale and speed in big data challenge
    • MeriTalk The Government IT Network
    • MeriTalk, USPS tackles scale and speed in big data challenge. 2014, MeriTalk The Government IT Network .
    • (2014)
    • MeriTalk1
  • 86
    • 84999935005 scopus 로고    scopus 로고
    • Mind-Commerce (2014). Big data in manufacturing: market analysis, case studies, and forecasts 2014–2019. Market Research Reports, 1–52.
    • Mind-Commerce (2014). Big data in manufacturing: market analysis, case studies, and forecasts 2014–2019. Market Research Reports, 1–52.
  • 87
    • 84940983346 scopus 로고    scopus 로고
    • Expression of negative emotional responses to the 2011 Great East Japan Earthquake: Analysis of big data from social media
    • Miura, A., Komori, M., Matsumura, N., Maeda, K., Expression of negative emotional responses to the 2011 Great East Japan Earthquake: Analysis of big data from social media. Shinrigaku kenkyu: The Japanese Journal of Psychology 86:2 (2015), 102–111.
    • (2015) Shinrigaku kenkyu: The Japanese Journal of Psychology , vol.86 , Issue.2 , pp. 102-111
    • Miura, A.1    Komori, M.2    Matsumura, N.3    Maeda, K.4
  • 88
    • 84999893681 scopus 로고    scopus 로고
    • New Imperial and KPMG institute will harness the power of corporate data
    • Myers, M., New Imperial and KPMG institute will harness the power of corporate data. , 2014.
    • (2014)
    • Myers, M.1
  • 89
    • 84999968502 scopus 로고    scopus 로고
    • NEC (2012). Case Study Nippon Express Co., Ltd. Empowered by Innovation NEC <>, pp. 1–3.
    • NEC (2012). Case Study Nippon Express Co., Ltd. Empowered by Innovation NEC < http://www.nec.com/>, pp. 1–3.
  • 90
    • 84954318733 scopus 로고    scopus 로고
    • About big data and its challenges and benefits in manufacturing
    • Nedelcu, B., About big data and its challenges and benefits in manufacturing. Database Systems Journal BOARD IV:3 (2013), 10–19.
    • (2013) Database Systems Journal BOARD , vol.4 , Issue.3 , pp. 10-19
    • Nedelcu, B.1
  • 91
    • 84999923478 scopus 로고    scopus 로고
    • NewsOn6.com (2016). <>.
    • NewsOn6.com (2016). < http://www.newson6.com/story/31957754/big-data-market-report-analysis-trends-size-share-opportunity-assessment-forecast-to-2022>.
  • 93
    • 84999922339 scopus 로고    scopus 로고
    • Interactive clinical data review for safety assessment and trial operations management
    • O'Connell, M., Interactive clinical data review for safety assessment and trial operations management. Phuse, 2010, 1–13.
    • (2010) Phuse , pp. 1-13
    • O'Connell, M.1
  • 95
    • 84999920451 scopus 로고    scopus 로고
    • Object storage systems: The underpinning of cloud and big data initiatives
    • O'Connell, M., Object storage systems: The underpinning of cloud and big data initiatives. SNIA Education, 2013, 1–35.
    • (2013) SNIA Education , pp. 1-35
    • O'Connell, M.1
  • 97
    • 84999940003 scopus 로고    scopus 로고
    • Toyota to roll out big data traffic service in Japan
    • ZDNet
    • Phneah, E., Toyota to roll out big data traffic service in Japan. 2013, ZDNet .
    • (2013)
    • Phneah, E.1
  • 98
    • 84999893461 scopus 로고    scopus 로고
    • President's Council on National ICT Strategies (2011). Establishing a smart government by using big data. Washington, DC.
    • President's Council on National ICT Strategies (2011). Establishing a smart government by using big data. Washington, DC.
  • 101
    • 84960317834 scopus 로고    scopus 로고
    • C. (2014). Storage infrastructure for big data and cloud. Handbook of research on cloud infrastructures for big data analytics, p. 110.
    • Raman, A. C. (2014). Storage infrastructure for big data and cloud. Handbook of research on cloud infrastructures for big data analytics, p. 110.
    • Raman, A.1
  • 102
    • 84948171944 scopus 로고    scopus 로고
    • Semantic Web for manufacturing, trends and open issues: Toward a state of the art
    • Ramos, L., Semantic Web for manufacturing, trends and open issues: Toward a state of the art. Computers & Industrial Engineering 90 (2015), 444–460.
    • (2015) Computers & Industrial Engineering , vol.90 , pp. 444-460
    • Ramos, L.1
  • 103
    • 84999982726 scopus 로고    scopus 로고
    • USPS leverages big data to fight fraud
    • Big Data, HPC
    • Rath, J., USPS leverages big data to fight fraud. 2013, Big Data, HPC .
    • (2013)
    • Rath, J.1
  • 104
    • 2442572516 scopus 로고    scopus 로고
    • Design and control of workflow processes: Business process management for the service industry
    • Springer-Verlag
    • Reijers, H.A., Design and control of workflow processes: Business process management for the service industry. 2003, Springer-Verlag.
    • (2003)
    • Reijers, H.A.1
  • 105
    • 84958109123 scopus 로고    scopus 로고
    • Parallel coordinate descent methods for big data optimization
    • Richtárik, P., Takáč, M., Parallel coordinate descent methods for big data optimization. Mathematical Programming 156:1 (2015), 1–52.
    • (2015) Mathematical Programming , vol.156 , Issue.1 , pp. 1-52
    • Richtárik, P.1    Takáč, M.2
  • 106
    • 84999890481 scopus 로고    scopus 로고
    • (2012). Big data analytics. Essential guide <>.
    • Rouse, M. (2012). Big data analytics. Essential guide < http://searchbusinessanalytics.techtarget.com/definition/big-data-analytics>.
    • Rouse, M.1
  • 107
    • 84968649641 scopus 로고    scopus 로고
    • Under the hood: Hadoop distributed filesystem reliability with namenode and avatarnode
    • Facebook Post
    • Ryan, A., Under the hood: Hadoop distributed filesystem reliability with namenode and avatarnode. 2012, Facebook Post .
    • (2012)
    • Ryan, A.1
  • 108
    • 84952862318 scopus 로고    scopus 로고
    • Predicting the performance of online consumer reviews: A sentiment mining approach to big data analytics
    • Salehan, M., Kim, D.J., Predicting the performance of online consumer reviews: A sentiment mining approach to big data analytics. Decision Support Systems 81 (2016), 30–40.
    • (2016) Decision Support Systems , vol.81 , pp. 30-40
    • Salehan, M.1    Kim, D.J.2
  • 109
    • 84999912609 scopus 로고    scopus 로고
    • Van Rietschote, H. (2013). Systems and methods for using cloud-based storage to optimize data-storage operations, Google Patents.
    • Sawhney, S., Puri, H., Van Rietschote, H. (2013). Systems and methods for using cloud-based storage to optimize data-storage operations, Google Patents.
    • Sawhney, S.1    Puri, H.2
  • 110
    • 84958977307 scopus 로고    scopus 로고
    • Improving therapeutic effectiveness and safety through big healthcare data
    • Schneeweiss, S., Improving therapeutic effectiveness and safety through big healthcare data. Clinical Pharmacology & Therapeutics 99:3 (2016), 262–265.
    • (2016) Clinical Pharmacology & Therapeutics , vol.99 , Issue.3 , pp. 262-265
    • Schneeweiss, S.1
  • 111
    • 84925595064 scopus 로고    scopus 로고
    • Turning healthcare challenges into big data opportunities: A use-case review across the pharmaceutical development lifecycle
    • Schultz, T., Turning healthcare challenges into big data opportunities: A use-case review across the pharmaceutical development lifecycle. Bulletin of the American Society for Information Science and Technology 39:5 (2013), 34–40.
    • (2013) Bulletin of the American Society for Information Science and Technology , vol.39 , Issue.5 , pp. 34-40
    • Schultz, T.1
  • 113
    • 84999915519 scopus 로고    scopus 로고
    • Big data pays big in power plant operation
    • Siemens, Big data pays big in power plant operation. , 2014.
    • (2014)
    • Siemens1
  • 115
    • 84999908808 scopus 로고    scopus 로고
    • Big data in manufacturing: Rise of the machine
    • TIBCO Spotfire's Trends and Outliers Blog
    • Spotfire, Big data in manufacturing: Rise of the machine. 2013, TIBCO Spotfire's Trends and Outliers Blog .
    • (2013)
    • Spotfire1
  • 117
    • 84999952541 scopus 로고    scopus 로고
    • (2014). Enterprises take a long view on big data programs and purchases. TechTarget Search Business Analytics <>.
    • Stedman, C. (2014). Enterprises take a long view on big data programs and purchases. TechTarget Search Business Analytics < http://searchbusinessanalytics.techtarget.com/news/2240217365/Enterprises-take-a-long-view-on-big-data-programs-and-purchases>.
    • Stedman, C.1
  • 118
    • 84999952980 scopus 로고    scopus 로고
    • (2014). When big data meets manufacturing. INSEAD, The Business School for the World <>.
    • Stephen, C., Serguei, N., & Arnd, H. (2014). When big data meets manufacturing. INSEAD, The Business School for the World < http://knowledge.insead.edu/operations-management/when-big-data-meets-manufacturing-3297>.
    • Stephen, C.1    Serguei, N.2    Arnd, H.3
  • 120
    • 84953331475 scopus 로고    scopus 로고
    • The effects of big data on the logistics industry
    • PROFIT ORACLE Technology Powered. Business Driven
    • Swaminathan, S., The effects of big data on the logistics industry. 2012, PROFIT ORACLE Technology Powered. Business Driven .
    • (2012)
    • Swaminathan, S.1
  • 122
    • 84877885971 scopus 로고    scopus 로고
    • Toward cloud-based big-data analytics
    • Talia, D., Toward cloud-based big-data analytics. IEEE Computer Science, 2013, 98–101.
    • (2013) IEEE Computer Science , pp. 98-101
    • Talia, D.1
  • 123
    • 84961180961 scopus 로고    scopus 로고
    • Hadoop based uncertain possibilistic kernelized c-means algorithms for image segmentation and a comparative analysis
    • Tripathy, B., Mittal, D., Hadoop based uncertain possibilistic kernelized c-means algorithms for image segmentation and a comparative analysis. Applied Soft Computing 46 (2016), 886–923.
    • (2016) Applied Soft Computing , vol.46 , pp. 886-923
    • Tripathy, B.1    Mittal, D.2
  • 126
    • 84999933038 scopus 로고    scopus 로고
    • The case for big data in the financial services industry
    • Versace, M., Karen, M., The case for big data in the financial services industry. IDC Financial Insights, 2012, 1–13.
    • (2012) IDC Financial Insights , pp. 1-13
    • Versace, M.1    Karen, M.2
  • 127
    • 84927944944 scopus 로고    scopus 로고
    • Using the theory of inventive problem solving to brainstorm innovative ideas for assessing varieties of phone-cameras
    • Wang, C.H., Using the theory of inventive problem solving to brainstorm innovative ideas for assessing varieties of phone-cameras. Computers & Industrial Engineering 85 (2015), 227–234.
    • (2015) Computers & Industrial Engineering , vol.85 , pp. 227-234
    • Wang, C.H.1
  • 128
    • 84962360985 scopus 로고    scopus 로고
    • Big data analytics in logistics and supply chain management: Certain investigations for research and applications
    • Wang, G., Gunasekaran, A., Ngai, E.W., Papadopoulos, T., Big data analytics in logistics and supply chain management: Certain investigations for research and applications. International Journal of Production Economics 176 (2016), 98–110.
    • (2016) International Journal of Production Economics , vol.176 , pp. 98-110
    • Wang, G.1    Gunasekaran, A.2    Ngai, E.W.3    Papadopoulos, T.4
  • 129
    • 84871549878 scopus 로고    scopus 로고
    • Faster, larger, easier: reining real-time big data processing in cloud
    • ACM
    • Wang, C., Rayan, I.A., Schwan, K., Faster, larger, easier: reining real-time big data processing in cloud. Proceedings of the Posters and Demo Track, Vol. 4, 2012, ACM, 1–2.
    • (2012) Proceedings of the Posters and Demo Track , vol.4 , pp. 1-2
    • Wang, C.1    Rayan, I.A.2    Schwan, K.3
  • 131
    • 84924532479 scopus 로고    scopus 로고
    • A big data approach to analyzing market volatility
    • Wu, K., Bethel, W., Gu, M., Leinweber, D., Ruebel, O., A big data approach to analyzing market volatility. Algorithm Finance 2:3–4 (2013), 241–267.
    • (2013) Algorithm Finance , vol.2 , Issue.3-4 , pp. 241-267
    • Wu, K.1    Bethel, W.2    Gu, M.3    Leinweber, D.4    Ruebel, O.5
  • 134
    • 84872275067 scopus 로고    scopus 로고
    • A generic data model for moving objects
    • Xu, J., Güting, R.H., A generic data model for moving objects. Geoinformatica 17:1 (2013), 125–172.
    • (2013) Geoinformatica , vol.17 , Issue.1 , pp. 125-172
    • Xu, J.1    Güting, R.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.