-
1
-
-
33750897026
-
Application of uncertainty measures on credal sets on the naive Bayes classifier
-
J. Abellan. 2006. Application of uncertainty measures on credal sets on the naive Bayes classifier. International Journal of General Systems 35 (2006), 675-686.
-
(2006)
International Journal of General Systems
, vol.35
, Issue.2006
, pp. 675-686
-
-
Abellan, J.1
-
2
-
-
38049181157
-
A semi-naive Bayes classifier with grouping of cases
-
Springer
-
J. Abellan, A. Cano, A. R. Masegosa, and S. Moral. 2007. A semi-naive Bayes classifier with grouping of cases. In Proceedings of the 9th European Conference in Symbolic and Quantitative Approaches to Reasoning withUncertainty (ECSQARU-2007). Lecture Notes in Artificial Intelligence, Vol. 4724. Springer, 477-488.
-
(2007)
Proceedings of the 9th European Conference in Symbolic and Quantitative Approaches to Reasoning WithUncertainty (ECSQARU-2007). Lecture Notes in Artificial Intelligence
, vol.4724
, pp. 477-488
-
-
Abellan, J.1
Cano, A.2
Masegosa, A.R.3
Moral, S.4
-
3
-
-
21244467165
-
Learning Bayesian network classifiers: Searching in a space of partially directed acyclic graphs
-
S. Acid, L. M. de Campos, and J. G. Castellano. 2005. Learning Bayesian network classifiers: Searching in a space of partially directed acyclic graphs. Machine Learning 59, 3 (2005), 213-235.
-
(2005)
Machine Learning
, vol.59
, Issue.3
, pp. 213-235
-
-
Acid, S.1
De Campos, L.M.2
Castellano, J.G.3
-
6
-
-
76749137632
-
Local causal and Markov blanket induction for causal discovery and feature selection for classification
-
C. F. Aliferis, A. R. Statnikov, I. Tsamardinos, S. Mani, and X. D. Koutsoukos. 2010. Local causal and Markov blanket induction for causal discovery and feature selection for classification. Part I: Algorithms and empirical evaluation. Journal of Machine Learning Research 11 (2010), 171-234.
-
(2010)
Part I: Algorithms and Empirical Evaluation. Journal of Machine Learning Research
, vol.11
, Issue.2010
, pp. 171-234
-
-
Aliferis, C.F.1
Statnikov, A.R.2
Tsamardinos, I.3
Mani, S.4
Koutsoukos, X.D.5
-
9
-
-
61349199460
-
Tabu search-enhanced graphical models for classification in high dimensions
-
2008
-
X. Bai, R. Padman, J. Ramsey, and P. Spirtes. 2008. Tabu search-enhanced graphical models for classification in high dimensions. INFORMS Journal on Computing 20, 3 (2008), 423-437.
-
(2008)
INFORMS Journal on Computing
, vol.20
, Issue.3
, pp. 423-437
-
-
Bai, X.1
Padman, R.2
Ramsey, J.3
Spirtes, P.4
-
12
-
-
56949103478
-
Generative or discriminative?getting the best of bothworlds
-
Oxford University Press
-
C. M. Bishop and J. Lasserre. 2007. Generative or discriminative?Getting the best of bothworlds. In Bayesian Statistics, Vol. 8. Oxford University Press, 3-23.
-
(2007)
Bayesian Statistics
, vol.8
, pp. 3-23
-
-
Bishop, C.M.1
Lasserre, J.2
-
13
-
-
26044441615
-
Feature selection in Bayesian classifiers for the prognosis of survival of cirrhotic patients treated with TIPS
-
2005
-
R. Blanco, I. Inza, M. Merino, J. Quiroga, and P. Larranaga. 2005. Feature selection in Bayesian classifiers for the prognosis of survival of cirrhotic patients treated with TIPS. Journal of Biomedical Informatics 38, 5 (2005), 376-388.
-
(2005)
Journal of Biomedical Informatics
, vol.38
, Issue.5
, pp. 376-388
-
-
Blanco, R.1
Inza, I.2
Merino, M.3
Quiroga, J.4
Larranaga, P.5
-
16
-
-
26944472782
-
Methods to determine the branching attribute in Bayesian multinets classifiers
-
Springer
-
A. Cano, J. G. Castellano, A. R. Masegosa, and S. Moral. 2005. Methods to determine the branching attribute in Bayesian multinets classifiers. In Proceedings of the 8th European Conference in Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU-2005). Lecture Notes in Artificial Intelligence, Vol. 3571. Springer, 932-943.
-
(2005)
Proceedings of the 8th European Conference in Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU-2005). Lecture Notes in Artificial Intelligence
, vol.3571
, pp. 932-943
-
-
Cano, A.1
Castellano, J.G.2
Masegosa, A.R.3
Moral, S.4
-
18
-
-
80052204958
-
Discriminative learning of Bayesian networks via factorized conditional log-likelihood
-
A. M. Carvalho, T. Roos, A. L. Oliveira, and P. Myllymaki. 2011. Discriminative learning of Bayesian networks via factorized conditional log-likelihood. Journal of Machine Learning Research 12 (2011), 2181-2210.
-
(2011)
Journal of Machine Learning Research 2011
, vol.12
, pp. 2181-2210
-
-
Carvalho, A.M.1
Roos, T.2
Oliveira, A.L.3
Myllymaki, P.4
-
20
-
-
21244433569
-
TANclassifiers based on decomposable distributions
-
2005
-
J. Cerquides and R. Lopez deMantaras. 2005b. TANclassifiers based on decomposable distributions. Machine Learning 59, 3 (2005), 323-354.
-
(2005)
Machine Learning
, vol.59
, Issue.3
, pp. 323-354
-
-
Cerquides, J.1
De Mantaras, R.L.2
-
27
-
-
84933530882
-
Approximating discrete probability distributions with dependency trees
-
C. Chow and C. Liu. 1968. Approximating discrete probability distributions with dependency trees. IEEE Transactions on Information Theory 14 (1968), 462-467.
-
(1968)
IEEE Transactions on Information Theory
, vol.14
, Issue.1968
, pp. 462-467
-
-
Chow, C.1
Liu, C.2
-
28
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
G. F. Cooper and E. Herskovits. 1992. A Bayesian method for the induction of probabilistic networks from data. Machine Learning 9 (1992), 309-347.
-
(1992)
Machine Learning
, vol.9
, Issue.1992
, pp. 309-347
-
-
Cooper, G.F.1
Herskovits, E.2
-
29
-
-
29144531645
-
Model averaging for prediction with discrete Bayesian networks
-
D. Dash and G. F. Cooper. 2004. Model averaging for prediction with discrete Bayesian networks. Journal of Machine Learning Research 5 (2004), 1177-1203.
-
(2004)
Journal of Machine Learning Research
, vol.5
, Issue.2004
, pp. 1177-1203
-
-
Dash, D.1
Cooper, G.F.2
-
31
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
1977
-
A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B 39, 1 (1977), 1-38.
-
(1977)
Journal of the Royal Statistical Society. Series B
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
32
-
-
0031269184
-
On the optimality of the simple Bayesian classifier under zero-one loss
-
P. Domingos and M. Pazzani. 1997. On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning 29 (1997), 103-130.
-
(1997)
Machine Learning
, vol.29
, Issue.1997
, pp. 103-130
-
-
Domingos, P.1
Pazzani, M.2
-
33
-
-
79957805522
-
Bayesian network classifiers: Beyond classification accuracy
-
2011
-
E. B. dos Santos, E. R. Hruschka Jr., E. R. Hruschka, andN. F. F. Ebecken. 2011. Bayesian network classifiers: Beyond classification accuracy. Intelligent Data Analysis 15, 3 (2011), 279-298.
-
(2011)
Intelligent Data Analysis
, vol.15
, Issue.3
, pp. 279-298
-
-
Dos Santos, E.B.1
Hruschka Jr., E.R.2
Hruschka, E.R.3
Ebecken, N.F.F.4
-
34
-
-
78650818467
-
Feature selection for Bayesian network classifiers using the MDL-FS score
-
M. M. Drugan andM. A.Wiering. 2010. Feature selection for Bayesian network classifiers using the MDL-FS score. International Journal of Approximate Reasoning 51 (2010), 695-717.
-
(2010)
International Journal of Approximate Reasoning
, vol.51
, Issue.2010
, pp. 695-717
-
-
Drugan, M.M.1
Wiering, M.A.2
-
36
-
-
10444280570
-
The TM algorithm for maximising a conditional likelihood function
-
D. Edwards and S. L. Lauritzen. 2001. The TM algorithm for maximising a conditional likelihood function. Biometrika 88 (2001), 961-972.
-
(2001)
Biometrika
, vol.88
, Issue.2001
, pp. 961-972
-
-
Edwards, D.1
Lauritzen, S.L.2
-
37
-
-
33845265891
-
Bounds for the loss in probability of correct classification under model based approximation
-
M. Ekdahl and T. Koski. 2006. Bounds for the loss in probability of correct classification under model based approximation. Journal of Machine Learning Research 7 (2006), 2449-2480.
-
(2006)
Journal of Machine Learning Research
, vol.7
, Issue.2006
, pp. 2449-2480
-
-
Ekdahl, M.1
Koski, T.2
-
39
-
-
0030270830
-
Constructing Bayesian networks to predict uncollectible telecommunications accounts
-
1996
-
K. J. Ezawa and S. W. Norton. 1996. Constructing Bayesian networks to predict uncollectible telecommunications accounts. IEEE Expert 11, 5 (1996), 45-51.
-
(1996)
IEEE Expert
, vol.11
, Issue.5
, pp. 45-51
-
-
Ezawa, K.J.1
Norton, S.W.2
-
43
-
-
69049101304
-
HODE: Hidden one-dependence estimator
-
Springer
-
M. J. Flores, J. A. Gamez, A. M. Martínez, and J. M. Puerta. 2009. HODE: Hidden one-dependence estimator. In Proceedings of the 10th European Conference in Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU-2009). Lecture Notes in Artificial Intelligence, Vol. 5590. Springer, 481-492.
-
(2009)
Proceedings of the 10th European Conference in Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU-2009). Lecture Notes in Artificial Intelligence
, vol.5590
, pp. 481-492
-
-
Flores, M.J.1
Gamez, J.A.2
Martínez, A.M.3
Puerta, J.M.4
-
46
-
-
0023384210
-
Fibonacci heaps and their uses in improved network optimization algorithms
-
1987
-
M. L. Fredman and R. E. Tarjan. 1987. Fibonacci heaps and their uses in improved network optimization algorithms. Journal ACM 34, 3 (1987), 596-615.
-
(1987)
Journal ACM
, vol.34
, Issue.3
, pp. 596-615
-
-
Fredman, M.L.1
Tarjan, R.E.2
-
51
-
-
33750466189
-
A hybrid generative/discriminative approach to text classification with additional information
-
2007
-
A. Fujino, N. Ueda, and K. Saito. 2007. A hybrid generative/ discriminative approach to text classification with additional information. Information Processing and Management 43, 2 (2007), 379-392.
-
(2007)
Information Processing and Management
, vol.43
, Issue.2
, pp. 379-392
-
-
Fujino, A.1
Ueda, N.2
Saito, K.3
-
52
-
-
0037467655
-
Iterative naive Bayes
-
1999
-
J. Gama. 1999. Iterative naive Bayes. Theoretical Computer Science 292, 2 (1999), 417-430.
-
(1999)
Theoretical Computer Science
, vol.292
, Issue.2
, pp. 417-430
-
-
Gama, J.1
-
53
-
-
0030125397
-
Knowledge representation and inference in similarity networks and Bayesian multinets
-
D. Geiger and D. Heckerman. 1996. Knowledge representation and inference in similarity networks and Bayesian multinets. Artificial Intelligence 82 (1996), 45-74.
-
(1996)
Artificial Intelligence
, vol.82
, Issue.1996
, pp. 45-74
-
-
Geiger, D.1
Heckerman, D.2
-
56
-
-
21244444642
-
Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers
-
2005
-
R. Greiner, X. Su, B. Shen, and W. Zhou. 2005. Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers. Machine Learning 59, 3 (2005), 297-322.
-
(2005)
Machine Learning
, vol.59
, Issue.3
, pp. 297-322
-
-
Greiner, R.1
Su, X.2
Shen, B.3
Zhou, W.4
-
57
-
-
0036927090
-
Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers
-
AAAI Press/MIT Press
-
R. Greiner andW. Zhou. 2002. Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers. In Proceedings of the 18th National Conference on Artificial Intelligence (AAAI-2002). AAAI Press/MIT Press, 167-173.
-
(2002)
Proceedings of the 18th National Conference on Artificial Intelligence (AAAI-2002
, pp. 167-173
-
-
Greiner, R.1
Zhou, W.2
-
61
-
-
33749636162
-
Bayesian class-matched multinet classifier
-
Springer
-
Y. Gurwicz and B. Lerner. 2006. Bayesian class-matched multinet classifier. In Proceedings of the 2006 Joint IAPR international Conference on Structural, Syntactic, and Statistical Pattern Recognition (SSPR-2006/SPR-2006). Lecture Notes in Computer Science, Vol. 4109. Springer, 145-153.
-
(2006)
Proceedings of the 2006 Joint IAPR International Conference on Structural, Syntactic, and Statistical Pattern Recognition (SSPR-2006/SPR-2006). Lecture Notes in Computer Science
, vol.4109
, pp. 145-153
-
-
Gurwicz, Y.1
Lerner, B.2
-
63
-
-
33847166276
-
A decision tree-based attribute weighting filter for naive Bayes
-
2007
-
M. Hall. 2007. A decision tree-based attribute weighting filter for naive Bayes. Knowledge-Based Systems 20, 2 (2007), 120-126.
-
(2007)
Knowledge-Based Systems
, vol.20
, Issue.2
, pp. 120-126
-
-
Hall, M.1
-
64
-
-
76749092270
-
The WEKA data mining software: An update
-
2009
-
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. 2009. The WEKA data mining software: An update. SIGKDD Explorations 11, 1 (2009), 10-18.
-
(2009)
SIGKDD Explorations
, vol.11
, Issue.1
, pp. 10-18
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
Reutemann, P.5
Witten, I.H.6
-
65
-
-
0035528674
-
Idiot's Bayes-Not so stupid after all
-
2001
-
D. J. Hand and K. Yu. 2001. Idiot's Bayes-not so stupid after all? International Statistical Review 69, 3 (2001), 385-398.
-
(2001)
International Statistical Review
, vol.69
, Issue.3
, pp. 385-398
-
-
Hand, D.J.1
Yu, K.2
-
66
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
D. Heckerman, D. Geiger, and D. Chickering. 1995. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning 20 (1995), 197-243.
-
(1995)
Machine Learning
, vol.20
, Issue.1995
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.3
-
68
-
-
34447281088
-
Towards efficient variables ordering for Bayesian network classifiers
-
E. R. Hruschka and N. F. F. Ebecken. 2007. Towards efficient variables ordering for Bayesian network classifiers. Data and Knowledge Engineering 63 (2007), 258-269.
-
(2007)
Data and Knowledge Engineering
, vol.63
, Issue.2007
, pp. 258-269
-
-
Hruschka, E.R.1
Ebecken, N.F.F.2
-
69
-
-
0036532518
-
Bayesian classification for data from the same unknown class
-
2002 Man And Cybernetics Part B
-
H. Huang andC. Hsu. 2002. Bayesian classification for data from the same unknown class. IEEE Transactions on Systems, Man, and Cybernetics Part B 32, 2 (2002), 137-145.
-
(2002)
IEEE Transactions on Systems
, vol.32
, Issue.2
, pp. 137-145
-
-
Huang, H.1
Hsu, C.2
-
72
-
-
29144477220
-
Bayesian model averaging of Bayesian network classifiers over multiple node-orders: Application to sparse datasets
-
2005
-
K.-B. Hwang and B. T. Zhang. 2005. Bayesian model averaging of Bayesian network classifiers over multiple node-orders: Application to sparse datasets. IEEE Transactions on Systems, Man, and Cybernetics. Part B: Cybernetics 35, 6 (2005), 1302-1310.
-
(2005)
IEEE Transactions on Systems, Man, and Cybernetics. Part B: Cybernetics
, vol.35
, Issue.6
, pp. 1302-1310
-
-
Hwang, K.-B.1
Zhang, B.T.2
-
73
-
-
84905840957
-
Cost-sensitive selective naive Bayes classifiers for predicting the increase of the h-index for scientific journals
-
A. Ibanez, P. Larranaga, and C. Bielza. 2014. Cost-sensitive selective naive Bayes classifiers for predicting the increase of the h-index for scientific journals. Neurocomputing in press (2014.
-
(2014)
Neurocomputing in Press (2014
-
-
Ibanez, A.1
Larranaga, P.2
Bielza, C.3
-
74
-
-
3042532685
-
Filter versus wrapper gene selection approaches in DNA microarray domains
-
2004
-
I. Inza, P. Larranaga, R. Blanco, and A. J. Cerrolaza. 2004. Filter versus wrapper gene selection approaches in DNA microarray domains. Artificial Intelligence in Medicine 31, 2 (2004), 91-103.
-
(2004)
Artificial Intelligence in Medicine
, vol.31
, Issue.2
, pp. 91-103
-
-
Inza, I.1
Larranaga, P.2
Blanco, R.3
Cerrolaza, A.J.4
-
75
-
-
17744402661
-
Feature subset selection by Bayesian network-based optimization
-
2000
-
I. Inza, P. Larranaga, R. Etxeberria, and B. Sierra. 2000. Feature subset selection by Bayesian network-based optimization. Artificial Intelligence 123, 1-2 (2000), 157-184.
-
(2000)
Artificial Intelligence
, vol.123
, Issue.1-2
, pp. 157-184
-
-
Inza, I.1
Larranaga, P.2
Etxeberria, R.3
Sierra, B.4
-
76
-
-
0001618197
-
Heuristic self-organization in problems of engineering cybernetics
-
1970
-
A. G. Ivakhnenko. 1970. Heuristic self-organization in problems of engineering cybernetics. Automatica 6, 2 (1970), 207-219.
-
(1970)
Automatica
, vol.6
, Issue.2
, pp. 207-219
-
-
Ivakhnenko, A.G.1
-
79
-
-
84155186550
-
Improving tree augmented Naive Bayes for class probability estimation
-
L. Jiang, Z. Cai, D. Wang, and H. Zhang. 2012. Improving tree augmented Naive Bayes for class probability estimation. Knowledge-Based Systems 26 (2012), 239-245.
-
(2012)
Knowledge-Based Systems
, vol.26
, Issue.2012
, pp. 239-245
-
-
Jiang, L.1
Cai, Z.2
Wang, D.3
Zhang, H.4
-
81
-
-
70349337297
-
A novel Bayes model: Hidden naive Bayes
-
2009
-
L. Jiang, H. Zhang, and Z. Cai. 2009. A novel Bayes model: Hidden naive Bayes. IEEE Transactions on Knowledge and Data Engineering 21, 10 (2009), 1361-1371.
-
(2009)
IEEE Transactions on Knowledge and Data Engineering
, vol.21
, Issue.10
, pp. 1361-1371
-
-
Jiang, L.1
Zhang, H.2
Cai, Z.3
-
82
-
-
84859178211
-
Weighted average of one-dependence estimators
-
2012
-
L. Jiang, H. Zhang, Z. Cai, and D. Wang. 2012. Weighted average of one-dependence estimators. Journal of Experimental and Theoretical Artificial Intelligence 24, 2 (2012), 219-230.
-
(2012)
Journal of Experimental and Theoretical Artificial Intelligence
, vol.24
, Issue.2
, pp. 219-230
-
-
Jiang, L.1
Zhang, H.2
Cai, Z.3
Wang, D.4
-
83
-
-
52949152920
-
Boosted Bayesian network classifiers
-
Y. Jing, V. Pavlovic, and J.M. Rehg. 2008. Boosted Bayesian network classifiers. Machine Learning 73 (2008), 155-184.
-
(2008)
Machine Learning
, vol.73
, Issue.2008
, pp. 155-184
-
-
Jing, Y.1
Pavlovic, V.2
Rehg, J.M.3
-
86
-
-
27544467090
-
Very large Bayesian multinets for text classification
-
2005
-
M. A. Kłopotek. 2005. Very large Bayesian multinets for text classification. Future Generation Computer Systems 21, 7 (2005), 1068-1082.
-
(2005)
Future Generation Computer Systems
, vol.21
, Issue.7
, pp. 1068-1082
-
-
Kłopotek, M.A.1
-
89
-
-
0031381525
-
Wrappers for feature subset selection
-
1997
-
R. Kohavi and G. H. John. 1997. Wrappers for feature subset selection. Artificial Intelligence 97, 1 (1997), 273-324.
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
91
-
-
84905858024
-
Successive naive Bayesian classifier
-
1993
-
I. Kononenko. 1993. Successive naive Bayesian classifier. Informatica (Slovenia) 17, 2 (1993), 167-174.
-
(1993)
Informatica (Slovenia
, vol.17
, Issue.2
, pp. 167-174
-
-
Kononenko, I.1
-
94
-
-
70350674995
-
On the shortest spanning subtree of a graph and the traveling salesman problem
-
J. B. Kruskal. 1956. On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical Society 7 (1956), 48-50.
-
(1956)
Proceedings of the American Mathematical Society
, vol.7
, Issue.1956
, pp. 48-50
-
-
Kruskal, J.B.1
-
95
-
-
0030419236
-
Using hidden nodes in Bayesian networks
-
C. K. Kwoh and D. Gillies. 1996. Using hidden nodes in Bayesian networks. Artificial Intelligence 88 (1996), 1-38.
-
(1996)
Artificial Intelligence
, vol.88
, Issue.1996
, pp. 1-38
-
-
Kwoh, C.K.1
Gillies, D.2
-
98
-
-
33745444617
-
Classification using hierarchical naive Bayes models
-
2006
-
H. Langseth and T. D. Nielsen. 2006. Classification using hierarchical naive Bayes models. Machine Learning 63, 2 (2006), 135-159.
-
(2006)
Machine Learning
, vol.63
, Issue.2
, pp. 135-159
-
-
Langseth, H.1
Nielsen, T.D.2
-
100
-
-
0035325620
-
An improved naive Bayes classifier technique coupled with a novel input solution method
-
J. N. K. Liu, N. L. Li, and T. S. Dillon. 2001. An improved naive Bayes classifier technique coupled with a novel input solution method. IEEE Transactions on Systems, Man, and Cybernetics 31 (2001), 249-256.
-
(2001)
IEEE Transactions on Systems, Man, and Cybernetics
, vol.31
, Issue.2001
, pp. 249-256
-
-
Liu, J.N.K.1
Li, N.L.2
Dillon, T.S.3
-
102
-
-
84861812802
-
Bagging k-dependence probabilistic networks: An alternative powerful fraud detection tool
-
2012
-
F. Louzada and A. Ara. 2012. Bagging k-dependence probabilistic networks: An alternative powerful fraud detection tool. Expert Systems with Applications 39, 14 (2012), 11583-11592.
-
(2012)
Expert Systems with Applications
, vol.39
, Issue.14
, pp. 11583-11592
-
-
Louzada, F.1
Ara, A.2
-
103
-
-
4744353182
-
Restricted Bayesian network structure learning
-
Springer
-
P. Lucas. 2004. Restricted Bayesian network structure learning. In Advances in Bayesian Networks. Springer, 217-232.
-
(2004)
Advances in Bayesian Networks
, pp. 217-232
-
-
Lucas, P.1
-
105
-
-
69949110656
-
On the classification performance of TAN and general Bayesian networks
-
2009
-
M. G. Madden. 2009. On the classification performance of TAN and general Bayesian networks. Knowledge-Based Systems 22, 7 (2009), 489-495.
-
(2009)
Knowledge-Based Systems
, vol.22
, Issue.7
, pp. 489-495
-
-
Madden, M.G.1
-
108
-
-
84945708697
-
On relevance, probabilistic indexing, and information retrieval
-
M. Maron and J. Kuhns. 1960. On relevance, probabilistic indexing, and information retrieval. Journal of the Association for Computing Machinery 7 (1960), 216-244.
-
(1960)
Journal of the Association for Computing Machinery
, vol.7
, Issue.1960
, pp. 216-244
-
-
Maron, M.1
Kuhns, J.2
-
109
-
-
0002801737
-
Multivariate information transmission
-
W. J. McGill. 1954. Multivariate information transmission. Psychometrika 19 (1954), 97-116.
-
(1954)
Psychometrika
, vol.19
, Issue.1954
, pp. 97-116
-
-
McGill, W.J.1
-
115
-
-
21844431631
-
Machine learningmethods for predicting failures in hard drives: A multiple-instance application
-
J. F. Murray, G. F. Hughes, and K. Kreutz-Delgado. 2005. Machine learningmethods for predicting failures in hard drives: A multiple-instance application. Journal of Machine Learning Research 6 (2005), 783-816.
-
(2005)
Journal of Machine Learning Research
, vol.6
, Issue.2005
, pp. 783-816
-
-
Murray, J.F.1
Hughes, G.F.2
Kreutz-Delgado, K.3
-
118
-
-
14844360937
-
Case based imprecision estimates for Bayes classifiers with the Bayesian bootstrap
-
2005
-
G. N. Noren and R. Orre. 2005. Case based imprecision estimates for Bayes classifiers with the Bayesian bootstrap. Machine Learning 58, 1 (2005), 79-94.
-
(2005)
Machine Learning
, vol.58
, Issue.1
, pp. 79-94
-
-
Noren, G.N.1
Orre, R.2
-
120
-
-
0031168547
-
Learning and revising user profiles: The identification of interesting web sites
-
M. Pazzani and D. Billsus. 1997. Learning and revising user profiles: the identification of interesting web sites. Machine Learning 27 (1997), 313-331.
-
(1997)
Machine Learning
, vol.27
, Issue.1997
, pp. 313-331
-
-
Pazzani, M.1
Billsus, D.2
-
122
-
-
34249931694
-
Towards scalable and data efficient learning of Markov boundaries
-
2007
-
J. M. Pena, R. Nilsson, J. Bjorkegren, and J. Tegner. 2007. Towards scalable and data efficient learning of Markov boundaries. International Journal of Approximate Reasoning 45, 2 (2007), 211-232.
-
(2007)
International Journal of Approximate Reasoning
, vol.45
, Issue.2
, pp. 211-232
-
-
Pena, J.M.1
Nilsson, R.2
Bjorkegren, J.3
Tegner, J.4
-
123
-
-
4644329616
-
Bayesian network classifiers versus selective k-NN classifier
-
F. Pernkopf. 2005. Bayesian network classifiers versus selective k-NN classifier. Pattern Recognition 38 (2005), 1-10.
-
(2005)
Pattern Recognition
, vol.38
, Issue.2005
, pp. 1-10
-
-
Pernkopf, F.1
-
125
-
-
77956911311
-
Efficient heuristics for discriminative structure learning of Bayesian network classifiers
-
F. Pernkopf and J. A. Bilmes. 2010. Efficient heuristics for discriminative structure learning of Bayesian network classifiers. Journal of Machine Learning Research 11 (2010), 2323-2360.
-
(2010)
Journal of Machine Learning Research
, vol.11
, Issue.2010
, pp. 2323-2360
-
-
Pernkopf, F.1
Bilmes, J.A.2
-
126
-
-
0042830813
-
Floating search algorithm for structure learning of Bayesian network classifiers
-
F. Pernkopf and P. O'Leary. 2003. Floating search algorithm for structure learning of Bayesian network classifiers. Pattern Recognition Letters 24 (2003), 2839-2848.
-
(2003)
Pattern Recognition Letters
, vol.24
, Issue.2003
, pp. 2839-2848
-
-
Pernkopf, F.1
O'leary, P.2
-
128
-
-
84867399506
-
Stochastic margin-based structure learning of Bayesian network classifiers
-
2013
-
F. Pernkopf and M. Wohlmayr. 2013. Stochastic margin-based structure learning of Bayesian network classifiers. Pattern Recognition 46, 2 (2013), 464-471.
-
(2013)
Pattern Recognition
, vol.46
, Issue.2
, pp. 464-471
-
-
Pernkopf, F.1
Wohlmayr, M.2
-
129
-
-
84856204760
-
Maximum margin Bayesian network classifiers
-
2012
-
F. Pernkopf, M.Wohlmayr, and S. Tschiatschek. 2012. Maximum margin Bayesian network classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence 34, 3 (2012), 521-532.
-
(2012)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.34
, Issue.3
, pp. 521-532
-
-
Pernkopf, F.1
Wohlmayr, M.2
Tschiatschek, S.3
-
130
-
-
0036189473
-
Face detection by aggregated Bayesian network classifiers
-
2002
-
T. V. Pham, M. Worring, and A. W. M. Smeulders. 2002. Face detection by aggregated Bayesian network classifiers. Pattern Recognition Letters 23, 4 (2002), 451-461.
-
(2002)
Pattern Recognition Letters
, vol.23
, Issue.4
, pp. 451-461
-
-
Pham, T.V.1
Worring, M.2
Smeulders, A.W.M.3
-
131
-
-
33750708213
-
Visual explanation of evidence with additive classifiers
-
AAAI Press/MIT Press
-
B. Poulin, R. Eisner, D. Szafron, Paul Lu, R. Greiner, D. S.Wishart, A. Fyshe, B. Pearcy, C. MacDonell, and J. Anvik. 2006. Visual explanation of evidence with additive classifiers. In Proceedings of the 21th National Conference on Artificial Intelligence (AAAI-2006). AAAI Press/MIT Press, 1822-1829.
-
(2006)
Proceedings of the 21th National Conference on Artificial Intelligence (AAAI-2006
, pp. 1822-1829
-
-
Poulin, B.1
Eisner, R.2
Szafron, D.3
Lu, P.4
Greiner, R.5
Wishart, D.S.6
Fyshe, A.7
Pearcy, B.8
MacDonell, C.9
Anvik, J.10
-
136
-
-
0043198674
-
Robust learning with missing data
-
2001
-
M. Ramoni and P. Sebastiani. 2001b. Robust learning with missing data. Machine Learning 45, 2 (2001), 147-170.
-
(2001)
Machine Learning
, vol.45
, Issue.2
, pp. 147-170
-
-
Ramoni, M.1
Sebastiani, P.2
-
137
-
-
0242498509
-
Feature selection for the naive Bayesian classifier using decision trees
-
2003
-
C. A. Ratanamahatana and D. Gunopulos. 2003. Feature selection for the naive Bayesian classifier using decision trees. Applied Artificial Intelligence 17, 5-6 (2003), 475-487.
-
(2003)
Applied Artificial Intelligence
, vol.17
, Issue.5-6
, pp. 475-487
-
-
Ratanamahatana, C.A.1
Gunopulos, D.2
-
140
-
-
21144449857
-
Interval estimation naive Bayes
-
Springer
-
V. Robles, P. Larranaga, J. M. Pena, E. Menasalvas, and M. S. Perez. 2003. Interval estimation naive Bayes. In Proceedings of the 5th International Symposium on Intelligent Data Analysis (IDA-2003). Lecture Notes in Computer Science, Vol. 2810. Springer, 143-154.
-
(2003)
Proceedings of the 5th International Symposium on Intelligent Data Analysis (IDA-2003). Lecture Notes in Computer Science
, vol.2810
, pp. 143-154
-
-
Robles, V.1
Larranaga, P.2
Pena, J.M.3
Menasalvas, E.4
Perez, M.S.5
-
141
-
-
3042618109
-
Bayesian networks as consensed voting system in the construction of a multi-classiffier for protein secondary structure prediction
-
V. Robles, P. Larranaga, J. M. Pena, E. Menasalvas, M. S. Perez, and V. Herves. 2004. Bayesian networks as consensed voting system in the construction of a multi-classiffier for protein secondary structure prediction. Artificial Intelligence in Medicine 31 (2004), 117-136.
-
(2004)
Artificial Intelligence in Medicine
, vol.31
, Issue.2004
, pp. 117-136
-
-
Robles, V.1
Larranaga, P.2
Pena, J.M.3
Menasalvas, E.4
Perez, M.S.5
Herves, V.6
-
142
-
-
35248853917
-
Learning semi naive Bayes structures by estimation of distribution algorithms
-
V. Robles, P. Larranaga, J. M. Pena, M. S. Perez, E. Menasalvas, and V. Herves. 2003. Learning semi naive Bayes structures by estimation of distribution algorithms. In Proceedings of the 11th Portuguese Conference on Artificial Intelligence (EPIA-2003). Lecture Notes in Computer Science. 244-258.
-
(2003)
Proceedings of the 11th Portuguese Conference on Artificial Intelligence (EPIA-2003). Lecture Notes in Computer Science
, pp. 244-258
-
-
Robles, V.1
Larranaga, P.2
Pena, J.M.3
Perez, M.S.4
Menasalvas, E.5
Herves, V.6
-
143
-
-
75749145760
-
A novel Markov boundary based feature subset selection algorithm
-
2010
-
S. Rodrigues de Morais and A. Aussem. 2010. A novel Markov boundary based feature subset selection algorithm. Neurocomputing 73, 4-6 (2010), 578-584.
-
(2010)
Neurocomputing
, vol.73
, Issue.4-6
, pp. 578-584
-
-
De Morais, S.R.1
Aussem, A.2
-
145
-
-
21244467519
-
On discriminative Bayesian network classifiers and logistic regression
-
2005
-
T. Roos, H. Wettig, P. Grünwald, P. Myllymaki, and H. Tirri. 2005. On discriminative Bayesian network classifiers and logistic regression. Machine Learning 59, 3 (2005), 267-296.
-
(2005)
Machine Learning
, vol.59
, Issue.3
, pp. 267-296
-
-
Roos, T.1
Wettig, H.2
Grünwald, P.3
Myllymaki, P.4
Tirri, H.5
-
147
-
-
35748932917
-
A review of feature selection techniques in bioinformatics
-
2007
-
Y. Saeys, I. Inza, and P. Larranaga. 2007. A review of feature selection techniques in bioinformatics. Bioinformatics 23, 19 (2007), 2507-2517.
-
(2007)
Bioinformatics
, vol.23
, Issue.19
, pp. 2507-2517
-
-
Saeys, Y.1
Inza, I.2
Larranaga, P.3
-
151
-
-
70350568180
-
Histogram distance-based Bayesian network structure learning: A supervised classification specific approach
-
2009
-
B. Sierra, E. Lazkano, E. Jauregi, and I. Irigoien. 2009. Histogram distance-based Bayesian network structure learning: A supervised classification specific approach. Decision Support Systems 48, 1 (2009), 180-190.
-
(2009)
Decision Support Systems
, vol.48
, Issue.1
, pp. 180-190
-
-
Sierra, B.1
Lazkano, E.2
Jauregi, E.3
Irigoien, I.4
-
152
-
-
0035019648
-
Using Bayesian networks in the construction of a bi-level multi-classifier
-
B. Sierra, N. Serrano, P. Larranaga, E. J. Plasencia, I. Inza, J. J. Jimenez, P. Revuelta, and M. L. Mora. 2001. Using Bayesian networks in the construction of a bi-level multi-classifier. A case study using intensive care unit patient data. Artificial Intelligence in Medicine 22 (2001), 233-248.
-
(2001)
A Case Study Using Intensive Care Unit Patient Data. Artificial Intelligence in Medicine
, vol.22
, Issue.2001
, pp. 233-248
-
-
Sierra, B.1
Serrano, N.2
Larranaga, P.3
Plasencia, E.J.4
Inza, I.5
Jimenez, J.J.6
Revuelta, P.7
Mora, M.L.8
-
154
-
-
0001173999
-
Construction of Bayesian network structures from data: A brief survey and an efficient algorithm
-
1995
-
M. Singh and M. Valtorta. 1995. Construction of Bayesian network structures from data: A brief survey and an efficient algorithm. International Journal of Approximate Reasoning 12, 2 (1995), 111-131.
-
(1995)
International Journal of Approximate Reasoning
, vol.12
, Issue.2
, pp. 111-131
-
-
Singh, M.1
Valtorta, M.2
-
156
-
-
56449116627
-
Discriminative parameter learning for Bayesian networks
-
ACM
-
J. Su, H. Zhang, C. X. Ling, and S. Matwin. 2008. Discriminative parameter learning for Bayesian networks. In Proceedings of the 25th International Conference on Machine Learning (ICML-2008), Vol. 307. ACM, 1016-1023.
-
(2008)
Proceedings of the 25th International Conference on Machine Learning (ICML-2008
, vol.307
, pp. 1016-1023
-
-
Su, J.1
Zhang, H.2
Ling, C.X.3
Matwin, S.4
-
158
-
-
0001415299
-
Comparison of discrimination techniques applied to a complex data set of head injured patients (with discussion
-
1981
-
D. M. Titterington, G. D. Murray, L. S. Spiegelhalter, A. M. Skene, J. D. F. Habbema, and G. J. Gelpke. 1981. Comparison of discrimination techniques applied to a complex data set of head injured patients (with discussion). Journal of the Royal Statistical Society Series A 144, 2 (1981), 145-175.
-
(1981)
Journal of the Royal Statistical Society Series A
, vol.144
, Issue.2
, pp. 145-175
-
-
Titterington, D.M.1
Murray, G.D.2
Spiegelhalter, L.S.3
Skene, A.M.4
Habbema, J.D.F.5
Gelpke, G.J.6
-
166
-
-
14844351034
-
Not so naive Bayes: Aggregating one-dependence estimators
-
G. I. Webb, J. Boughton, and Z. Wang. 2005. Not so naive Bayes: Aggregating one-dependence estimators. Machine Learning 58 (2005), 5-24.
-
(2005)
Machine Learning
, vol.58
, Issue.2005
, pp. 5-24
-
-
Webb, G.I.1
Boughton, J.2
Wang, Z.3
-
168
-
-
60849091358
-
Alternative prior assumptions for improving the performance of naive Bayesian classifiers
-
2009
-
T.-T.Wong. 2009. Alternative prior assumptions for improving the performance of naive Bayesian classifiers. Data Mining and Knowledge Discovery 18, 2 (2009), 183-213.
-
(2009)
Data Mining and Knowledge Discovery
, vol.18
, Issue.2
, pp. 183-213
-
-
Wong, T.-T.1
-
169
-
-
67650498428
-
Structure identification of Bayesian classifiers based onGMDH
-
J. Xiao,C.He, and X. Jiang. 2009. Structure identification of Bayesian classifiers based onGMDH.Knowledge-Based Systems 22 (2009), 461-470.
-
(2009)
Knowledge-Based Systems
, vol.22
, Issue.2009
, pp. 461-470
-
-
Xiao, J.1
He, C.2
Jiang, X.3
-
170
-
-
77951144596
-
Joint discriminative-generative modelling based on statistical tests for classification
-
2010
-
J.-H. Xue and D. M. Titterington. 2010. Joint discriminative-generative modelling based on statistical tests for classification. Pattern Recognition Letters 31, 9 (2010), 1048-1055.
-
(2010)
Pattern Recognition Letters
, vol.31
, Issue.9
, pp. 1048-1055
-
-
Xue, J.-H.1
Titterington, D.M.2
-
172
-
-
35648962940
-
To select or to weigh: A comparative study of linear combination schemes for superparent-one-dependence estimators
-
Y. Yang, G. I. Webb, J. Cerquides, K. B. Korb, J. Boughton, and K. M. Ting. 2007. To select or to weigh: A comparative study of linear combination schemes for superparent-one-dependence estimators. IEEE Transactions on Knowledge and Data Engineering 19 (2007), 1652-1665.
-
(2007)
IEEE Transactions on Knowledge and Data Engineering
, vol.19
, Issue.2007
, pp. 1652-1665
-
-
Yang, Y.1
Webb, G.I.2
Cerquides, J.3
Korb, K.B.4
Boughton, J.5
Ting, K.M.6
-
175
-
-
0142157195
-
Tree-based credal networks for classification
-
2003
-
M. Zaffalon and E. Fagiuoli. 2003. Tree-based credal networks for classification. Reliable Computing 9, 6 (2003), 487-509.
-
(2003)
Reliable Computing
, vol.9
, Issue.6
, pp. 487-509
-
-
Zaffalon, M.1
Fagiuoli, E.2
-
178
-
-
1842815760
-
Latent variable discovery in classificationmodels
-
2004
-
N. L. Zhang, T. D. Nielsen, and F. V. Jensen. 2004. Latent variable discovery in classificationmodels. Artificial Intelligence in Medicine 30, 3 (2004), 283-299.
-
(2004)
Artificial Intelligence in Medicine
, vol.30
, Issue.3
, pp. 283-299
-
-
Zhang, N.L.1
Nielsen, T.D.2
Jensen, F.V.3
-
181
-
-
0034301677
-
Lazy learning of Bayesian rules
-
Z. Zheng and G. I. Webb. 2000. Lazy learning of Bayesian rules. Machine Learning 41 (2000), 53-84.
-
(2000)
Machine Learning
, vol.41
, Issue.2000
, pp. 53-84
-
-
Zheng, Z.1
Webb, G.I.2
|