메뉴 건너뛰기




Volumn 2014, Issue , 2014, Pages

A novel hybrid model for short-term forecasting in PV power generation

Author keywords

[No Author keywords available]

Indexed keywords

FORECASTING; METEOROLOGY; OFFICE BUILDINGS; SOLAR PANELS;

EID: 84904624042     PISSN: 1110662X     EISSN: 1687529X     Source Type: Journal    
DOI: 10.1155/2014/569249     Document Type: Article
Times cited : (88)

References (18)
  • 1
    • 2642572449 scopus 로고    scopus 로고
    • Adjustment factors for the ASHRAE clear-sky model based on solar-radiation measurements in Riyadh
    • DOI 10.1016/j.apenergy.2003.11.005, PII S0306261903002393
    • Al-Sanea S. A., Zedan M. F., Al-Ajlan S. A., Adjustment factors for the ASHRAE clear-sky model based on solar-radiation measurements in Riyadh. Applied Energy 2004 79 2 215 237 10.1016/j.apenergy.2003.11.005 2-s2.0-2642572449 (Pubitemid 38728826)
    • (2004) Applied Energy , vol.79 , Issue.2 , pp. 215-237
    • Al-Sanea, S.A.1    Zedan, M.F.2    Al-Ajlan, S.A.3
  • 2
    • 84880379200 scopus 로고    scopus 로고
    • Review of solar irradiance forecasting methods and a proposition for small-scale insular grids
    • 10.1016/j.rser.2013.06.042 2-s2.0-84880379200
    • Diagne M., David M., Lauret P., Boland J., Schmutz N., Review of solar irradiance forecasting methods and a proposition for small-scale insular grids. Renewable and Sustainable Energy Reviews 2013 27 65 76 10.1016/j.rser.2013.06. 042 2-s2.0-84880379200
    • (2013) Renewable and Sustainable Energy Reviews , vol.27 , pp. 65-76
    • Diagne, M.1    David, M.2    Lauret, P.3    Boland, J.4    Schmutz, N.5
  • 3
    • 42949150359 scopus 로고    scopus 로고
    • Study of hourly and daily solar irradiation forecast using diagonal recurrent wavelet neural networks
    • 10.1016/j.enconman.2007.12.030 2-s2.0-42949150359
    • Cao J., Lin X., Study of hourly and daily solar irradiation forecast using diagonal recurrent wavelet neural networks. Energy Conversion and Management 2008 49 6 1396 1406 10.1016/j.enconman.2007.12.030 2-s2.0-42949150359
    • (2008) Energy Conversion and Management , vol.49 , Issue.6 , pp. 1396-1406
    • Cao, J.1    Lin, X.2
  • 4
    • 40949144519 scopus 로고    scopus 로고
    • Neuro-fuzzy dynamic model with Kalman filter to forecast irradiance and temperature for solar energy systems
    • DOI 10.1016/j.renene.2007.10.004, PII S0960148107003035
    • Chaabene M., Ben Ammar M., Neuro-fuzzy dynamic model with Kalman filter to forecast irradiance and temperature for solar energy systems. Renewable Energy 2008 33 7 1435 1443 10.1016/j.renene.2007.10.004 2-s2.0-40949144519 (Pubitemid 351417447)
    • (2008) Renewable Energy , vol.33 , Issue.7 , pp. 1435-1443
    • Chaabene, M.1    Ben Ammar, M.2
  • 5
    • 59649097842 scopus 로고    scopus 로고
    • Predicting solar radiation at high resolutions: A comparison of time series forecasts
    • 10.1016/j.solener.2008.08.007 2-s2.0-59649097842
    • Reikard G., Predicting solar radiation at high resolutions: a comparison of time series forecasts. Solar Energy 2009 83 3 342 349 10.1016/j.solener.2008. 08.007 2-s2.0-59649097842
    • (2009) Solar Energy , vol.83 , Issue.3 , pp. 342-349
    • Reikard, G.1
  • 6
    • 84887015640 scopus 로고    scopus 로고
    • Accuracy of the solar irradiance forecasts of the Japan Meteorological Agency mesoscale model for the Kanto region, Japan
    • 10.1016/j.solener.2012.10.007 2-s2.0-84868694111
    • Ohtake H., Shimose K., Fonseca J. G. D. S. Jr., Takashima T., Oozeki T., Yamada Y., Accuracy of the solar irradiance forecasts of the Japan Meteorological Agency mesoscale model for the Kanto region, Japan. Solar Energy 2013 98 138 152 10.1016/j.solener.2012.10.007 2-s2.0-84868694111
    • (2013) Solar Energy , vol.98 , pp. 138-152
    • Ohtake, H.1    Shimose, K.2    Fonseca, Jr.J.G.D.S.3    Takashima, T.4    Oozeki, T.5    Yamada, Y.6
  • 7
    • 77949876934 scopus 로고    scopus 로고
    • A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy
    • 10.1016/j.solener.2010.02.006 2-s2.0-77949876934
    • Mellit A., Pavan A. M., A 24-h forecast of solar irradiance using artificial neural network: application for performance prediction of a grid-connected PV plant at Trieste, Italy. Solar Energy 2010 84 5 807 821 10.1016/j.solener.2010.02.006 2-s2.0-77949876934
    • (2010) Solar Energy , vol.84 , Issue.5 , pp. 807-821
    • Mellit, A.1    Pavan, A.M.2
  • 8
    • 84878195056 scopus 로고    scopus 로고
    • Artificial neural network-based model for estimating the produced power ofaphotovoltaic module
    • 10.1016/j.renene.2013.04.011 2-s2.0-84878195056
    • Mellit A., Saǧlam S., Kalogirou S. A., Artificial neural network-based model for estimating the produced power ofaphotovoltaic module. Renewable Energy 2013 60 71 78 10.1016/j.renene.2013.04.011 2-s2.0-84878195056
    • (2013) Renewable Energy , vol.60 , pp. 71-78
    • Mellit, A.1    Saǧlam, S.2    Kalogirou, S.A.3
  • 9
    • 80053972368 scopus 로고    scopus 로고
    • Online 24-h solar power forecasting based on weather type classification using artificial neural network
    • 10.1016/j.solener.2011.08.027 2-s2.0-80053972368
    • Chen C., Duan S., Cai T., Liu B., Online 24-h solar power forecasting based on weather type classification using artificial neural network. Solar Energy 2011 85 11 2856 2870 10.1016/j.solener.2011.08.027 2-s2.0-80053972368
    • (2011) Solar Energy , vol.85 , Issue.11 , pp. 2856-2870
    • Chen, C.1    Duan, S.2    Cai, T.3    Liu, B.4
  • 10
    • 84893846786 scopus 로고    scopus 로고
    • Artificial neural networks to predict the power output of a PV panel
    • 193083 10.1155/2014/193083
    • Brano V. L., Ciulla G., Falco M. D., Artificial neural networks to predict the power output of a PV panel. International Journal of Photoenergy 2014 2014 12 193083 10.1155/2014/193083
    • (2014) International Journal of Photoenergy , vol.2014 , pp. 12
    • Brano, V.L.1    Ciulla, G.2    Falco, M.D.3
  • 11
    • 84890826233 scopus 로고    scopus 로고
    • An ARMAX model for forecasting the power output of a grid connected photovoltaic system
    • 10.1016/j.renene.2013.11.067
    • Li Y., Su Y., Shu L., An ARMAX model for forecasting the power output of a grid connected photovoltaic system. Renewable Energy 2014 66 78 89 10.1016/j.renene.2013.11.067
    • (2014) Renewable Energy , vol.66 , pp. 78-89
    • Li, Y.1    Su, Y.2    Shu, L.3
  • 12
    • 84883543120 scopus 로고    scopus 로고
    • Intra-hour forecasts of solar power production using measurements from a network of irradiance sensors
    • 10.1016/j.solener.2013.08.002
    • Lonij V. P. A., Brooks A. E., Cronin A. D., Leuthold M., Koch K., Intra-hour forecasts of solar power production using measurements from a network of irradiance sensors. Solar Energy 2013 97 58 66 10.1016/j.solener.2013.08.002
    • (2013) Solar Energy , vol.97 , pp. 58-66
    • Lonij, V.P.A.1    Brooks, A.E.2    Cronin, A.D.3    Leuthold, M.4    Koch, K.5
  • 13
    • 84886924216 scopus 로고    scopus 로고
    • Forecasting power output of PV grid connected system in Thailand without using solar radiation measurement
    • 10.1016/j.egypro.2011.09.024
    • Chupong C., Plangklang B., Forecasting power output of PV grid connected system in Thailand without using solar radiation measurement. Energy Procedia 2011 9 230 237 10.1016/j.egypro.2011.09.024
    • (2011) Energy Procedia , vol.9 , pp. 230-237
    • Chupong, C.1    Plangklang, B.2
  • 15
    • 70049096782 scopus 로고    scopus 로고
    • Online short-term solar power forecasting
    • 10.1016/j.solener.2009.05.016 2-s2.0-70049096782
    • Bacher P., Madsen H., Nielsen H. A., Online short-term solar power forecasting. Solar Energy 2009 83 10 1772 1783 10.1016/j.solener.2009.05.016 2-s2.0-70049096782
    • (2009) Solar Energy , vol.83 , Issue.10 , pp. 1772-1783
    • Bacher, P.1    Madsen, H.2    Nielsen, H.A.3
  • 16
    • 84870606178 scopus 로고    scopus 로고
    • Short-term prediction of photovoltaic energy generation by intelligent approach
    • 10.1016/j.enbuild.2012.08.011 2-s2.0-84870606178
    • Chow S. K. H., Lee E. W. M., Li D. H. W., Short-term prediction of photovoltaic energy generation by intelligent approach. Energy and Buildings 2012 55 660 667 10.1016/j.enbuild.2012.08.011 2-s2.0-84870606178
    • (2012) Energy and Buildings , vol.55 , pp. 660-667
    • Chow, S.K.H.1    Lee, E.W.M.2    Li, D.H.W.3
  • 17
    • 84887367105 scopus 로고    scopus 로고
    • A hybrid model (SARIMASVM) for short-term power forecasting of a small-scale grid-connected photovoltaic plant
    • Bouzerdoum M., Mellit A., Massi Pavan A., A hybrid model (SARIMASVM) for short-term power forecasting of a small-scale grid-connected photovoltaic plant. Solar Energy 2013 98 226 235
    • (2013) Solar Energy , vol.98 , pp. 226-235
    • Bouzerdoum, M.1    Mellit, A.2    Massi Pavan, A.3
  • 18
    • 84885407598 scopus 로고    scopus 로고
    • Forecasting the cell temperature of PV modules with an adaptive system
    • 192854 10.1155/2013/192854
    • Ciulla G., lo Brano V., Moreci E., Forecasting the cell temperature of PV modules with an adaptive system. International Journal of Photoenergy 2013 2013 10 192854 10.1155/2013/192854
    • (2013) International Journal of Photoenergy , vol.2013 , pp. 10
    • Ciulla, G.1    Lo Brano, V.2    Moreci, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.