메뉴 건너뛰기




Volumn 78, Issue , 2014, Pages 247-256

Solar energy prediction using linear and non-linear regularization models: A study on AMS (American Meteorological Society) 2013-14 Solar Energy Prediction Contest

Author keywords

Artificial neural network; Ensemble learning; Least square regression; Regularization; Solar energy forecasting; Variable segmentation

Indexed keywords

ARTIFICIAL INTELLIGENCE; FORECASTING; INTERPOLATION; METEOROLOGY; NEURAL NETWORKS; REGRESSION ANALYSIS; SOLAR ENERGY; TREES (MATHEMATICS);

EID: 84920720385     PISSN: 03605442     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.energy.2014.10.012     Document Type: Article
Times cited : (63)

References (42)
  • 1
    • 84875621512 scopus 로고    scopus 로고
    • Guest Editorial: special section on applications of solar energy to power systems
    • Kroposky B. Guest Editorial: special section on applications of solar energy to power systems. IEEE Trans Sustain Energy April 2013, 4(2):463.
    • (2013) IEEE Trans Sustain Energy , vol.4 , Issue.2 , pp. 463
    • Kroposky, B.1
  • 2
    • 85019525151 scopus 로고    scopus 로고
    • Wikepedia, Available at: [last accessed 30.05.14].
    • Source: solar power by country, Wikepedia, Available at: [last accessed 30.05.14]. http://en.wikipedia.org/wiki/Solar_power_by_country.
  • 3
    • 84875688443 scopus 로고    scopus 로고
    • Daily solar energy estimation for minimizing energy storage requirements in PV power plants
    • Beltran H., Perez E., Aparicio N., Rodriguez P. Daily solar energy estimation for minimizing energy storage requirements in PV power plants. IEEE Trans Sustain Energy April 2013, 4(2):474-481.
    • (2013) IEEE Trans Sustain Energy , vol.4 , Issue.2 , pp. 474-481
    • Beltran, H.1    Perez, E.2    Aparicio, N.3    Rodriguez, P.4
  • 5
    • 84875688511 scopus 로고    scopus 로고
    • Determination method of insolation prediction with fuzzy and applying neural network for long-term ahead PV power output correction
    • Yona A., Senjyu T., Funabashi T., Kim C. Determination method of insolation prediction with fuzzy and applying neural network for long-term ahead PV power output correction. IEEE Trans Sustain Energy 2013, 4(2):527-533.
    • (2013) IEEE Trans Sustain Energy , vol.4 , Issue.2 , pp. 527-533
    • Yona, A.1    Senjyu, T.2    Funabashi, T.3    Kim, C.4
  • 6
    • 75449111025 scopus 로고    scopus 로고
    • Artificial intelligence technique for modelling and forecasting of solar radiation data: a Review
    • Mellit A. Artificial intelligence technique for modelling and forecasting of solar radiation data: a Review. Int J Artif Intell Soft Comput 2008, 1:52-76.
    • (2008) Int J Artif Intell Soft Comput , vol.1 , pp. 52-76
    • Mellit, A.1
  • 7
    • 84897515616 scopus 로고    scopus 로고
    • Solar radiation prediction using artificial neural network techniques: a review
    • Yadav A.K., Chandel S.S. Solar radiation prediction using artificial neural network techniques: a review. Renew Sustain Energy Rev 2014, 33:772-781.
    • (2014) Renew Sustain Energy Rev , vol.33 , pp. 772-781
    • Yadav, A.K.1    Chandel, S.S.2
  • 9
    • 77949876934 scopus 로고    scopus 로고
    • A24-h forecast of solar irradiance using artificial neural network: application for performance prediction of a grid-connected PV plant at Trieste, Italy
    • Mellit A., Pavan A.M. A24-h forecast of solar irradiance using artificial neural network: application for performance prediction of a grid-connected PV plant at Trieste, Italy. Sol Energy 2010, 84:807-821.
    • (2010) Sol Energy , vol.84 , pp. 807-821
    • Mellit, A.1    Pavan, A.M.2
  • 10
    • 70049096782 scopus 로고    scopus 로고
    • Online short-term solar power forecasting
    • Bacher P., Madsen H., Nielsen H.A. Online short-term solar power forecasting. Sol Energy 2009, 83:pp.1772-pp.1783.
    • (2009) Sol Energy , vol.83 , pp. pp.1772-pp.1783
    • Bacher, P.1    Madsen, H.2    Nielsen, H.A.3
  • 11
    • 0034140815 scopus 로고
    • Univariate and multivariate forecasting of hourly solar radiation with artificial intelligence techniques
    • Sfetsos A., Coonick A.H. Univariate and multivariate forecasting of hourly solar radiation with artificial intelligence techniques. Sol Energy 1984, 68:169-178.
    • (1984) Sol Energy , vol.68 , pp. 169-178
    • Sfetsos, A.1    Coonick, A.H.2
  • 15
    • 84875688612 scopus 로고    scopus 로고
    • Awavelet based variability model (WVM) for solar PV power plants
    • Lave M., Kleissl J., Stein J.S. Awavelet based variability model (WVM) for solar PV power plants. IEEE Trans Sustain Energy April 2013, 4(2):501-509.
    • (2013) IEEE Trans Sustain Energy , vol.4 , Issue.2 , pp. 501-509
    • Lave, M.1    Kleissl, J.2    Stein, J.S.3
  • 16
    • 84875689178 scopus 로고    scopus 로고
    • Geostrophic wind dependent probabilistic irradiance forecasts for coastal California
    • Mathiesen P., Brown J.M., Kleissl J. Geostrophic wind dependent probabilistic irradiance forecasts for coastal California. IEEE Trans Sustain Energy April 2013, 4(2):510-518.
    • (2013) IEEE Trans Sustain Energy , vol.4 , Issue.2 , pp. 510-518
    • Mathiesen, P.1    Brown, J.M.2    Kleissl, J.3
  • 17
    • 84858379340 scopus 로고    scopus 로고
    • An assessment of diffuse solar energy models in terms of estimation accuracy
    • Khatib T., Mohamed A., Mahmoud M., Sopian K. An assessment of diffuse solar energy models in terms of estimation accuracy. Energy Procedia 2012, 14:2066-2074.
    • (2012) Energy Procedia , vol.14 , pp. 2066-2074
    • Khatib, T.1    Mohamed, A.2    Mahmoud, M.3    Sopian, K.4
  • 18
    • 84899128304 scopus 로고    scopus 로고
    • Analysis of daily solar power prediction with data driven approaches
    • Long H., Zhang Z., Su Y. Analysis of daily solar power prediction with data driven approaches. Appl Energy 2014, 126:29-37.
    • (2014) Appl Energy , vol.126 , pp. 29-37
    • Long, H.1    Zhang, Z.2    Su, Y.3
  • 19
    • 84899853730 scopus 로고    scopus 로고
    • Daily global solar radiation prediction based on a hybrid coral reefs optimization - extreme learning machine approach
    • Salcedo-Sanz S., Casanova-Mateo C., Pastor-Sanchez A., Sanchez-Giron M. Daily global solar radiation prediction based on a hybrid coral reefs optimization - extreme learning machine approach. Sol Energy 2014, 105:91-98.
    • (2014) Sol Energy , vol.105 , pp. 91-98
    • Salcedo-Sanz, S.1    Casanova-Mateo, C.2    Pastor-Sanchez, A.3    Sanchez-Giron, M.4
  • 20
    • 84901657724 scopus 로고    scopus 로고
    • Fuzzy logic based modelling and estimation of global solar energy using meteorological parameters
    • Rizwan M., Jamil M., Kirmani S., Kothari D.P. Fuzzy logic based modelling and estimation of global solar energy using meteorological parameters. Energy 2014, 70:685-691.
    • (2014) Energy , vol.70 , pp. 685-691
    • Rizwan, M.1    Jamil, M.2    Kirmani, S.3    Kothari, D.P.4
  • 21
  • 22
    • 84867189562 scopus 로고    scopus 로고
    • A Prediction of monthly global solar radiation using adaptive neuro-fuzzy inference system (ANFIS) technique over the state of Tamilnadu (India): a comparative study
    • Sumithira TR, and A. Nirmal Kumar A. Prediction of monthly global solar radiation using adaptive neuro-fuzzy inference system (ANFIS) technique over the state of Tamilnadu (India): a comparative study. Appl Sol Energy; 48(2):140-145.
    • Appl Sol Energy , vol.48 , Issue.2 , pp. 140-145
    • Sumithira, T.R.1    Nirmal Kumar, A.2
  • 23
    • 84892688929 scopus 로고    scopus 로고
    • "Selection of most relevant input parameters using WEKA for artificial neural network based solar radiation prediction models
    • Yadav A.K., Malik H., Chandel S.S. "Selection of most relevant input parameters using WEKA for artificial neural network based solar radiation prediction models. Renew Sustain Energy Rev 2014, 31:509-519.
    • (2014) Renew Sustain Energy Rev , vol.31 , pp. 509-519
    • Yadav, A.K.1    Malik, H.2    Chandel, S.S.3
  • 24
    • 9244240793 scopus 로고    scopus 로고
    • Load forecasting using support vector machines: a study on EUNITE competition 2001
    • Chen B., Chang M., Lin C. Load forecasting using support vector machines: a study on EUNITE competition 2001. IEEE Trans Power Syst November 2004, 19(4):1821-1830.
    • (2004) IEEE Trans Power Syst , vol.19 , Issue.4 , pp. 1821-1830
    • Chen, B.1    Chang, M.2    Lin, C.3
  • 29
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R. Regression shrinkage and selection via the lasso. JR Stat Soc Ser B 1996, 58(1):267-288.
    • (1996) JR Stat Soc Ser B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 30
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou H., Hastie T. Regularization and variable selection via the elastic net. JR Stat Soc Ser B 2005, 67(2):301-320.
    • (2005) JR Stat Soc Ser B , vol.67 , Issue.2 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 32
    • 0035248045 scopus 로고    scopus 로고
    • Neural networks for short term load forecasting: a review and evaluation
    • Hippert H.S., Pedeira C.E., Souza R.C. Neural networks for short term load forecasting: a review and evaluation. IEEE Trans Power Syst February 2001, 16(1):44-55.
    • (2001) IEEE Trans Power Syst , vol.16 , Issue.1 , pp. 44-55
    • Hippert, H.S.1    Pedeira, C.E.2    Souza, R.C.3
  • 36
    • 85019523984 scopus 로고    scopus 로고
    • Available at:
    • Source: prevent statistical over-fitting with regularization techniques. Available at: http://www.mathworks.in/discovery/regularization.html.
  • 38
    • 85018007295 scopus 로고    scopus 로고
    • http://www.kaggle.com/c/ams-2014-solar-energy-prediction-contest/submissions/attach.
  • 42
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach Learn 2001, 45:5-32.
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.