메뉴 건너뛰기




Volumn 126, Issue , 2014, Pages 29-37

Analysis of daily solar power prediction with data-driven approaches

Author keywords

Artificial neural network (ANN); Data mining; Solar power prediction; Support vector machine (SVM); Time series model

Indexed keywords

DATA MINING; FORECASTING; NEAREST NEIGHBOR SEARCH; NEURAL NETWORKS; SOLAR ENERGY; SUPPORT VECTOR MACHINES; SUPPORT VECTOR REGRESSION;

EID: 84899128304     PISSN: 03062619     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apenergy.2014.03.084     Document Type: Article
Times cited : (140)

References (38)
  • 1
    • 84880253103 scopus 로고    scopus 로고
    • Evaluation of the potential of central receiver solar power plants: configuration, optimization and trends
    • Avila-Marin A.L., Fernandez-Reche J., Tellez F.M. Evaluation of the potential of central receiver solar power plants: configuration, optimization and trends. Appl Energy 2013, 112:274-288.
    • (2013) Appl Energy , vol.112 , pp. 274-288
    • Avila-Marin, A.L.1    Fernandez-Reche, J.2    Tellez, F.M.3
  • 2
    • 84894305759 scopus 로고    scopus 로고
    • Advances and challenges in ORC systems modeling for low grade thermal energy recovery
    • Ziviani D., Beyene A., Venturini M. Advances and challenges in ORC systems modeling for low grade thermal energy recovery. Appl Energy 2014, 121:79-95.
    • (2014) Appl Energy , vol.121 , pp. 79-95
    • Ziviani, D.1    Beyene, A.2    Venturini, M.3
  • 3
    • 84870731872 scopus 로고    scopus 로고
    • Rating of roofs' surfaces regarding their solar potential and suitability for PV systems, based on LiDAR data
    • Lukač N., Žlaus D., Seme S., Žalik B., Štumberger G. Rating of roofs' surfaces regarding their solar potential and suitability for PV systems, based on LiDAR data. Appl Energy 2013, 102:803-812.
    • (2013) Appl Energy , vol.102 , pp. 803-812
    • Lukač, N.1    Žlaus, D.2    Seme, S.3    Žalik, B.4    Štumberger, G.5
  • 4
    • 84885706249 scopus 로고    scopus 로고
    • A method for the dynamic testing and evaluation of the performance of combined solar thermal heat pump hot water systems
    • Panaras G., Mathioulakis E., Belessiotis V. A method for the dynamic testing and evaluation of the performance of combined solar thermal heat pump hot water systems. Appl Energy 2014, 114:124-134.
    • (2014) Appl Energy , vol.114 , pp. 124-134
    • Panaras, G.1    Mathioulakis, E.2    Belessiotis, V.3
  • 6
    • 84861338534 scopus 로고    scopus 로고
    • Analyzing bearing faults in wind turbines: a data-mining approach
    • Kusiak A., Verma A. Analyzing bearing faults in wind turbines: a data-mining approach. Renew Energy 2012, 48:110-116.
    • (2012) Renew Energy , vol.48 , pp. 110-116
    • Kusiak, A.1    Verma, A.2
  • 7
    • 84862213461 scopus 로고    scopus 로고
    • Monitoring of wind farms' power curves using machine learning techniques
    • Marvuglia A., Messineo A. Monitoring of wind farms' power curves using machine learning techniques. Appl Energy 2012, 98:574-583.
    • (2012) Appl Energy , vol.98 , pp. 574-583
    • Marvuglia, A.1    Messineo, A.2
  • 8
    • 84896085639 scopus 로고    scopus 로고
    • Forecasting energy consumption of multi-family residential buildings using support vector regression: investigating the impact of temporal and spatial monitoring granularity on performance accuracy
    • Jain R.K., Smith K.M., Culligan P.J., Taylor J.E. Forecasting energy consumption of multi-family residential buildings using support vector regression: investigating the impact of temporal and spatial monitoring granularity on performance accuracy. Appl Energy 2014, 123:168-178.
    • (2014) Appl Energy , vol.123 , pp. 168-178
    • Jain, R.K.1    Smith, K.M.2    Culligan, P.J.3    Taylor, J.E.4
  • 9
    • 0030269852 scopus 로고    scopus 로고
    • Neural network architectures for vector prediction
    • Rizvi S.A., Wang L., Nasrabadi N.M. Neural network architectures for vector prediction. Proc IEEE 1996, 84:1513-1528.
    • (1996) Proc IEEE , vol.84 , pp. 1513-1528
    • Rizvi, S.A.1    Wang, L.2    Nasrabadi, N.M.3
  • 10
    • 0345669122 scopus 로고    scopus 로고
    • A study for estimating solar radiation in Elaziǧ using geographical and meteorological data
    • Türk Toǧrul I., Onat E. A study for estimating solar radiation in Elaziǧ using geographical and meteorological data. Energy Convers Manage 1999, 40:1577-1584.
    • (1999) Energy Convers Manage , vol.40 , pp. 1577-1584
    • Türk Toǧrul, I.1    Onat, E.2
  • 11
    • 16744364135 scopus 로고    scopus 로고
    • Multiplicative ARMA models to generate hourly series of global irradiation
    • Mora-Lopez L., Sidrach-de-Cardona M. Multiplicative ARMA models to generate hourly series of global irradiation. Sol Energy 1998, 63:283-291.
    • (1998) Sol Energy , vol.63 , pp. 283-291
    • Mora-Lopez, L.1    Sidrach-de-Cardona, M.2
  • 12
    • 59649097842 scopus 로고    scopus 로고
    • Predicting solar radiation at high resolutions: a comparison of time series forecasts
    • Reikard G. Predicting solar radiation at high resolutions: a comparison of time series forecasts. Sol Energy 2009, 83:342-349.
    • (2009) Sol Energy , vol.83 , pp. 342-349
    • Reikard, G.1
  • 13
    • 0024941720 scopus 로고
    • A two-state Markovian model of global irradiation suitable for photovoltaic conversion
    • Maafi A., Adane A. A two-state Markovian model of global irradiation suitable for photovoltaic conversion. Sol Wind Technol 1989, 6:247-252.
    • (1989) Sol Wind Technol , vol.6 , pp. 247-252
    • Maafi, A.1    Adane, A.2
  • 14
    • 0022604882 scopus 로고
    • Markov processes and Fourier analysis as a tool to describe and simulate daily solar irradiance
    • Amato U., Andretta A., Bartoli B., Coluzzi B., Cuomo V., Fontana F., et al. Markov processes and Fourier analysis as a tool to describe and simulate daily solar irradiance. Sol Energy 1986, 37:179-194.
    • (1986) Sol Energy , vol.37 , pp. 179-194
    • Amato, U.1    Andretta, A.2    Bartoli, B.3    Coluzzi, B.4    Cuomo, V.5    Fontana, F.6
  • 15
    • 77956176157 scopus 로고    scopus 로고
    • Prediction of global solar irradiance based on time series analysis: application to solar thermal power plants energy production planning
    • Martín L., Zarzalejo L.F., Polo J., Navarro A., Marchante R., Cony M. Prediction of global solar irradiance based on time series analysis: application to solar thermal power plants energy production planning. Sol Energy 2010, 84:1772-1781.
    • (2010) Sol Energy , vol.84 , pp. 1772-1781
    • Martín, L.1    Zarzalejo, L.F.2    Polo, J.3    Navarro, A.4    Marchante, R.5    Cony, M.6
  • 16
    • 0034963531 scopus 로고    scopus 로고
    • Artificial neural networks in renewable energy systems applications: a review
    • Kalogirou S.A. Artificial neural networks in renewable energy systems applications: a review. Renew Sust Energy Rev 2001, 5:373-401.
    • (2001) Renew Sust Energy Rev , vol.5 , pp. 373-401
    • Kalogirou, S.A.1
  • 17
    • 78349311143 scopus 로고    scopus 로고
    • Forecasting of preprocessed daily solar radiation time series using neural networks
    • Paoli C., Voyant C., Muselli M., Nivet M. Forecasting of preprocessed daily solar radiation time series using neural networks. Sol Energy 2010, 84:2146-2160.
    • (2010) Sol Energy , vol.84 , pp. 2146-2160
    • Paoli, C.1    Voyant, C.2    Muselli, M.3    Nivet, M.4
  • 18
    • 33646726754 scopus 로고    scopus 로고
    • An adaptive wavelet-network model for forecasting daily total solar-radiation
    • Mellit A., Benghanem M., Kalogirou S.A. An adaptive wavelet-network model for forecasting daily total solar-radiation. Appl Energy 2006, 83:705-722.
    • (2006) Appl Energy , vol.83 , pp. 705-722
    • Mellit, A.1    Benghanem, M.2    Kalogirou, S.A.3
  • 19
    • 0036525799 scopus 로고    scopus 로고
    • Solar radiation estimation using artificial neural networks
    • Dorvlo S., Jervase J., Al-Lawati A. Solar radiation estimation using artificial neural networks. Appl Energy 2002, 71:307-319.
    • (2002) Appl Energy , vol.71 , pp. 307-319
    • Dorvlo, S.1    Jervase, J.2    Al-Lawati, A.3
  • 20
    • 80053972368 scopus 로고    scopus 로고
    • Online 24-h solar power forecasting based on weather type classification using artificial neural network
    • Chen C., Duan S., Cai T., Liu B. Online 24-h solar power forecasting based on weather type classification using artificial neural network. Sol Energy 2011, 85:2856-2870.
    • (2011) Sol Energy , vol.85 , pp. 2856-2870
    • Chen, C.1    Duan, S.2    Cai, T.3    Liu, B.4
  • 21
    • 79751479615 scopus 로고    scopus 로고
    • Estimation of monthly solar radiation from measured temperatures using support vector machines - a case study
    • Chen J.L., Liu H.B., Wu W., Xie D.T. Estimation of monthly solar radiation from measured temperatures using support vector machines - a case study. Renew Energy 2011, 36:413-420.
    • (2011) Renew Energy , vol.36 , pp. 413-420
    • Chen, J.L.1    Liu, H.B.2    Wu, W.3    Xie, D.T.4
  • 22
    • 84885974735 scopus 로고    scopus 로고
    • Bayesian rules and stochastic models for high accuracy prediction of solar radiation
    • Voyant C., Darras C., Muselli M., Paoli C., Nivet M., Poggi P. Bayesian rules and stochastic models for high accuracy prediction of solar radiation. Appl Energy 2014, 114:218-226.
    • (2014) Appl Energy , vol.114 , pp. 218-226
    • Voyant, C.1    Darras, C.2    Muselli, M.3    Paoli, C.4    Nivet, M.5    Poggi, P.6
  • 24
    • 84855801266 scopus 로고    scopus 로고
    • Short-mid-term solar power prediction by using artificial neural networks
    • Izgi E., Öztopal A., Yerli B., Kaymak M.K., Şahin A.D. Short-mid-term solar power prediction by using artificial neural networks. Sol Energy 2012, 86:725-733.
    • (2012) Sol Energy , vol.86 , pp. 725-733
    • Izgi, E.1    Öztopal, A.2    Yerli, B.3    Kaymak, M.K.4    Şahin, A.D.5
  • 25
    • 70049096782 scopus 로고    scopus 로고
    • Online short-term solar power forecasting
    • Bacher P., Madsen H., Nielsen H.A. Online short-term solar power forecasting. Sol Energy 2009, 83:1772-1783.
    • (2009) Sol Energy , vol.83 , pp. 1772-1783
    • Bacher, P.1    Madsen, H.2    Nielsen, H.A.3
  • 26
    • 0033594096 scopus 로고    scopus 로고
    • An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation
    • Thornton P.E., Running S.W. An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation. Agric Forest Meteorol 1999, 93:211-228.
    • (1999) Agric Forest Meteorol , vol.93 , pp. 211-228
    • Thornton, P.E.1    Running, S.W.2
  • 27
    • 48549111629 scopus 로고
    • On the relationship between incoming solar radiation and daily maximum and minimum temperature
    • Bristow K.L., Campbell G.S. On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agric Forest Meteorol 1984, 31:159-166.
    • (1984) Agric Forest Meteorol , vol.31 , pp. 159-166
    • Bristow, K.L.1    Campbell, G.S.2
  • 28
    • 84860816405 scopus 로고    scopus 로고
    • Functional fuzzy approach for forecasting daily global solar irradiation
    • Boata R.S., Gravila P. Functional fuzzy approach for forecasting daily global solar irradiation. Atmos Res 2012, 112:79-88.
    • (2012) Atmos Res , vol.112 , pp. 79-88
    • Boata, R.S.1    Gravila, P.2
  • 29
    • 27144494198 scopus 로고    scopus 로고
    • A simplified model for generating sequences of global solar radiation data for isolated sites: using artificial neural network and a library of Markov transition matrices approach
    • Mellit A., Benghanem M., Arab A.H., Guessoum A. A simplified model for generating sequences of global solar radiation data for isolated sites: using artificial neural network and a library of Markov transition matrices approach. Sol Energy 2005, 79:469-482.
    • (2005) Sol Energy , vol.79 , pp. 469-482
    • Mellit, A.1    Benghanem, M.2    Arab, A.H.3    Guessoum, A.4
  • 30
    • 77949876934 scopus 로고    scopus 로고
    • A 24-h forecast of solar irradiance using artificial neural network: application for performance prediction of a grid-connected PV plant at Trieste, Italy
    • Mellit A., Pavan A.M. A 24-h forecast of solar irradiance using artificial neural network: application for performance prediction of a grid-connected PV plant at Trieste, Italy. Sol Energy 2010, 84:807-821.
    • (2010) Sol Energy , vol.84 , pp. 807-821
    • Mellit, A.1    Pavan, A.M.2
  • 31
    • 51349143456 scopus 로고    scopus 로고
    • Prediction of monthly mean daily diffuse solar radiation using artificial neural networks and comparison with other empirical models
    • Jiang Y.J. Prediction of monthly mean daily diffuse solar radiation using artificial neural networks and comparison with other empirical models. Energy Policy 2008, 36:3833-3837.
    • (2008) Energy Policy , vol.36 , pp. 3833-3837
    • Jiang, Y.J.1
  • 32
    • 84862962251 scopus 로고    scopus 로고
    • Assessment of monthly solar radiation estimates using support vector machines and air temperatures
    • Wu W., Liu H.B. Assessment of monthly solar radiation estimates using support vector machines and air temperatures. Int J Climatol 2012, 32:274-285.
    • (2012) Int J Climatol , vol.32 , pp. 274-285
    • Wu, W.1    Liu, H.B.2
  • 34
    • 27544480397 scopus 로고    scopus 로고
    • A new approach to fitting linear models in high dimensional spaces
    • Ph.D. dissertation, University of Waikato
    • Wang Y. A new approach to fitting linear models in high dimensional spaces, Ph.D. dissertation, University of Waikato; 2000. 204 p.
    • (2000) , pp. 204
    • Wang, Y.1
  • 35
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola A.J., Schölkopf B. A tutorial on support vector regression. Stat Comput 2004, 14:199-222.
    • (2004) Stat Comput , vol.14 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.