-
1
-
-
0018587968
-
Translocation of proteins across membranes: the signal hypothesis and beyond
-
[1] Blobel, G., Walter, P., Chang, C.N., Goldman, B.M., Erickson, A.H., Lingappa, V.R., Translocation of proteins across membranes: the signal hypothesis and beyond. Symp. Soc. Exp. Biol. 33 (1979), 9–36.
-
(1979)
Symp. Soc. Exp. Biol.
, vol.33
, pp. 9-36
-
-
Blobel, G.1
Walter, P.2
Chang, C.N.3
Goldman, B.M.4
Erickson, A.H.5
Lingappa, V.R.6
-
2
-
-
0029828536
-
Mechanism of polypeptide translocation into the endoplasmic reticulum
-
[2] Corsi, A.K., Schekman, R., Mechanism of polypeptide translocation into the endoplasmic reticulum. J. Biol. Chem. 271 (1996), 30299–30302.
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 30299-30302
-
-
Corsi, A.K.1
Schekman, R.2
-
3
-
-
70349595267
-
Protein targeting by the signal recognition particle
-
[3] Grudnik, P., Bange, G., Sinning, I., Protein targeting by the signal recognition particle. Biol. Chem. 390 (2009), 775–782.
-
(2009)
Biol. Chem.
, vol.390
, pp. 775-782
-
-
Grudnik, P.1
Bange, G.2
Sinning, I.3
-
4
-
-
33751325296
-
Following the signal sequence from ribosomal tunnel exit to signal recognition particle
-
[4] Halic, M., Blau, M., Becker, T., Mielke, T., Pool, M.R., Wild, K., Sinning, I., Beckmann, R., Following the signal sequence from ribosomal tunnel exit to signal recognition particle. Nature 444 (2006), 507–511.
-
(2006)
Nature
, vol.444
, pp. 507-511
-
-
Halic, M.1
Blau, M.2
Becker, T.3
Mielke, T.4
Pool, M.R.5
Wild, K.6
Sinning, I.7
Beckmann, R.8
-
5
-
-
84870979537
-
Activated GTPase movement on an RNA scaffold drives co-translational protein targeting
-
[5] Shen, K., Arslan, S., Akopian, D., Ha, T., Shan, S.O., Activated GTPase movement on an RNA scaffold drives co-translational protein targeting. Nature 492 (2012), 271–275.
-
(2012)
Nature
, vol.492
, pp. 271-275
-
-
Shen, K.1
Arslan, S.2
Akopian, D.3
Ha, T.4
Shan, S.O.5
-
6
-
-
84907212994
-
De novo translation initiation on membrane-bound ribosomes as a mechanism for localization of cytosolic protein mRNAs to the endoplasmic reticulum
-
[6] Jagannathan, S., Reid, D.W., Cox, A.H., Nicchitta, C.V., De novo translation initiation on membrane-bound ribosomes as a mechanism for localization of cytosolic protein mRNAs to the endoplasmic reticulum. RNA 20 (2014), 1489–1498.
-
(2014)
RNA
, vol.20
, pp. 1489-1498
-
-
Jagannathan, S.1
Reid, D.W.2
Cox, A.H.3
Nicchitta, C.V.4
-
7
-
-
77950639519
-
Organization of the Sec61 translocon, studied by high resolution native electrophoresis
-
[7] Dejgaard, K., Theberge, J.F., Heath-Engel, H., Chevet, E., Tremblay, M.L., Thomas, D.Y., Organization of the Sec61 translocon, studied by high resolution native electrophoresis. J. Proteome Res. 9 (2010), 1763–1771.
-
(2010)
J. Proteome Res.
, vol.9
, pp. 1763-1771
-
-
Dejgaard, K.1
Theberge, J.F.2
Heath-Engel, H.3
Chevet, E.4
Tremblay, M.L.5
Thomas, D.Y.6
-
8
-
-
17644366824
-
Proteomic analysis of mammalian oligosaccharyltransferase reveals multiple subcomplexes that contain Sec61, TRAP, and two potential new subunits
-
[8] Shibatani, T., David, L.L., McCormack, A.L., Frueh, K., Skach, W.R., Proteomic analysis of mammalian oligosaccharyltransferase reveals multiple subcomplexes that contain Sec61, TRAP, and two potential new subunits. Biochemistry 44 (2005), 5982–5992.
-
(2005)
Biochemistry
, vol.44
, pp. 5982-5992
-
-
Shibatani, T.1
David, L.L.2
McCormack, A.L.3
Frueh, K.4
Skach, W.R.5
-
9
-
-
0032832467
-
Oligomeric complexes involved in translocation of proteins across the membrane of the endoplasmic reticulum
-
[9] Wang, L., Dobberstein, B., Oligomeric complexes involved in translocation of proteins across the membrane of the endoplasmic reticulum. FEBS Lett. 457 (1999), 316–322.
-
(1999)
FEBS Lett.
, vol.457
, pp. 316-322
-
-
Wang, L.1
Dobberstein, B.2
-
10
-
-
0012295328
-
Purification of microsomal signal peptidase as a complex
-
[10] Evans, E.A., Gilmore, R., Blobel, G., Purification of microsomal signal peptidase as a complex. Proc. Natl. Acad. Sci. U. S. A. 83 (1986), 581–585.
-
(1986)
Proc. Natl. Acad. Sci. U. S. A.
, vol.83
, pp. 581-585
-
-
Evans, E.A.1
Gilmore, R.2
Blobel, G.3
-
11
-
-
79961171901
-
Oligosaccharyltransferase: the central enzyme of N-linked protein glycosylation
-
[11] Mohorko, E., Glockshuber, R., Aebi, M., Oligosaccharyltransferase: the central enzyme of N-linked protein glycosylation. J. Inherit. Metab. Dis. 34 (2011), 869–878.
-
(2011)
J. Inherit. Metab. Dis.
, vol.34
, pp. 869-878
-
-
Mohorko, E.1
Glockshuber, R.2
Aebi, M.3
-
12
-
-
33645103490
-
An evolving view of the eukaryotic oligosaccharyltransferase
-
[12] Kelleher, D.J., Gilmore, R., An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology 16 (2006), 47R–62R.
-
(2006)
Glycobiology
, vol.16
, pp. 47R-62R
-
-
Kelleher, D.J.1
Gilmore, R.2
-
13
-
-
30944467214
-
The molecular basis of coupling of translocation and N-glycosylation
-
[13] Chavan, M., Lennarz, W., The molecular basis of coupling of translocation and N-glycosylation. Trends Biochem. Sci. 31 (2006), 17–20.
-
(2006)
Trends Biochem. Sci.
, vol.31
, pp. 17-20
-
-
Chavan, M.1
Lennarz, W.2
-
14
-
-
0027424601
-
Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane
-
[14] Gorlich, D., Rapoport, T.A., Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell 75 (1993), 615–630.
-
(1993)
Cell
, vol.75
, pp. 615-630
-
-
Gorlich, D.1
Rapoport, T.A.2
-
15
-
-
33846378778
-
Sec61alpha and TRAM are sequentially adjacent to a nascent viral membrane protein during its ER integration
-
[15] Sauri, A., McCormick, P.J., Johnson, A.E., Mingarro, I., Sec61alpha and TRAM are sequentially adjacent to a nascent viral membrane protein during its ER integration. J. Mol. Biol. 366 (2007), 366–374.
-
(2007)
J. Mol. Biol.
, vol.366
, pp. 366-374
-
-
Sauri, A.1
McCormick, P.J.2
Johnson, A.E.3
Mingarro, I.4
-
16
-
-
84884362290
-
TRAP assists membrane protein topogenesis at the mammalian ER membrane
-
[16] Sommer, N., Junne, T., Kalies, K.U., Spiess, M., Hartmann, E., TRAP assists membrane protein topogenesis at the mammalian ER membrane. Biochim. Biophys. Acta 1833 (2013), 3104–3111.
-
(2013)
Biochim. Biophys. Acta
, vol.1833
, pp. 3104-3111
-
-
Sommer, N.1
Junne, T.2
Kalies, K.U.3
Spiess, M.4
Hartmann, E.5
-
17
-
-
84944168146
-
Expanding the molecular and clinical phenotype of SSR4-CDG
-
[17] Ng, B.G., Raymond, K., Kircher, M., Buckingham, K.J., Wood, T., Shendure, J., Nickerson, D.A., Bamshad, M.J., Wong, J.T., Monteiro, F.P., Graham, B.H., Jackson, S., Sparkes, R., Scheuerle, A.E., Cathey, S., Kok, F., Gibson, J.B., Freeze, H.H., Expanding the molecular and clinical phenotype of SSR4-CDG. Hum. Mutat. 36 (2015), 1048–1051.
-
(2015)
Hum. Mutat.
, vol.36
, pp. 1048-1051
-
-
Ng, B.G.1
Raymond, K.2
Kircher, M.3
Buckingham, K.J.4
Wood, T.5
Shendure, J.6
Nickerson, D.A.7
Bamshad, M.J.8
Wong, J.T.9
Monteiro, F.P.10
Graham, B.H.11
Jackson, S.12
Sparkes, R.13
Scheuerle, A.E.14
Cathey, S.15
Kok, F.16
Gibson, J.B.17
Freeze, H.H.18
-
18
-
-
84928215514
-
Cotranslational stabilization of Sec62/63 within the ER Sec61 translocon is controlled by distinct substrate-driven translocation events
-
[18] Conti, B.J., Devaraneni, P.K., Yang, Z., David, L.L., Skach, W.R., Cotranslational stabilization of Sec62/63 within the ER Sec61 translocon is controlled by distinct substrate-driven translocation events. Mol. Cell 58 (2015), 269–283.
-
(2015)
Mol. Cell
, vol.58
, pp. 269-283
-
-
Conti, B.J.1
Devaraneni, P.K.2
Yang, Z.3
David, L.L.4
Skach, W.R.5
-
19
-
-
84863092048
-
Different effects of Sec61alpha, Sec62 and Sec63 depletion on transport of polypeptides into the endoplasmic reticulum of mammalian cells
-
[19] Lang, S., Benedix, J., Fedeles, S.V., Schorr, S., Schirra, C., Schauble, N., Jalal, C., Greiner, M., Hassdenteufel, S., Tatzelt, J., Kreutzer, B., Edelmann, L., Krause, E., Rettig, J., Somlo, S., Zimmermann, R., Dudek, J., Different effects of Sec61alpha, Sec62 and Sec63 depletion on transport of polypeptides into the endoplasmic reticulum of mammalian cells. J. Cell Sci. 125 (2012), 1958–1969.
-
(2012)
J. Cell Sci.
, vol.125
, pp. 1958-1969
-
-
Lang, S.1
Benedix, J.2
Fedeles, S.V.3
Schorr, S.4
Schirra, C.5
Schauble, N.6
Jalal, C.7
Greiner, M.8
Hassdenteufel, S.9
Tatzelt, J.10
Kreutzer, B.11
Edelmann, L.12
Krause, E.13
Rettig, J.14
Somlo, S.15
Zimmermann, R.16
Dudek, J.17
-
20
-
-
77649164867
-
Evolutionary gain of function for the ER membrane protein Sec62 from yeast to humans
-
[20] Muller, L., de Escauriaza, M.D., Lajoie, P., Theis, M., Jung, M., Muller, A., Burgard, C., Greiner, M., Snapp, E.L., Dudek, J., Zimmermann, R., Evolutionary gain of function for the ER membrane protein Sec62 from yeast to humans. Mol. Biol. Cell 21 (2010), 691–703.
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 691-703
-
-
Muller, L.1
de Escauriaza, M.D.2
Lajoie, P.3
Theis, M.4
Jung, M.5
Muller, A.6
Burgard, C.7
Greiner, M.8
Snapp, E.L.9
Dudek, J.10
Zimmermann, R.11
-
21
-
-
84864877220
-
2 + leakage from the ER
-
2 + leakage from the ER. EMBO J. 31 (2012), 3282–3296.
-
(2012)
EMBO J.
, vol.31
, pp. 3282-3296
-
-
Schauble, N.1
Lang, S.2
Jung, M.3
Cappel, S.4
Schorr, S.5
Ulucan, O.6
Linxweiler, J.7
Dudek, J.8
Blum, R.9
Helms, V.10
Paton, A.W.11
Paton, J.C.12
Cavalie, A.13
Zimmermann, R.14
-
22
-
-
0038786906
-
Polypeptide-binding proteins mediate completion of co-translational protein translocation into the mammalian endoplasmic reticulum
-
[22] Tyedmers, J., Lerner, M., Wiedmann, M., Volkmer, J., Zimmermann, R., Polypeptide-binding proteins mediate completion of co-translational protein translocation into the mammalian endoplasmic reticulum. EMBO Rep. 4 (2003), 505–510.
-
(2003)
EMBO Rep.
, vol.4
, pp. 505-510
-
-
Tyedmers, J.1
Lerner, M.2
Wiedmann, M.3
Volkmer, J.4
Zimmermann, R.5
-
23
-
-
33644998946
-
ERj1p uses a universal ribosomal adaptor site to coordinate the 80S ribosome at the membrane
-
[23] Blau, M., Mullapudi, S., Becker, T., Dudek, J., Zimmermann, R., Penczek, P.A., Beckmann, R., ERj1p uses a universal ribosomal adaptor site to coordinate the 80S ribosome at the membrane. Nat. Struct. Mol. Biol. 12 (2005), 1015–1016.
-
(2005)
Nat. Struct. Mol. Biol.
, vol.12
, pp. 1015-1016
-
-
Blau, M.1
Mullapudi, S.2
Becker, T.3
Dudek, J.4
Zimmermann, R.5
Penczek, P.A.6
Beckmann, R.7
-
24
-
-
33645011120
-
ERj1p has a basic role in protein biogenesis at the endoplasmic reticulum
-
[24] Dudek, J., Greiner, M., Muller, A., Hendershot, L.M., Kopsch, K., Nastainczyk, W., Zimmermann, R., ERj1p has a basic role in protein biogenesis at the endoplasmic reticulum. Nat. Struct. Mol. Biol. 12 (2005), 1008–1014.
-
(2005)
Nat. Struct. Mol. Biol.
, vol.12
, pp. 1008-1014
-
-
Dudek, J.1
Greiner, M.2
Muller, A.3
Hendershot, L.M.4
Kopsch, K.5
Nastainczyk, W.6
Zimmermann, R.7
-
25
-
-
84859434125
-
Palmitoylated calnexin is a key component of the ribosome–translocon complex
-
[25] Lakkaraju, A.K., Abrami, L., Lemmin, T., Blaskovic, S., Kunz, B., Kihara, A., Dal Peraro, M., van der Goot, F.G., Palmitoylated calnexin is a key component of the ribosome–translocon complex. EMBO J. 31 (2012), 1823–1835.
-
(2012)
EMBO J.
, vol.31
, pp. 1823-1835
-
-
Lakkaraju, A.K.1
Abrami, L.2
Lemmin, T.3
Blaskovic, S.4
Kunz, B.5
Kihara, A.6
Dal Peraro, M.7
van der Goot, F.G.8
-
26
-
-
0033168581
-
Phosphorylation by CK2 and MAPK enhances calnexin association with ribosomes
-
[26] Chevet, E., Wong, H.N., Gerber, D., Cochet, C., Fazel, A., Cameron, P.H., Gushue, J.N., Thomas, D.Y., Bergeron, J.J., Phosphorylation by CK2 and MAPK enhances calnexin association with ribosomes. EMBO J. 18 (1999), 3655–3666.
-
(1999)
EMBO J.
, vol.18
, pp. 3655-3666
-
-
Chevet, E.1
Wong, H.N.2
Gerber, D.3
Cochet, C.4
Fazel, A.5
Cameron, P.H.6
Gushue, J.N.7
Thomas, D.Y.8
Bergeron, J.J.9
-
27
-
-
0037459073
-
Protein translocons: multifunctional mediators of protein translocation across membranes
-
[27] Schnell, D.J., Hebert, D.N., Protein translocons: multifunctional mediators of protein translocation across membranes. Cell 112 (2003), 491–505.
-
(2003)
Cell
, vol.112
, pp. 491-505
-
-
Schnell, D.J.1
Hebert, D.N.2
-
28
-
-
84878527131
-
Structural biology in situ–the potential of subtomogram averaging
-
[28] Briggs, J.A., Structural biology in situ–the potential of subtomogram averaging. Curr. Opin. Struct. Biol. 23 (2013), 261–267.
-
(2013)
Curr. Opin. Struct. Biol.
, vol.23
, pp. 261-267
-
-
Briggs, J.A.1
-
29
-
-
84865781069
-
Structure and 3D arrangement of endoplasmic reticulum membrane-associated ribosomes
-
[29] Pfeffer, S., Brandt, F., Hrabe, T., Lang, S., Eibauer, M., Zimmermann, R., Forster, F., Structure and 3D arrangement of endoplasmic reticulum membrane-associated ribosomes. Structure 20 (2012), 1508–1518.
-
(2012)
Structure
, vol.20
, pp. 1508-1518
-
-
Pfeffer, S.1
Brandt, F.2
Hrabe, T.3
Lang, S.4
Eibauer, M.5
Zimmermann, R.6
Forster, F.7
-
30
-
-
84892141124
-
Structure of the mammalian oligosaccharyl–transferase complex in the native ER protein translocon
-
[30] Pfeffer, S., Dudek, J., Gogala, M., Schorr, S., Linxweiler, J., Lang, S., Becker, T., Beckmann, R., Zimmermann, R., Forster, F., Structure of the mammalian oligosaccharyl–transferase complex in the native ER protein translocon. Nat. Commun., 5, 2014, 3072.
-
(2014)
Nat. Commun.
, vol.5
, pp. 3072
-
-
Pfeffer, S.1
Dudek, J.2
Gogala, M.3
Schorr, S.4
Linxweiler, J.5
Lang, S.6
Becker, T.7
Beckmann, R.8
Zimmermann, R.9
Forster, F.10
-
31
-
-
84942795150
-
Structure of the native Sec61 protein-conducting channel
-
[31] Pfeffer, S., Burbaum, L., Unverdorben, P., Pech, M., Chen, Y., Zimmermann, R., Beckmann, R., Forster, F., Structure of the native Sec61 protein-conducting channel. Nat. Commun., 6, 2015, 8403.
-
(2015)
Nat. Commun.
, vol.6
, pp. 8403
-
-
Pfeffer, S.1
Burbaum, L.2
Unverdorben, P.3
Pech, M.4
Chen, Y.5
Zimmermann, R.6
Beckmann, R.7
Forster, F.8
-
32
-
-
84959419478
-
Visualizing the molecular sociology at the HeLa cell nuclear periphery
-
[32] Mahamid, J., Pfeffer, S., Schaffer, M., Villa, E., Danev, R., Cuellar, L.K., Forster, F., Hyman, A.A., Plitzko, J.M., Baumeister, W., Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science 351 (2016), 969–972.
-
(2016)
Science
, vol.351
, pp. 969-972
-
-
Mahamid, J.1
Pfeffer, S.2
Schaffer, M.3
Villa, E.4
Danev, R.5
Cuellar, L.K.6
Forster, F.7
Hyman, A.A.8
Plitzko, J.M.9
Baumeister, W.10
-
33
-
-
0347192985
-
X-ray structure of a protein-conducting channel
-
[33] Van den Berg, B., Clemons, W.M. Jr., Collinson, I., Modis, Y., Hartmann, E., Harrison, S.C., Rapoport, T.A., X-ray structure of a protein-conducting channel. Nature 427 (2004), 36–44.
-
(2004)
Nature
, vol.427
, pp. 36-44
-
-
Van den Berg, B.1
Clemons, W.M.2
Collinson, I.3
Modis, Y.4
Hartmann, E.5
Harrison, S.C.6
Rapoport, T.A.7
-
34
-
-
78049253482
-
Lateral opening of a translocon upon entry of protein suggests the mechanism of insertion into membranes
-
[34] Egea, P.F., Stroud, R.M., Lateral opening of a translocon upon entry of protein suggests the mechanism of insertion into membranes. Proc. Natl. Acad. Sci. U. S. A. 107 (2010), 17182–17187.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 17182-17187
-
-
Egea, P.F.1
Stroud, R.M.2
-
35
-
-
84982182123
-
Crystal structure of a substrate-engaged SecY protein-translocation channel
-
[35] Li, L., Park, E., Ling, J., Ingram, J., Ploegh, H., Rapoport, T.A., Crystal structure of a substrate-engaged SecY protein-translocation channel. Nature 531 (2016), 395–399.
-
(2016)
Nature
, vol.531
, pp. 395-399
-
-
Li, L.1
Park, E.2
Ling, J.3
Ingram, J.4
Ploegh, H.5
Rapoport, T.A.6
-
36
-
-
54049111011
-
Structure of a complex of the ATPase SecA and the protein-translocation channel
-
[36] Zimmer, J., Nam, Y., Rapoport, T.A., Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature 455 (2008), 936–943.
-
(2008)
Nature
, vol.455
, pp. 936-943
-
-
Zimmer, J.1
Nam, Y.2
Rapoport, T.A.3
-
37
-
-
71549167617
-
Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome
-
[37] Becker, T., Bhushan, S., Jarasch, A., Armache, J.P., Funes, S., Jossinet, F., Gumbart, J., Mielke, T., Berninghausen, O., Schulten, K., Westhof, E., Gilmore, R., Mandon, E.C., Beckmann, R., Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome. Science 326 (2009), 1369–1373.
-
(2009)
Science
, vol.326
, pp. 1369-1373
-
-
Becker, T.1
Bhushan, S.2
Jarasch, A.3
Armache, J.P.4
Funes, S.5
Jossinet, F.6
Gumbart, J.7
Mielke, T.8
Berninghausen, O.9
Schulten, K.10
Westhof, E.11
Gilmore, R.12
Mandon, E.C.13
Beckmann, R.14
-
38
-
-
84893630228
-
Structures of the Sec61 complex engaged in nascent peptide translocation or membrane insertion
-
[38] Gogala, M., Becker, T., Beatrix, B., Armache, J.P., Barrio-Garcia, C., Berninghausen, O., Beckmann, R., Structures of the Sec61 complex engaged in nascent peptide translocation or membrane insertion. Nature 506 (2014), 107–110.
-
(2014)
Nature
, vol.506
, pp. 107-110
-
-
Gogala, M.1
Becker, T.2
Beatrix, B.3
Armache, J.P.4
Barrio-Garcia, C.5
Berninghausen, O.6
Beckmann, R.7
-
39
-
-
84903310310
-
Structure of the mammalian ribosome–Sec61 complex to 3.4 A resolution
-
[39] Voorhees, R.M., Fernandez, I.S., Scheres, S.H., Hegde, R.S., Structure of the mammalian ribosome–Sec61 complex to 3.4 A resolution. Cell 157 (2014), 1632–1643.
-
(2014)
Cell
, vol.157
, pp. 1632-1643
-
-
Voorhees, R.M.1
Fernandez, I.S.2
Scheres, S.H.3
Hegde, R.S.4
-
40
-
-
84893726448
-
Structure of the SecY channel during initiation of protein translocation
-
[40] Park, E., Menetret, J.F., Gumbart, J.C., Ludtke, S.J., Li, W., Whynot, A., Rapoport, T.A., Akey, C.W., Structure of the SecY channel during initiation of protein translocation. Nature 506 (2014), 102–106.
-
(2014)
Nature
, vol.506
, pp. 102-106
-
-
Park, E.1
Menetret, J.F.2
Gumbart, J.C.3
Ludtke, S.J.4
Li, W.5
Whynot, A.6
Rapoport, T.A.7
Akey, C.W.8
-
41
-
-
84952886698
-
Structure of the Sec61 channel opened by a signal sequence
-
[41] Voorhees, R.M., Hegde, R.S., Structure of the Sec61 channel opened by a signal sequence. Science 351 (2016), 88–91.
-
(2016)
Science
, vol.351
, pp. 88-91
-
-
Voorhees, R.M.1
Hegde, R.S.2
-
42
-
-
0023676242
-
Topogenic signals in integral membrane proteins
-
[42] von Heijne, G., Gavel, Y., Topogenic signals in integral membrane proteins. Eur. J. Biochem. 174 (1988), 671–678.
-
(1988)
Eur. J. Biochem.
, vol.174
, pp. 671-678
-
-
von Heijne, G.1
Gavel, Y.2
-
43
-
-
46049116259
-
Single copies of Sec61 and TRAP associate with a nontranslating mammalian ribosome
-
[43] Menetret, J.F., Hegde, R.S., Aguiar, M., Gygi, S.P., Park, E., Rapoport, T.A., Akey, C.W., Single copies of Sec61 and TRAP associate with a nontranslating mammalian ribosome. Structure 16 (2008), 1126–1137.
-
(2008)
Structure
, vol.16
, pp. 1126-1137
-
-
Menetret, J.F.1
Hegde, R.S.2
Aguiar, M.3
Gygi, S.P.4
Park, E.5
Rapoport, T.A.6
Akey, C.W.7
-
45
-
-
84887060511
-
Crystal structures of an archaeal oligosaccharyltransferase provide insights into the catalytic cycle of N-linked protein glycosylation
-
[45] Matsumoto, S., Shimada, A., Nyirenda, J., Igura, M., Kawano, Y., Kohda, D., Crystal structures of an archaeal oligosaccharyltransferase provide insights into the catalytic cycle of N-linked protein glycosylation. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), 17868–17873.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, pp. 17868-17873
-
-
Matsumoto, S.1
Shimada, A.2
Nyirenda, J.3
Igura, M.4
Kawano, Y.5
Kohda, D.6
-
46
-
-
38049051311
-
Structure-guided identification of a new catalytic motif of oligosaccharyltransferase
-
[46] Igura, M., Maita, N., Kamishikiryo, J., Yamada, M., Obita, T., Maenaka, K., Kohda, D., Structure-guided identification of a new catalytic motif of oligosaccharyltransferase. EMBO J. 27 (2008), 234–243.
-
(2008)
EMBO J.
, vol.27
, pp. 234-243
-
-
Igura, M.1
Maita, N.2
Kamishikiryo, J.3
Yamada, M.4
Obita, T.5
Maenaka, K.6
Kohda, D.7
-
47
-
-
79959191882
-
X-ray structure of a bacterial oligosaccharyltransferase
-
[47] Lizak, C., Gerber, S., Numao, S., Aebi, M., Locher, K.P., X-ray structure of a bacterial oligosaccharyltransferase. Nature 474 (2011), 350–355.
-
(2011)
Nature
, vol.474
, pp. 350-355
-
-
Lizak, C.1
Gerber, S.2
Numao, S.3
Aebi, M.4
Locher, K.P.5
-
48
-
-
58249093866
-
Cotranslational and posttranslational N-glycosylation of polypeptides by distinct mammalian OST isoforms
-
[48] Ruiz-Canada, C., Kelleher, D.J., Gilmore, R., Cotranslational and posttranslational N-glycosylation of polypeptides by distinct mammalian OST isoforms. Cell 136 (2009), 272–283.
-
(2009)
Cell
, vol.136
, pp. 272-283
-
-
Ruiz-Canada, C.1
Kelleher, D.J.2
Gilmore, R.3
-
49
-
-
84898469110
-
Structural basis of substrate specificity of human oligosaccharyl transferase subunit N33/Tusc3 and its role in regulating protein N-glycosylation
-
[49] Mohorko, E., Owen, R.L., Malojcic, G., Brozzo, M.S., Aebi, M., Glockshuber, R., Structural basis of substrate specificity of human oligosaccharyl transferase subunit N33/Tusc3 and its role in regulating protein N-glycosylation. Structure 22 (2014), 590–601.
-
(2014)
Structure
, vol.22
, pp. 590-601
-
-
Mohorko, E.1
Owen, R.L.2
Malojcic, G.3
Brozzo, M.S.4
Aebi, M.5
Glockshuber, R.6
-
50
-
-
17044419154
-
Targeting proteins to membranes: structure of the signal recognition particle
-
[50] Egea, P.F., Stroud, R.M., Walter, P., Targeting proteins to membranes: structure of the signal recognition particle. Curr. Opin. Struct. Biol. 15 (2005), 213–220.
-
(2005)
Curr. Opin. Struct. Biol.
, vol.15
, pp. 213-220
-
-
Egea, P.F.1
Stroud, R.M.2
Walter, P.3
-
51
-
-
84945260547
-
Dynamics of co-translational protein targeting
-
[51] Elvekrog, M.M., Walter, P., Dynamics of co-translational protein targeting. Curr. Opin. Chem. Biol. 29 (2015), 79–86.
-
(2015)
Curr. Opin. Chem. Biol.
, vol.29
, pp. 79-86
-
-
Elvekrog, M.M.1
Walter, P.2
-
52
-
-
1542319100
-
Structure of the signal recognition particle interacting with the elongation-arrested ribosome
-
[52] Halic, M., Becker, T., Pool, M.R., Spahn, C.M., Grassucci, R.A., Frank, J., Beckmann, R., Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature 427 (2004), 808–814.
-
(2004)
Nature
, vol.427
, pp. 808-814
-
-
Halic, M.1
Becker, T.2
Pool, M.R.3
Spahn, C.M.4
Grassucci, R.A.5
Frank, J.6
Beckmann, R.7
-
53
-
-
84896468061
-
Embracing the void — how much do we really know about targeting and translocation to the endoplasmic reticulum?
-
[53] Aviram, N., Schuldiner, M., Embracing the void — how much do we really know about targeting and translocation to the endoplasmic reticulum?. Curr. Opin. Cell Biol. 29 (2014), 8–17.
-
(2014)
Curr. Opin. Cell Biol.
, vol.29
, pp. 8-17
-
-
Aviram, N.1
Schuldiner, M.2
-
54
-
-
84874764248
-
A network of cytosolic factors targets SRP-independent proteins to the endoplasmic reticulum
-
[54] Ast, T., Cohen, G., Schuldiner, M., A network of cytosolic factors targets SRP-independent proteins to the endoplasmic reticulum. Cell 152 (2013), 1134–1145.
-
(2013)
Cell
, vol.152
, pp. 1134-1145
-
-
Ast, T.1
Cohen, G.2
Schuldiner, M.3
-
55
-
-
79851511792
-
Targeting pathways of C-tail-anchored proteins
-
[55] Borgese, N., Fasana, E., Targeting pathways of C-tail-anchored proteins. Biochim. Biophys. Acta 1808 (2011), 937–946.
-
(2011)
Biochim. Biophys. Acta
, vol.1808
, pp. 937-946
-
-
Borgese, N.1
Fasana, E.2
-
56
-
-
81855184492
-
Tail-anchored membrane protein insertion into the endoplasmic reticulum
-
[56] Hegde, R.S., Keenan, R.J., Tail-anchored membrane protein insertion into the endoplasmic reticulum. Nat. Rev. Mol. Cell Biol. 12 (2011), 787–798.
-
(2011)
Nat. Rev. Mol. Cell Biol.
, vol.12
, pp. 787-798
-
-
Hegde, R.S.1
Keenan, R.J.2
-
57
-
-
84881056623
-
Endoplasmic reticulum targeting and insertion of tail-anchored membrane proteins by the GET pathway
-
[57] Denic, V., Dotsch, V., Sinning, I., Endoplasmic reticulum targeting and insertion of tail-anchored membrane proteins by the GET pathway. Cold Spring Harb. Perspect. Biol., 5, 2013, a013334.
-
(2013)
Cold Spring Harb. Perspect. Biol.
, vol.5
, pp. a013334
-
-
Denic, V.1
Dotsch, V.2
Sinning, I.3
-
58
-
-
0027980239
-
A protein complex required for signal-sequence-specific sorting and translocation
-
[58] Wiedmann, B., Sakai, H., Davis, T.A., Wiedmann, M., A protein complex required for signal-sequence-specific sorting and translocation. Nature 370 (1994), 434–440.
-
(1994)
Nature
, vol.370
, pp. 434-440
-
-
Wiedmann, B.1
Sakai, H.2
Davis, T.A.3
Wiedmann, M.4
-
59
-
-
77953501128
-
Dual binding mode of the nascent polypeptide-associated complex reveals a novel universal adapter site on the ribosome
-
[59] Pech, M., Spreter, T., Beckmann, R., Beatrix, B., Dual binding mode of the nascent polypeptide-associated complex reveals a novel universal adapter site on the ribosome. J. Biol. Chem. 285 (2010), 19679–19687.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 19679-19687
-
-
Pech, M.1
Spreter, T.2
Beckmann, R.3
Beatrix, B.4
-
60
-
-
84927511251
-
The principle of antagonism ensures protein targeting specificity at the endoplasmic reticulum
-
[60] Gamerdinger, M., Hanebuth, M.A., Frickey, T., Deuerling, E., The principle of antagonism ensures protein targeting specificity at the endoplasmic reticulum. Science 348 (2015), 201–207.
-
(2015)
Science
, vol.348
, pp. 201-207
-
-
Gamerdinger, M.1
Hanebuth, M.A.2
Frickey, T.3
Deuerling, E.4
-
61
-
-
0035957355
-
RAC, a stable ribosome-associated complex in yeast formed by the DnaK–DnaJ homologs Ssz1p and zuotin
-
[61] Gautschi, M., Lilie, H., Funfschilling, U., Mun, A., Ross, S., Lithgow, T., Rucknagel, P., Rospert, S., RAC, a stable ribosome-associated complex in yeast formed by the DnaK–DnaJ homologs Ssz1p and zuotin. Proc. Natl. Acad. Sci. U. S. A. 98 (2001), 3762–3767.
-
(2001)
Proc. Natl. Acad. Sci. U. S. A.
, vol.98
, pp. 3762-3767
-
-
Gautschi, M.1
Lilie, H.2
Funfschilling, U.3
Mun, A.4
Ross, S.5
Lithgow, T.6
Rucknagel, P.7
Rospert, S.8
-
62
-
-
0037007060
-
A functional chaperone triad on the yeast ribosome
-
[62] Gautschi, M., Mun, A., Ross, S., Rospert, S., A functional chaperone triad on the yeast ribosome. Proc. Natl. Acad. Sci. U. S. A. 99 (2002), 4209–4214.
-
(2002)
Proc. Natl. Acad. Sci. U. S. A.
, vol.99
, pp. 4209-4214
-
-
Gautschi, M.1
Mun, A.2
Ross, S.3
Rospert, S.4
-
63
-
-
84872010820
-
Structural characterization of a eukaryotic chaperone — the ribosome-associated complex
-
[63] Leidig, C., Bange, G., Kopp, J., Amlacher, S., Aravind, A., Wickles, S., Witte, G., Hurt, E., Beckmann, R., Sinning, I., Structural characterization of a eukaryotic chaperone — the ribosome-associated complex. Nat. Struct. Mol. Biol. 20 (2013), 23–28.
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, pp. 23-28
-
-
Leidig, C.1
Bange, G.2
Kopp, J.3
Amlacher, S.4
Aravind, A.5
Wickles, S.6
Witte, G.7
Hurt, E.8
Beckmann, R.9
Sinning, I.10
-
64
-
-
0141640821
-
The yeast N(alpha)-acetyltransferase NatA is quantitatively anchored to the ribosome and interacts with nascent polypeptides
-
[64] Gautschi, M., Just, S., Mun, A., Ross, S., Rucknagel, P., Dubaquie, Y., Ehrenhofer-Murray, A., Rospert, S., The yeast N(alpha)-acetyltransferase NatA is quantitatively anchored to the ribosome and interacts with nascent polypeptides. Mol. Cell. Biol. 23 (2003), 7403–7414.
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 7403-7414
-
-
Gautschi, M.1
Just, S.2
Mun, A.3
Ross, S.4
Rucknagel, P.5
Dubaquie, Y.6
Ehrenhofer-Murray, A.7
Rospert, S.8
-
65
-
-
79958027934
-
N-terminal acetylation inhibits protein targeting to the endoplasmic reticulum
-
e1001073
-
[65] Forte, G.M., Pool, M.R., Stirling, C.J., N-terminal acetylation inhibits protein targeting to the endoplasmic reticulum. PLoS Biol., 9, 2011, e1001073.
-
(2011)
PLoS Biol.
, vol.9
-
-
Forte, G.M.1
Pool, M.R.2
Stirling, C.J.3
-
66
-
-
78649712949
-
mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide
-
[66] Oh, W.J., Wu, C.C., Kim, S.J., Facchinetti, V., Julien, L.A., Finlan, M., Roux, P.P., Su, B., Jacinto, E., mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. EMBO J. 29 (2010), 3939–3951.
-
(2010)
EMBO J.
, vol.29
, pp. 3939-3951
-
-
Oh, W.J.1
Wu, C.C.2
Kim, S.J.3
Facchinetti, V.4
Julien, L.A.5
Finlan, M.6
Roux, P.P.7
Su, B.8
Jacinto, E.9
-
67
-
-
79952293503
-
Activation of mTORC2 by association with the ribosome
-
[67] Zinzalla, V., Stracka, D., Oppliger, W., Hall, M.N., Activation of mTORC2 by association with the ribosome. Cell 144 (2011), 757–768.
-
(2011)
Cell
, vol.144
, pp. 757-768
-
-
Zinzalla, V.1
Stracka, D.2
Oppliger, W.3
Hall, M.N.4
-
68
-
-
79960637590
-
Protein targeting and degradation are coupled for elimination of mislocalized proteins
-
[68] Hessa, T., Sharma, A., Mariappan, M., Eshleman, H.D., Gutierrez, E., Hegde, R.S., Protein targeting and degradation are coupled for elimination of mislocalized proteins. Nature 475 (2011), 394–397.
-
(2011)
Nature
, vol.475
, pp. 394-397
-
-
Hessa, T.1
Sharma, A.2
Mariappan, M.3
Eshleman, H.D.4
Gutierrez, E.5
Hegde, R.S.6
-
69
-
-
84903780276
-
BAG6 regulates the quality control of a polytopic ERAD substrate
-
[69] Payapilly, A., High, S., BAG6 regulates the quality control of a polytopic ERAD substrate. J. Cell Sci. 127 (2014), 2898–2909.
-
(2014)
J. Cell Sci.
, vol.127
, pp. 2898-2909
-
-
Payapilly, A.1
High, S.2
-
70
-
-
84922479672
-
Protein synthesis. Rqc2p and 60S ribosomal subunits mediate mRNA-independent elongation of nascent chains
-
[70] Shen, P.S., Park, J., Qin, Y., Li, X., Parsawar, K., Larson, M.H., Cox, J., Cheng, Y., Lambowitz, A.M., Weissman, J.S., Brandman, O., Frost, A., Protein synthesis. Rqc2p and 60S ribosomal subunits mediate mRNA-independent elongation of nascent chains. Science 347 (2015), 75–78.
-
(2015)
Science
, vol.347
, pp. 75-78
-
-
Shen, P.S.1
Park, J.2
Qin, Y.3
Li, X.4
Parsawar, K.5
Larson, M.H.6
Cox, J.7
Cheng, Y.8
Lambowitz, A.M.9
Weissman, J.S.10
Brandman, O.11
Frost, A.12
-
71
-
-
84924777167
-
Structure and assembly pathway of the ribosome quality control complex
-
[71] Shao, S., Brown, A., Santhanam, B., Hegde, R.S., Structure and assembly pathway of the ribosome quality control complex. Mol. Cell 57 (2015), 433–444.
-
(2015)
Mol. Cell
, vol.57
, pp. 433-444
-
-
Shao, S.1
Brown, A.2
Santhanam, B.3
Hegde, R.S.4
-
72
-
-
84908047269
-
Reconstitution of a minimal ribosome-associated ubiquitination pathway with purified factors
-
[72] Shao, S., Hegde, R.S., Reconstitution of a minimal ribosome-associated ubiquitination pathway with purified factors. Mol. Cell 55 (2014), 880–890.
-
(2014)
Mol. Cell
, vol.55
, pp. 880-890
-
-
Shao, S.1
Hegde, R.S.2
-
73
-
-
77957169824
-
Role of a ribosome-associated E3 ubiquitin ligase in protein quality control
-
[73] Bengtson, M.H., Joazeiro, C.A., Role of a ribosome-associated E3 ubiquitin ligase in protein quality control. Nature 467 (2010), 470–473.
-
(2010)
Nature
, vol.467
, pp. 470-473
-
-
Bengtson, M.H.1
Joazeiro, C.A.2
-
74
-
-
84960850555
-
Failure of RQC machinery causes protein aggregation and proteotoxic stress
-
[74] Choe, Y.J., Park, S.H., Hassemer, T., Korner, R., Vincenz-Donnelly, L., Hayer-Hartl, M., Hartl, F.U., Failure of RQC machinery causes protein aggregation and proteotoxic stress. Nature 531 (2016), 191–195.
-
(2016)
Nature
, vol.531
, pp. 191-195
-
-
Choe, Y.J.1
Park, S.H.2
Hassemer, T.3
Korner, R.4
Vincenz-Donnelly, L.5
Hayer-Hartl, M.6
Hartl, F.U.7
-
75
-
-
84954207877
-
Ribosome-associated protein quality control
-
[75] Brandman, O., Hegde, R.S., Ribosome-associated protein quality control. Nat. Struct. Mol. Biol. 23 (2016), 7–15.
-
(2016)
Nat. Struct. Mol. Biol.
, vol.23
, pp. 7-15
-
-
Brandman, O.1
Hegde, R.S.2
-
76
-
-
84873419140
-
The ribosome as a hub for protein quality control
-
[76] Pechmann, S., Willmund, F., Frydman, J., The ribosome as a hub for protein quality control. Mol. Cell 49 (2013), 411–421.
-
(2013)
Mol. Cell
, vol.49
, pp. 411-421
-
-
Pechmann, S.1
Willmund, F.2
Frydman, J.3
|