메뉴 건너뛰기




Volumn 117, Issue , 2017, Pages 16-26

Learning distributed discrete Bayesian Network Classifiers under MapReduce with Apache Spark

Author keywords

Apache Hadoop; Apache Spark; Bayesian Network Classifiers; Big Data; High dimensionality; MapReduce

Indexed keywords

BAYESIAN NETWORKS; BIG DATA; CLUSTER COMPUTING; CLUSTERING ALGORITHMS; COMPUTER SOFTWARE; LARGE DATASET; SCALABILITY; SUPERVISED LEARNING;

EID: 84977631582     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2016.06.013     Document Type: Article
Times cited : (36)

References (30)
  • 1
    • 81055138684 scopus 로고    scopus 로고
    • Big Data: The Next Frontier for Innovation, Competition, and Productivity
    • June
    • [1] Manyika, J., Chui, M., Brown, B., Bughin, J., Big Data: The Next Frontier for Innovation, Competition, and Productivity. Technical Report, 2011 June.
    • (2011) Technical Report
    • Manyika, J.1    Chui, M.2    Brown, B.3    Bughin, J.4
  • 3
    • 84905021679 scopus 로고    scopus 로고
    • Big Data: Related Technologies, Challenges and Future Prospects
    • Springer
    • [3] Chen, M., Mao, S., Zhang, Y., Leung, V.C., Big Data: Related Technologies, Challenges and Future Prospects. 2014, Springer.
    • (2014)
    • Chen, M.1    Mao, S.2    Zhang, Y.3    Leung, V.C.4
  • 4
    • 37549003336 scopus 로고    scopus 로고
    • MapReduce: simplified data processing on large clusters
    • [4] Dean, J., Ghemawat, S., MapReduce: simplified data processing on large clusters. Commun. ACM, 2008, 1–13.
    • (2008) Commun. ACM , pp. 1-13
    • Dean, J.1    Ghemawat, S.2
  • 6
    • 74049113467 scopus 로고    scopus 로고
    • Hadoop: The Definitive Guide
    • O'Reilly Media, Inc.
    • [6] White, T., Hadoop: The Definitive Guide. 2012, O'Reilly Media, Inc.
    • (2012)
    • White, T.1
  • 9
    • 84905815981 scopus 로고    scopus 로고
    • Discrete Bayesian network classifiers
    • [9] Bielza, C., Larrañaga, P., Discrete Bayesian network classifiers. ACM Comput. Surv. 47:1 (2014), 1–43, 10.1145/2576868.
    • (2014) ACM Comput. Surv. , vol.47 , Issue.1 , pp. 1-43
    • Bielza, C.1    Larrañaga, P.2
  • 12
    • 84861113715 scopus 로고    scopus 로고
    • 3D data management: controlling data volume, velocity and variety
    • [12] Laney, D., 3D data management: controlling data volume, velocity and variety. META Group Res. Note, 6, 2001, 70.
    • (2001) META Group Res. Note , vol.6 , pp. 70
    • Laney, D.1
  • 13
    • 0003391330 scopus 로고    scopus 로고
    • Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference
    • Elsevier Science
    • [13] Pearl, J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. 2014, Elsevier Science.
    • (2014)
    • Pearl, J.1
  • 14
    • 0003448310 scopus 로고    scopus 로고
    • Bayesian Networks and Decision Graphs
    • Springer Science & Business Media
    • [14] Nielsen, T.D., Jenses, F.V., Bayesian Networks and Decision Graphs. 2009, Springer Science & Business Media.
    • (2009)
    • Nielsen, T.D.1    Jenses, F.V.2
  • 15
    • 0031276011 scopus 로고    scopus 로고
    • Bayesian network classifiers
    • [15] Friedman, N., Geiger, D., Goldszmidt, M., Bayesian network classifiers. Mach. Learn. 29:2-3 (1997), 131–163.
    • (1997) Mach. Learn. , vol.29 , Issue.2-3 , pp. 131-163
    • Friedman, N.1    Geiger, D.2    Goldszmidt, M.3
  • 16
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • [16] Domingos, P., Pazzani, M., On the optimality of the simple Bayesian classifier under zero-one loss. Mach. Learn. 29:2-3 (1997), 103–130.
    • (1997) Mach. Learn. , vol.29 , Issue.2-3 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 19
    • 14844351034 scopus 로고    scopus 로고
    • Not so naive Bayes: aggregating one-dependence estimators
    • [19] Webb, G.I., Boughton, J.R., Wang, Z., Not so naive Bayes: aggregating one-dependence estimators. Mach. Learn. 58:1 (2005), 5–24.
    • (2005) Mach. Learn. , vol.58 , Issue.1 , pp. 5-24
    • Webb, G.I.1    Boughton, J.R.2    Wang, Z.3
  • 20
    • 84863876681 scopus 로고    scopus 로고
    • Learning by extrapolation from marginal to full-multivariate probability distributions: decreasingly naive Bayesian classification
    • [20] Webb, G.I., Boughton, J.R., Zheng, F., Ting, K.M., Salem, H., Learning by extrapolation from marginal to full-multivariate probability distributions: decreasingly naive Bayesian classification. Mach. Learn. 86:2 (2011), 233–272, 10.1007/s10994-011-5263-6.
    • (2011) Mach. Learn. , vol.86 , Issue.2 , pp. 233-272
    • Webb, G.I.1    Boughton, J.R.2    Zheng, F.3    Ting, K.M.4    Salem, H.5
  • 21
    • 84924183918 scopus 로고    scopus 로고
    • Mining of Massive Datasets
    • Cambridge University Press Cambridge
    • [21] Rajaraman, A., Ullman, J.D., Ullman, J.D., Ullman, J.D., Mining of Massive Datasets. 1, 2012, Cambridge University Press Cambridge.
    • (2012) , vol.1
    • Rajaraman, A.1    Ullman, J.D.2    Ullman, J.D.3    Ullman, J.D.4
  • 24
    • 84969135956 scopus 로고    scopus 로고
    • Scalable learning of k-dependence Bayesian classifiers under mapreduce
    • IEEE
    • [24] Arias, J., Gamez, J.A., Puerta, J.M., Scalable learning of k-dependence Bayesian classifiers under mapreduce. Trustcom/BigDataSE/ISPA, 2015 IEEE, 2, 2015, IEEE, 25–32.
    • (2015) Trustcom/BigDataSE/ISPA, 2015 IEEE , vol.2 , pp. 25-32
    • Arias, J.1    Gamez, J.A.2    Puerta, J.M.3
  • 26
    • 84875222063 scopus 로고    scopus 로고
    • Scaling up the greedy equivalence search algorithm by constraining the search space of equivalence classes
    • [26] Alonso-Barba, J.I., delaOssa, L., Gámez, J.A., Puerta, J.M., Scaling up the greedy equivalence search algorithm by constraining the search space of equivalence classes. Int. J. Approx. Reas. 54:4 (2013), 429–451.
    • (2013) Int. J. Approx. Reas. , vol.54 , Issue.4 , pp. 429-451
    • Alonso-Barba, J.I.1    delaOssa, L.2    Gámez, J.A.3    Puerta, J.M.4
  • 28
    • 84867301175 scopus 로고    scopus 로고
    • Contact map prediction using a large-scale ensemble of rule sets and the fusion of multiple predicted structural features
    • [28] Bacardit, J., Widera, P., MÃ!‘rquez-Chamorro, A., Divina, F., Aguilar-Ruiz, J.S., Krasnogor, N., Contact map prediction using a large-scale ensemble of rule sets and the fusion of multiple predicted structural features. Bioinformatics 28:19 (2012), 2441–2448, 10.1093/bioinformatics/bts472.
    • (2012) Bioinformatics , vol.28 , Issue.19 , pp. 2441-2448
    • Bacardit, J.1    Widera, P.2    MÃ!‘rquez-Chamorro, A.3    Divina, F.4    Aguilar-Ruiz, J.S.5    Krasnogor, N.6
  • 29
    • 84864920041 scopus 로고    scopus 로고
    • An improved glmnet for l1-regularized logistic regression
    • [29] Yuan, G.-X., Ho, C.-H., Lin, C.-J., An improved glmnet for l1-regularized logistic regression. J. Mach. Learn. Res. 13:1 (2012), 1999–2030.
    • (2012) J. Mach. Learn. Res. , vol.13 , Issue.1 , pp. 1999-2030
    • Yuan, G.-X.1    Ho, C.-H.2    Lin, C.-J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.