메뉴 건너뛰기




Volumn 332, Issue , 2016, Pages 33-55

A MapReduce solution for associative classification of big data

Author keywords

Associative classifiers; Big data; Cluster computing frameworks; MapReduce

Indexed keywords

ALGORITHMS; ASSOCIATION RULES; BIG DATA; CLUSTER COMPUTING; LEARNING ALGORITHMS;

EID: 84961990876     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2015.10.041     Document Type: Article
Times cited : (109)

References (70)
  • 1
    • 84941203627 scopus 로고    scopus 로고
    • Accessed: October 2015
    • Apache Drill. Accessed: October 2015 (http://drill.apache.org).
    • Apache Drill
  • 2
    • 84870452716 scopus 로고    scopus 로고
    • Accessed: October 2015
    • Apache Hadoop. Accessed: October 2015 (http://hadoop.apache.org).
    • Apache Hadoop
  • 3
    • 84870749286 scopus 로고    scopus 로고
    • Accessed: October 2015
    • Apache Mahout. Accessed: October 2015 (http://mahout.apache.org).
    • Apache Mahout
  • 4
    • 84962027022 scopus 로고    scopus 로고
    • Accessed: October 2015
    • Apache MLlib.Accessed: October 2015 (https://spark.apache.org/mllib/).
    • Apache MLlib
  • 5
    • 84900451613 scopus 로고    scopus 로고
    • Accessed: October 2015
    • Apache Spark. Accessed: October 2015, (https://spark.apache.org).
    • Apache Spark
  • 6
    • 84904332358 scopus 로고    scopus 로고
    • Accessed: October 2015
    • Apache Storm. Accessed: October 2015 (https://storm.apache.org).
    • Apache Storm
  • 7
    • 84875274584 scopus 로고    scopus 로고
    • Accessed: October 2015
    • Vowpal wabbit. Accessed: October 2015 (http://hunch.net/~vw/).
    • Vowpal Wabbit
  • 9
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large databases
    • R. Agrawal, T. Imieliński, and A. Swami Mining association rules between sets of items in large databases SIGMOD Rec. 22 2 1993 207 216 10.1145/170036.170072
    • (1993) SIGMOD Rec. , vol.22 , Issue.2 , pp. 207-216
    • Agrawal, R.1    Imieliński, T.2    Swami, A.3
  • 10
    • 84975714604 scopus 로고    scopus 로고
    • Detecting phishing websites using associative classification
    • M.I.A. Ajlouni, W. Hadi, and J. Alwedyan Detecting phishing websites using associative classification Eur. J. Bus. Manag. 5 15 2013 36 40
    • (2013) Eur. J. Bus. Manag. , vol.5 , Issue.15 , pp. 36-40
    • Ajlouni, M.I.A.1    Hadi, W.2    Alwedyan, J.3
  • 11
    • 80052961124 scopus 로고    scopus 로고
    • A MapReduce-based distributed SVM algorithm for automatic image annotation
    • N.K. Alham, M. Li, Y. Liu, and S. Hammoud A MapReduce-based distributed SVM algorithm for automatic image annotation Comput. Math. Appl. 62 7 2011 2801 2811 10.1016/j.camwa.2011.07.046
    • (2011) Comput. Math. Appl. , vol.62 , Issue.7 , pp. 2801-2811
    • Alham, N.K.1    Li, M.2    Liu, Y.3    Hammoud, S.4
  • 14
    • 84861974217 scopus 로고    scopus 로고
    • Critical questions for big data
    • D. Boyd, and K. Crawford Critical questions for big data Inf. Commun. Soc. 15 5 2012 662 679 10.1080/1369118X.2012.678878
    • (2012) Inf. Commun. Soc. , vol.15 , Issue.5 , pp. 662-679
    • Boyd, D.1    Crawford, K.2
  • 15
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman Random forests Mach. Learn. 45 1 2001 5 32
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 18
    • 84916597404 scopus 로고    scopus 로고
    • Business intelligence and analytics: From big data to big impact
    • H. Chen, R.H.L. Chiang, and V.C. Storey Business intelligence and analytics: from big data to big impact MIS Q. 36 4 2012 1165 1188
    • (2012) MIS Q. , vol.36 , Issue.4 , pp. 1165-1188
    • Chen, H.1    Chiang, R.H.L.2    Storey, V.C.3
  • 21
    • 0033881469 scopus 로고    scopus 로고
    • Entropy and MDL discretization of continuous variables for bayesian belief networks
    • E.J. Clarke, and B.A. Barton Entropy and MDL discretization of continuous variables for bayesian belief networks Int. J. Intell. Syst. 15 1 2000 61 92
    • (2000) Int. J. Intell. Syst. , vol.15 , Issue.1 , pp. 61-92
    • Clarke, E.J.1    Barton, B.A.2
  • 22
    • 84873410735 scopus 로고    scopus 로고
    • X-Class: Associative classification of XML documents by structure
    • 3:1-3:40
    • G. Costa, R. Ortale, and E. Ritacco X-Class: associative classification of XML documents by structure ACM Trans. Inf. Syst. 31 1 2013 3:1 3:40 10.1145/2414782.2414785
    • (2013) ACM Trans. Inf. Syst. , vol.31 , Issue.1
    • Costa, G.1    Ortale, R.2    Ritacco, E.3
  • 23
    • 84983720438 scopus 로고    scopus 로고
    • What is big data? A consensual definition and a review of key research topics
    • A. De Mauro, M. Greco, and M. Grimaldi What is big data? A consensual definition and a review of key research topics AIP Conf. Proc. 1644 1 2015 97 104 10.1063/1.4907823
    • (2015) AIP Conf. Proc. , vol.1644 , Issue.1 , pp. 97-104
    • De Mauro, A.1    Greco, M.2    Grimaldi, M.3
  • 24
    • 37549003336 scopus 로고    scopus 로고
    • MapReduce: Simplified data processing on large clusters
    • J. Dean, and S. Ghemawat MapReduce: simplified data processing on large clusters Commun. ACM 51 1 2008 107 113 10.1145/1327452.1327492
    • (2008) Commun. ACM , vol.51 , Issue.1 , pp. 107-113
    • Dean, J.1    Ghemawat, S.2
  • 25
    • 73649114265 scopus 로고    scopus 로고
    • MapReduce: A flexible data processing tool
    • J. Dean, and S. Ghemawat MapReduce: a flexible data processing tool Commun. ACM 53 1 2010 72 77 10.1145/1629175.1629198
    • (2010) Commun. ACM , vol.53 , Issue.1 , pp. 72-77
    • Dean, J.1    Ghemawat, S.2
  • 27
    • 60849125380 scopus 로고    scopus 로고
    • Associative classification of mammograms using weighted rules
    • S. Dua, H. Singh, and H. Thompson Associative classification of mammograms using weighted rules Expert Systems with Applications 36 5 2009 9250 9259 10.1016/j.eswa.2008.12.050
    • (2009) Expert Systems with Applications , vol.36 , Issue.5 , pp. 9250-9259
    • Dua, S.1    Singh, H.2    Thompson, H.3
  • 28
    • 84900644792 scopus 로고    scopus 로고
    • Mining big data: Current status, and forecast to the future
    • W. Fan, and A. Bifet Mining big data: current status, and forecast to the future SIGKDD Explor. Newsl. 14 2 2013 1 5 10.1145/2481244.2481246
    • (2013) SIGKDD Explor. Newsl. , vol.14 , Issue.2 , pp. 1-5
    • Fan, W.1    Bifet, A.2
  • 29
    • 0002593344 scopus 로고
    • Multi-interval discretization of continuous-valued attributes for classification learning
    • U.M. Fayyad, and K.B. Irani Multi-interval discretization of continuous-valued attributes for classification learning Proceedings of IJCAI 1993 1022 1029
    • (1993) Proceedings of IJCAI , pp. 1022-1029
    • Fayyad, U.M.1    Irani, K.B.2
  • 30
    • 2442449952 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation: A frequent-pattern tree approach
    • J. Han, J. Pei, Y. Yin, and R. Mao Mining frequent patterns without candidate generation: a frequent-pattern tree approach Data Min. Knowl. Discov. 8 1 2004 53 87 10.1023/B:DAMI.0000005258.31418.83
    • (2004) Data Min. Knowl. Discov. , vol.8 , Issue.1 , pp. 53-87
    • Han, J.1    Pei, J.2    Yin, Y.3    Mao, R.4
  • 31
    • 80051586560 scopus 로고    scopus 로고
    • A parallel incremental extreme SVM classifier
    • Q. He, C. Du, Q. Wang, F. Zhuang, and Z. Shi A parallel incremental extreme SVM classifier Neurocomputing 74 16 2011 2532 2540
    • (2011) Neurocomputing , vol.74 , Issue.16 , pp. 2532-2540
    • He, Q.1    Du, C.2    Wang, Q.3    Zhuang, F.4    Shi, Z.5
  • 32
    • 84923224316 scopus 로고    scopus 로고
    • Toward scalable systems for big data analytics: A technology tutorial
    • H. Hu, Y. Wen, T.-S. Chua, and X. Li Toward scalable systems for big data analytics: a technology tutorial IEEE Access 2 2014 652 687 10.1109/ACCESS.2014.2332453
    • (2014) IEEE Access , vol.2 , pp. 652-687
    • Hu, H.1    Wen, Y.2    Chua, T.-S.3    Li, X.4
  • 33
    • 85013808225 scopus 로고    scopus 로고
    • Data Mining: Concepts and Techniques
    • 3rd ed. Morgan Kaufmann
    • J.P.J. Han, and M. Kamber Data Mining: Concepts and Techniques 3rd ed. Data Management Systems 2012 Morgan Kaufmann
    • (2012) Data Management Systems
    • Han, J.P.J.1    Kamber, M.2
  • 34
    • 84929170243 scopus 로고    scopus 로고
    • Significance and challenges of big data research
    • X. Jin, B. Wah, X. Cheng, and Y. Wang Significance and challenges of big data research Big Data Res. 2 2 2015 59 64 10.1016/j.bdr.2015.01.006
    • (2015) Big Data Res. , vol.2 , Issue.2 , pp. 59-64
    • Jin, X.1    Wah, B.2    Cheng, X.3    Wang, Y.4
  • 36
    • 84865610293 scopus 로고    scopus 로고
    • 3D Data Management: Controlling Data Volume, Velocity, and Variety
    • META Group
    • D. Laney 3D Data Management: Controlling Data Volume, Velocity, and Variety Technical Report 2001 META Group
    • (2001) Technical Report
    • Laney, D.1
  • 39
  • 42
    • 0037784810 scopus 로고    scopus 로고
    • Classification using association rules: Weaknesses and enhancements
    • R. Grossman, C. Kamath, P. Kegelmeyer, V. Kumar, R. Namburu, Massive Computing Springer US
    • B. Liu, Y. Ma, and C.-K. Wong Classification using association rules: weaknesses and enhancements R. Grossman, C. Kamath, P. Kegelmeyer, V. Kumar, R. Namburu, Data Mining for Scientific and Engineering Applications Massive Computing vol. 2 2001 Springer US 591 605 10.1007/978-1-4615-1733-7-30
    • (2001) Data Mining for Scientific and Engineering Applications, Massive Computing , vol.2 , pp. 591-605
    • Liu, B.1    Ma, Y.2    Wong, C.-K.3
  • 44
    • 84911445875 scopus 로고    scopus 로고
    • Cost-sensitive linguistic fuzzy rule based classification systems under the MapReduce framework for imbalanced big data
    • V. López, S. Del Río, J. Benítez, and F. Herrera Cost-sensitive linguistic fuzzy rule based classification systems under the MapReduce framework for imbalanced big data Fuzzy Sets Syst. 258 2015 5 38 10.1016/j.fss.2014.01.015
    • (2015) Fuzzy Sets Syst. , vol.258 , pp. 5-38
    • López, V.1    Del Río, S.2    Benítez, J.3    Herrera, F.4
  • 50
    • 84872866176 scopus 로고    scopus 로고
    • CAR-miner: An efficient algorithm for mining class-association rules
    • L.T. Nguyen, B. Vo, T.-P. Hong, and H.C. Thanh CAR-miner: an efficient algorithm for mining class-association rules Expert Syst. Appl. 40 6 2013 2305 2311 10.1016/j.eswa.2012.10.035
    • (2013) Expert Syst. Appl. , vol.40 , Issue.6 , pp. 2305-2311
    • Nguyen, L.T.1    Vo, B.2    Hong, T.-P.3    Thanh, H.C.4
  • 51
    • 84865330735 scopus 로고    scopus 로고
    • Scalable and parallel boosting with MapReduce
    • I. Palit, and C.K. Reddy Scalable and parallel boosting with MapReduce IEEE Trans. Knowl. Data Eng. 24 10 2012 1904 1916
    • (2012) IEEE Trans. Knowl. Data Eng. , vol.24 , Issue.10 , pp. 1904-1916
    • Palit, I.1    Reddy, C.K.2
  • 52
    • 7444246787 scopus 로고    scopus 로고
    • Parallel FP-Growth on PC cluster
    • Advances in Knowledge Discovery and Data Mining Springer Berlin Heidelberg
    • I. Pramudiono, and M. Kitsuregawa Parallel FP-Growth on PC cluster Advances in Knowledge Discovery and Data Mining Lecture Notes in Computer Science 2637 2003 Springer Berlin Heidelberg 467 473 10.1007/3-540-36175-8-47
    • (2003) Lecture Notes in Computer Science , vol.2637 , pp. 467-473
    • Pramudiono, I.1    Kitsuregawa, M.2
  • 55
    • 33746599134 scopus 로고    scopus 로고
    • Boosting an associative classifier
    • Y. Sun, Y. Wang, and A.K. Wong Boosting an associative classifier IEEE Trans. Knowl. Data Eng. 18 7 2006 988 992 10.1109/TKDE.2006.105
    • (2006) IEEE Trans. Knowl. Data Eng. , vol.18 , Issue.7 , pp. 988-992
    • Sun, Y.1    Wang, Y.2    Wong, A.K.3
  • 56
    • 34249687044 scopus 로고    scopus 로고
    • A review of associative classification mining
    • F. Thabtah A review of associative classification mining Knowl. Eng. Rev. 22 1 2007 37 65 10.1017/S0269888907001026
    • (2007) Knowl. Eng. Rev. , vol.22 , Issue.1 , pp. 37-65
    • Thabtah, F.1
  • 57
    • 84912100031 scopus 로고    scopus 로고
    • MRPR: A MapReduce solution for prototype reduction in big data classification
    • PA
    • I. Triguero, D. Peralta, J. Bacardit, S. García, and F. Herrera MRPR: A MapReduce solution for prototype reduction in big data classification Neurocomputing 150 PA 2015 331 345 10.1016/j.neucom.2014.04.078
    • (2015) Neurocomputing , vol.150 , pp. 331-345
    • Triguero, I.1    Peralta, D.2    Bacardit, J.3    García, S.4    Herrera, F.5
  • 59
    • 84984997648 scopus 로고    scopus 로고
    • Review and comparison of associative classification data mining approaches
    • S. Wedyan Review and comparison of associative classification data mining approaches Int. J. Comput. Electr. Autom. Control Inf. Eng. 8 1 2014 34 45
    • (2014) Int. J. Comput. Electr. Autom. Control Inf. Eng. , vol.8 , Issue.1 , pp. 34-45
    • Wedyan, S.1
  • 62
    • 84922023733 scopus 로고    scopus 로고
    • Elastic extreme learning machine for big data classification
    • PA
    • J. Xin, Z. Wang, L. Qu, and G. Wang Elastic extreme learning machine for big data classification Neurocomputing 149 PA 2015 464 471 10.1016/j.neucom.2013.09.075
    • (2015) Neurocomputing , vol.149 , pp. 464-471
    • Xin, J.1    Wang, Z.2    Qu, L.3    Wang, G.4
  • 64
    • 84886408074 scopus 로고    scopus 로고
    • Two scalable algorithms for associative text classification
    • Y. Yoon, and G.G. Lee Two scalable algorithms for associative text classification Inf. Process. Manag. 49 2 2013 484 496 10.1016/j.ipm.2012.09.003
    • (2013) Inf. Process. Manag. , vol.49 , Issue.2 , pp. 484-496
    • Yoon, Y.1    Lee, G.G.2
  • 65
    • 84927633743 scopus 로고    scopus 로고
    • Cost-sensitive incremental classification under the mapreduce framework for mining imbalanced massive data streams
    • H. Yuwen Cost-sensitive incremental classification under the mapreduce framework for mining imbalanced massive data streams J. Discrete Math. Sci. Cryptogr. 18 2015 177 194 10.1080/09720529.2015.1013709
    • (2015) J. Discrete Math. Sci. Cryptogr. , vol.18 , pp. 177-194
    • Yuwen, H.1
  • 69
    • 71749094178 scopus 로고    scopus 로고
    • Parallel K-Means clustering based on MapReduce
    • Cloud Computing Springer Berlin Heidelberg
    • W. Zhao, H. Ma, and Q. He Parallel K-Means clustering based on MapReduce Cloud Computing Lecture Notes in Computer Science 5931 2009 Springer Berlin Heidelberg 674 679 10.1007/978-3-642-10665-1-71
    • (2009) Lecture Notes in Computer Science , vol.5931 , pp. 674-679
    • Zhao, W.1    Ma, H.2    He, Q.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.