메뉴 건너뛰기




Volumn 47, Issue 1, 2014, Pages

Discrete bayesian network classifiers: A survey

Author keywords

Bayesian multinets; Bayesian network; Feature subset selection; Generative and discriminative classifiers; Markov blanket; Naive Bayes; Supervised classification

Indexed keywords

ALGORITHMS; CLASSIFIERS; FEATURE EXTRACTION; SURVEYS;

EID: 84905815981     PISSN: 03600300     EISSN: 15577341     Source Type: Journal    
DOI: 10.1145/2576868     Document Type: Review
Times cited : (207)

References (182)
  • 1
    • 33750897026 scopus 로고    scopus 로고
    • Application of uncertainty measures on credal sets on the naive Bayes classifier
    • J. Abellan. 2006. Application of uncertainty measures on credal sets on the naive Bayes classifier. International Journal of General Systems 35 (2006), 675-686.
    • (2006) International Journal of General Systems , vol.35 , Issue.2006 , pp. 675-686
    • Abellan, J.1
  • 3
    • 21244467165 scopus 로고    scopus 로고
    • Learning Bayesian network classifiers: Searching in a space of partially directed acyclic graphs
    • S. Acid, L. M. de Campos, and J. G. Castellano. 2005. Learning Bayesian network classifiers: Searching in a space of partially directed acyclic graphs. Machine Learning 59, 3 (2005), 213-235.
    • (2005) Machine Learning , vol.59 , Issue.3 , pp. 213-235
    • Acid, S.1    De Campos, L.M.2    Castellano, J.G.3
  • 9
    • 61349199460 scopus 로고    scopus 로고
    • Tabu search-enhanced graphical models for classification in high dimensions
    • 2008
    • X. Bai, R. Padman, J. Ramsey, and P. Spirtes. 2008. Tabu search-enhanced graphical models for classification in high dimensions. INFORMS Journal on Computing 20, 3 (2008), 423-437.
    • (2008) INFORMS Journal on Computing , vol.20 , Issue.3 , pp. 423-437
    • Bai, X.1    Padman, R.2    Ramsey, J.3    Spirtes, P.4
  • 12
    • 56949103478 scopus 로고    scopus 로고
    • Generative or discriminative?getting the best of bothworlds
    • Oxford University Press
    • C. M. Bishop and J. Lasserre. 2007. Generative or discriminative?Getting the best of bothworlds. In Bayesian Statistics, Vol. 8. Oxford University Press, 3-23.
    • (2007) Bayesian Statistics , vol.8 , pp. 3-23
    • Bishop, C.M.1    Lasserre, J.2
  • 13
    • 26044441615 scopus 로고    scopus 로고
    • Feature selection in Bayesian classifiers for the prognosis of survival of cirrhotic patients treated with TIPS
    • 2005
    • R. Blanco, I. Inza, M. Merino, J. Quiroga, and P. Larranaga. 2005. Feature selection in Bayesian classifiers for the prognosis of survival of cirrhotic patients treated with TIPS. Journal of Biomedical Informatics 38, 5 (2005), 376-388.
    • (2005) Journal of Biomedical Informatics , vol.38 , Issue.5 , pp. 376-388
    • Blanco, R.1    Inza, I.2    Merino, M.3    Quiroga, J.4    Larranaga, P.5
  • 20
    • 21244433569 scopus 로고    scopus 로고
    • TANclassifiers based on decomposable distributions
    • 2005
    • J. Cerquides and R. Lopez deMantaras. 2005b. TANclassifiers based on decomposable distributions. Machine Learning 59, 3 (2005), 323-354.
    • (2005) Machine Learning , vol.59 , Issue.3 , pp. 323-354
    • Cerquides, J.1    De Mantaras, R.L.2
  • 27
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependency trees
    • C. Chow and C. Liu. 1968. Approximating discrete probability distributions with dependency trees. IEEE Transactions on Information Theory 14 (1968), 462-467.
    • (1968) IEEE Transactions on Information Theory , vol.14 , Issue.1968 , pp. 462-467
    • Chow, C.1    Liu, C.2
  • 28
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • G. F. Cooper and E. Herskovits. 1992. A Bayesian method for the induction of probabilistic networks from data. Machine Learning 9 (1992), 309-347.
    • (1992) Machine Learning , vol.9 , Issue.1992 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 29
    • 29144531645 scopus 로고    scopus 로고
    • Model averaging for prediction with discrete Bayesian networks
    • D. Dash and G. F. Cooper. 2004. Model averaging for prediction with discrete Bayesian networks. Journal of Machine Learning Research 5 (2004), 1177-1203.
    • (2004) Journal of Machine Learning Research , vol.5 , Issue.2004 , pp. 1177-1203
    • Dash, D.1    Cooper, G.F.2
  • 32
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • P. Domingos and M. Pazzani. 1997. On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning 29 (1997), 103-130.
    • (1997) Machine Learning , vol.29 , Issue.1997 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 34
    • 78650818467 scopus 로고    scopus 로고
    • Feature selection for Bayesian network classifiers using the MDL-FS score
    • M. M. Drugan andM. A.Wiering. 2010. Feature selection for Bayesian network classifiers using the MDL-FS score. International Journal of Approximate Reasoning 51 (2010), 695-717.
    • (2010) International Journal of Approximate Reasoning , vol.51 , Issue.2010 , pp. 695-717
    • Drugan, M.M.1    Wiering, M.A.2
  • 36
    • 10444280570 scopus 로고    scopus 로고
    • The TM algorithm for maximising a conditional likelihood function
    • D. Edwards and S. L. Lauritzen. 2001. The TM algorithm for maximising a conditional likelihood function. Biometrika 88 (2001), 961-972.
    • (2001) Biometrika , vol.88 , Issue.2001 , pp. 961-972
    • Edwards, D.1    Lauritzen, S.L.2
  • 37
    • 33845265891 scopus 로고    scopus 로고
    • Bounds for the loss in probability of correct classification under model based approximation
    • M. Ekdahl and T. Koski. 2006. Bounds for the loss in probability of correct classification under model based approximation. Journal of Machine Learning Research 7 (2006), 2449-2480.
    • (2006) Journal of Machine Learning Research , vol.7 , Issue.2006 , pp. 2449-2480
    • Ekdahl, M.1    Koski, T.2
  • 39
    • 0030270830 scopus 로고    scopus 로고
    • Constructing Bayesian networks to predict uncollectible telecommunications accounts
    • 1996
    • K. J. Ezawa and S. W. Norton. 1996. Constructing Bayesian networks to predict uncollectible telecommunications accounts. IEEE Expert 11, 5 (1996), 45-51.
    • (1996) IEEE Expert , vol.11 , Issue.5 , pp. 45-51
    • Ezawa, K.J.1    Norton, S.W.2
  • 46
    • 0023384210 scopus 로고
    • Fibonacci heaps and their uses in improved network optimization algorithms
    • 1987
    • M. L. Fredman and R. E. Tarjan. 1987. Fibonacci heaps and their uses in improved network optimization algorithms. Journal ACM 34, 3 (1987), 596-615.
    • (1987) Journal ACM , vol.34 , Issue.3 , pp. 596-615
    • Fredman, M.L.1    Tarjan, R.E.2
  • 51
    • 33750466189 scopus 로고    scopus 로고
    • A hybrid generative/discriminative approach to text classification with additional information
    • 2007
    • A. Fujino, N. Ueda, and K. Saito. 2007. A hybrid generative/ discriminative approach to text classification with additional information. Information Processing and Management 43, 2 (2007), 379-392.
    • (2007) Information Processing and Management , vol.43 , Issue.2 , pp. 379-392
    • Fujino, A.1    Ueda, N.2    Saito, K.3
  • 52
    • 0037467655 scopus 로고    scopus 로고
    • Iterative naive Bayes
    • 1999
    • J. Gama. 1999. Iterative naive Bayes. Theoretical Computer Science 292, 2 (1999), 417-430.
    • (1999) Theoretical Computer Science , vol.292 , Issue.2 , pp. 417-430
    • Gama, J.1
  • 53
    • 0030125397 scopus 로고    scopus 로고
    • Knowledge representation and inference in similarity networks and Bayesian multinets
    • D. Geiger and D. Heckerman. 1996. Knowledge representation and inference in similarity networks and Bayesian multinets. Artificial Intelligence 82 (1996), 45-74.
    • (1996) Artificial Intelligence , vol.82 , Issue.1996 , pp. 45-74
    • Geiger, D.1    Heckerman, D.2
  • 56
    • 21244444642 scopus 로고    scopus 로고
    • Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers
    • 2005
    • R. Greiner, X. Su, B. Shen, and W. Zhou. 2005. Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers. Machine Learning 59, 3 (2005), 297-322.
    • (2005) Machine Learning , vol.59 , Issue.3 , pp. 297-322
    • Greiner, R.1    Su, X.2    Shen, B.3    Zhou, W.4
  • 57
    • 0036927090 scopus 로고    scopus 로고
    • Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers
    • AAAI Press/MIT Press
    • R. Greiner andW. Zhou. 2002. Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers. In Proceedings of the 18th National Conference on Artificial Intelligence (AAAI-2002). AAAI Press/MIT Press, 167-173.
    • (2002) Proceedings of the 18th National Conference on Artificial Intelligence (AAAI-2002 , pp. 167-173
    • Greiner, R.1    Zhou, W.2
  • 63
    • 33847166276 scopus 로고    scopus 로고
    • A decision tree-based attribute weighting filter for naive Bayes
    • 2007
    • M. Hall. 2007. A decision tree-based attribute weighting filter for naive Bayes. Knowledge-Based Systems 20, 2 (2007), 120-126.
    • (2007) Knowledge-Based Systems , vol.20 , Issue.2 , pp. 120-126
    • Hall, M.1
  • 65
    • 0035528674 scopus 로고    scopus 로고
    • Idiot's Bayes-Not so stupid after all
    • 2001
    • D. J. Hand and K. Yu. 2001. Idiot's Bayes-not so stupid after all? International Statistical Review 69, 3 (2001), 385-398.
    • (2001) International Statistical Review , vol.69 , Issue.3 , pp. 385-398
    • Hand, D.J.1    Yu, K.2
  • 66
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • D. Heckerman, D. Geiger, and D. Chickering. 1995. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning 20 (1995), 197-243.
    • (1995) Machine Learning , vol.20 , Issue.1995 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.3
  • 68
    • 34447281088 scopus 로고    scopus 로고
    • Towards efficient variables ordering for Bayesian network classifiers
    • E. R. Hruschka and N. F. F. Ebecken. 2007. Towards efficient variables ordering for Bayesian network classifiers. Data and Knowledge Engineering 63 (2007), 258-269.
    • (2007) Data and Knowledge Engineering , vol.63 , Issue.2007 , pp. 258-269
    • Hruschka, E.R.1    Ebecken, N.F.F.2
  • 69
    • 0036532518 scopus 로고    scopus 로고
    • Bayesian classification for data from the same unknown class
    • 2002 Man And Cybernetics Part B
    • H. Huang andC. Hsu. 2002. Bayesian classification for data from the same unknown class. IEEE Transactions on Systems, Man, and Cybernetics Part B 32, 2 (2002), 137-145.
    • (2002) IEEE Transactions on Systems , vol.32 , Issue.2 , pp. 137-145
    • Huang, H.1    Hsu, C.2
  • 72
    • 29144477220 scopus 로고    scopus 로고
    • Bayesian model averaging of Bayesian network classifiers over multiple node-orders: Application to sparse datasets
    • 2005
    • K.-B. Hwang and B. T. Zhang. 2005. Bayesian model averaging of Bayesian network classifiers over multiple node-orders: Application to sparse datasets. IEEE Transactions on Systems, Man, and Cybernetics. Part B: Cybernetics 35, 6 (2005), 1302-1310.
    • (2005) IEEE Transactions on Systems, Man, and Cybernetics. Part B: Cybernetics , vol.35 , Issue.6 , pp. 1302-1310
    • Hwang, K.-B.1    Zhang, B.T.2
  • 73
    • 84905840957 scopus 로고    scopus 로고
    • Cost-sensitive selective naive Bayes classifiers for predicting the increase of the h-index for scientific journals
    • A. Ibanez, P. Larranaga, and C. Bielza. 2014. Cost-sensitive selective naive Bayes classifiers for predicting the increase of the h-index for scientific journals. Neurocomputing in press (2014.
    • (2014) Neurocomputing in Press (2014
    • Ibanez, A.1    Larranaga, P.2    Bielza, C.3
  • 74
    • 3042532685 scopus 로고    scopus 로고
    • Filter versus wrapper gene selection approaches in DNA microarray domains
    • 2004
    • I. Inza, P. Larranaga, R. Blanco, and A. J. Cerrolaza. 2004. Filter versus wrapper gene selection approaches in DNA microarray domains. Artificial Intelligence in Medicine 31, 2 (2004), 91-103.
    • (2004) Artificial Intelligence in Medicine , vol.31 , Issue.2 , pp. 91-103
    • Inza, I.1    Larranaga, P.2    Blanco, R.3    Cerrolaza, A.J.4
  • 75
    • 17744402661 scopus 로고    scopus 로고
    • Feature subset selection by Bayesian network-based optimization
    • 2000
    • I. Inza, P. Larranaga, R. Etxeberria, and B. Sierra. 2000. Feature subset selection by Bayesian network-based optimization. Artificial Intelligence 123, 1-2 (2000), 157-184.
    • (2000) Artificial Intelligence , vol.123 , Issue.1-2 , pp. 157-184
    • Inza, I.1    Larranaga, P.2    Etxeberria, R.3    Sierra, B.4
  • 76
    • 0001618197 scopus 로고
    • Heuristic self-organization in problems of engineering cybernetics
    • 1970
    • A. G. Ivakhnenko. 1970. Heuristic self-organization in problems of engineering cybernetics. Automatica 6, 2 (1970), 207-219.
    • (1970) Automatica , vol.6 , Issue.2 , pp. 207-219
    • Ivakhnenko, A.G.1
  • 77
  • 79
    • 84155186550 scopus 로고    scopus 로고
    • Improving tree augmented Naive Bayes for class probability estimation
    • L. Jiang, Z. Cai, D. Wang, and H. Zhang. 2012. Improving tree augmented Naive Bayes for class probability estimation. Knowledge-Based Systems 26 (2012), 239-245.
    • (2012) Knowledge-Based Systems , vol.26 , Issue.2012 , pp. 239-245
    • Jiang, L.1    Cai, Z.2    Wang, D.3    Zhang, H.4
  • 83
    • 52949152920 scopus 로고    scopus 로고
    • Boosted Bayesian network classifiers
    • Y. Jing, V. Pavlovic, and J.M. Rehg. 2008. Boosted Bayesian network classifiers. Machine Learning 73 (2008), 155-184.
    • (2008) Machine Learning , vol.73 , Issue.2008 , pp. 155-184
    • Jing, Y.1    Pavlovic, V.2    Rehg, J.M.3
  • 86
    • 27544467090 scopus 로고    scopus 로고
    • Very large Bayesian multinets for text classification
    • 2005
    • M. A. Kłopotek. 2005. Very large Bayesian multinets for text classification. Future Generation Computer Systems 21, 7 (2005), 1068-1082.
    • (2005) Future Generation Computer Systems , vol.21 , Issue.7 , pp. 1068-1082
    • Kłopotek, M.A.1
  • 88
    • 0012307201 scopus 로고    scopus 로고
    • Technical Report. Data Mining and Visualization Group, Silicon Graphics
    • R. Kohavi, B. Becker, and D. Sommerfield. 1997. Improving Simple Bayes. Technical Report. Data Mining and Visualization Group, Silicon Graphics.
    • (1997) Improving Simple Bayes
    • Kohavi, R.1    Becker, B.2    Sommerfield, D.3
  • 89
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • 1997
    • R. Kohavi and G. H. John. 1997. Wrappers for feature subset selection. Artificial Intelligence 97, 1 (1997), 273-324.
    • (1997) Artificial Intelligence , vol.97 , Issue.1 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 91
    • 84905858024 scopus 로고
    • Successive naive Bayesian classifier
    • 1993
    • I. Kononenko. 1993. Successive naive Bayesian classifier. Informatica (Slovenia) 17, 2 (1993), 167-174.
    • (1993) Informatica (Slovenia , vol.17 , Issue.2 , pp. 167-174
    • Kononenko, I.1
  • 94
    • 70350674995 scopus 로고
    • On the shortest spanning subtree of a graph and the traveling salesman problem
    • J. B. Kruskal. 1956. On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical Society 7 (1956), 48-50.
    • (1956) Proceedings of the American Mathematical Society , vol.7 , Issue.1956 , pp. 48-50
    • Kruskal, J.B.1
  • 95
    • 0030419236 scopus 로고    scopus 로고
    • Using hidden nodes in Bayesian networks
    • C. K. Kwoh and D. Gillies. 1996. Using hidden nodes in Bayesian networks. Artificial Intelligence 88 (1996), 1-38.
    • (1996) Artificial Intelligence , vol.88 , Issue.1996 , pp. 1-38
    • Kwoh, C.K.1    Gillies, D.2
  • 98
    • 33745444617 scopus 로고    scopus 로고
    • Classification using hierarchical naive Bayes models
    • 2006
    • H. Langseth and T. D. Nielsen. 2006. Classification using hierarchical naive Bayes models. Machine Learning 63, 2 (2006), 135-159.
    • (2006) Machine Learning , vol.63 , Issue.2 , pp. 135-159
    • Langseth, H.1    Nielsen, T.D.2
  • 100
    • 0035325620 scopus 로고    scopus 로고
    • An improved naive Bayes classifier technique coupled with a novel input solution method
    • J. N. K. Liu, N. L. Li, and T. S. Dillon. 2001. An improved naive Bayes classifier technique coupled with a novel input solution method. IEEE Transactions on Systems, Man, and Cybernetics 31 (2001), 249-256.
    • (2001) IEEE Transactions on Systems, Man, and Cybernetics , vol.31 , Issue.2001 , pp. 249-256
    • Liu, J.N.K.1    Li, N.L.2    Dillon, T.S.3
  • 102
    • 84861812802 scopus 로고    scopus 로고
    • Bagging k-dependence probabilistic networks: An alternative powerful fraud detection tool
    • 2012
    • F. Louzada and A. Ara. 2012. Bagging k-dependence probabilistic networks: An alternative powerful fraud detection tool. Expert Systems with Applications 39, 14 (2012), 11583-11592.
    • (2012) Expert Systems with Applications , vol.39 , Issue.14 , pp. 11583-11592
    • Louzada, F.1    Ara, A.2
  • 103
    • 4744353182 scopus 로고    scopus 로고
    • Restricted Bayesian network structure learning
    • Springer
    • P. Lucas. 2004. Restricted Bayesian network structure learning. In Advances in Bayesian Networks. Springer, 217-232.
    • (2004) Advances in Bayesian Networks , pp. 217-232
    • Lucas, P.1
  • 105
    • 69949110656 scopus 로고    scopus 로고
    • On the classification performance of TAN and general Bayesian networks
    • 2009
    • M. G. Madden. 2009. On the classification performance of TAN and general Bayesian networks. Knowledge-Based Systems 22, 7 (2009), 489-495.
    • (2009) Knowledge-Based Systems , vol.22 , Issue.7 , pp. 489-495
    • Madden, M.G.1
  • 108
    • 84945708697 scopus 로고
    • On relevance, probabilistic indexing, and information retrieval
    • M. Maron and J. Kuhns. 1960. On relevance, probabilistic indexing, and information retrieval. Journal of the Association for Computing Machinery 7 (1960), 216-244.
    • (1960) Journal of the Association for Computing Machinery , vol.7 , Issue.1960 , pp. 216-244
    • Maron, M.1    Kuhns, J.2
  • 109
    • 0002801737 scopus 로고
    • Multivariate information transmission
    • W. J. McGill. 1954. Multivariate information transmission. Psychometrika 19 (1954), 97-116.
    • (1954) Psychometrika , vol.19 , Issue.1954 , pp. 97-116
    • McGill, W.J.1
  • 115
    • 21844431631 scopus 로고    scopus 로고
    • Machine learningmethods for predicting failures in hard drives: A multiple-instance application
    • J. F. Murray, G. F. Hughes, and K. Kreutz-Delgado. 2005. Machine learningmethods for predicting failures in hard drives: A multiple-instance application. Journal of Machine Learning Research 6 (2005), 783-816.
    • (2005) Journal of Machine Learning Research , vol.6 , Issue.2005 , pp. 783-816
    • Murray, J.F.1    Hughes, G.F.2    Kreutz-Delgado, K.3
  • 118
    • 14844360937 scopus 로고    scopus 로고
    • Case based imprecision estimates for Bayes classifiers with the Bayesian bootstrap
    • 2005
    • G. N. Noren and R. Orre. 2005. Case based imprecision estimates for Bayes classifiers with the Bayesian bootstrap. Machine Learning 58, 1 (2005), 79-94.
    • (2005) Machine Learning , vol.58 , Issue.1 , pp. 79-94
    • Noren, G.N.1    Orre, R.2
  • 120
    • 0031168547 scopus 로고    scopus 로고
    • Learning and revising user profiles: The identification of interesting web sites
    • M. Pazzani and D. Billsus. 1997. Learning and revising user profiles: the identification of interesting web sites. Machine Learning 27 (1997), 313-331.
    • (1997) Machine Learning , vol.27 , Issue.1997 , pp. 313-331
    • Pazzani, M.1    Billsus, D.2
  • 123
    • 4644329616 scopus 로고    scopus 로고
    • Bayesian network classifiers versus selective k-NN classifier
    • F. Pernkopf. 2005. Bayesian network classifiers versus selective k-NN classifier. Pattern Recognition 38 (2005), 1-10.
    • (2005) Pattern Recognition , vol.38 , Issue.2005 , pp. 1-10
    • Pernkopf, F.1
  • 125
    • 77956911311 scopus 로고    scopus 로고
    • Efficient heuristics for discriminative structure learning of Bayesian network classifiers
    • F. Pernkopf and J. A. Bilmes. 2010. Efficient heuristics for discriminative structure learning of Bayesian network classifiers. Journal of Machine Learning Research 11 (2010), 2323-2360.
    • (2010) Journal of Machine Learning Research , vol.11 , Issue.2010 , pp. 2323-2360
    • Pernkopf, F.1    Bilmes, J.A.2
  • 126
    • 0042830813 scopus 로고    scopus 로고
    • Floating search algorithm for structure learning of Bayesian network classifiers
    • F. Pernkopf and P. O'Leary. 2003. Floating search algorithm for structure learning of Bayesian network classifiers. Pattern Recognition Letters 24 (2003), 2839-2848.
    • (2003) Pattern Recognition Letters , vol.24 , Issue.2003 , pp. 2839-2848
    • Pernkopf, F.1    O'leary, P.2
  • 128
    • 84867399506 scopus 로고    scopus 로고
    • Stochastic margin-based structure learning of Bayesian network classifiers
    • 2013
    • F. Pernkopf and M. Wohlmayr. 2013. Stochastic margin-based structure learning of Bayesian network classifiers. Pattern Recognition 46, 2 (2013), 464-471.
    • (2013) Pattern Recognition , vol.46 , Issue.2 , pp. 464-471
    • Pernkopf, F.1    Wohlmayr, M.2
  • 130
    • 0036189473 scopus 로고    scopus 로고
    • Face detection by aggregated Bayesian network classifiers
    • 2002
    • T. V. Pham, M. Worring, and A. W. M. Smeulders. 2002. Face detection by aggregated Bayesian network classifiers. Pattern Recognition Letters 23, 4 (2002), 451-461.
    • (2002) Pattern Recognition Letters , vol.23 , Issue.4 , pp. 451-461
    • Pham, T.V.1    Worring, M.2    Smeulders, A.W.M.3
  • 135
  • 136
    • 0043198674 scopus 로고    scopus 로고
    • Robust learning with missing data
    • 2001
    • M. Ramoni and P. Sebastiani. 2001b. Robust learning with missing data. Machine Learning 45, 2 (2001), 147-170.
    • (2001) Machine Learning , vol.45 , Issue.2 , pp. 147-170
    • Ramoni, M.1    Sebastiani, P.2
  • 137
    • 0242498509 scopus 로고    scopus 로고
    • Feature selection for the naive Bayesian classifier using decision trees
    • 2003
    • C. A. Ratanamahatana and D. Gunopulos. 2003. Feature selection for the naive Bayesian classifier using decision trees. Applied Artificial Intelligence 17, 5-6 (2003), 475-487.
    • (2003) Applied Artificial Intelligence , vol.17 , Issue.5-6 , pp. 475-487
    • Ratanamahatana, C.A.1    Gunopulos, D.2
  • 138
  • 141
    • 3042618109 scopus 로고    scopus 로고
    • Bayesian networks as consensed voting system in the construction of a multi-classiffier for protein secondary structure prediction
    • V. Robles, P. Larranaga, J. M. Pena, E. Menasalvas, M. S. Perez, and V. Herves. 2004. Bayesian networks as consensed voting system in the construction of a multi-classiffier for protein secondary structure prediction. Artificial Intelligence in Medicine 31 (2004), 117-136.
    • (2004) Artificial Intelligence in Medicine , vol.31 , Issue.2004 , pp. 117-136
    • Robles, V.1    Larranaga, P.2    Pena, J.M.3    Menasalvas, E.4    Perez, M.S.5    Herves, V.6
  • 143
    • 75749145760 scopus 로고    scopus 로고
    • A novel Markov boundary based feature subset selection algorithm
    • 2010
    • S. Rodrigues de Morais and A. Aussem. 2010. A novel Markov boundary based feature subset selection algorithm. Neurocomputing 73, 4-6 (2010), 578-584.
    • (2010) Neurocomputing , vol.73 , Issue.4-6 , pp. 578-584
    • De Morais, S.R.1    Aussem, A.2
  • 145
    • 21244467519 scopus 로고    scopus 로고
    • On discriminative Bayesian network classifiers and logistic regression
    • 2005
    • T. Roos, H. Wettig, P. Grünwald, P. Myllymaki, and H. Tirri. 2005. On discriminative Bayesian network classifiers and logistic regression. Machine Learning 59, 3 (2005), 267-296.
    • (2005) Machine Learning , vol.59 , Issue.3 , pp. 267-296
    • Roos, T.1    Wettig, H.2    Grünwald, P.3    Myllymaki, P.4    Tirri, H.5
  • 147
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • 2007
    • Y. Saeys, I. Inza, and P. Larranaga. 2007. A review of feature selection techniques in bioinformatics. Bioinformatics 23, 19 (2007), 2507-2517.
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 151
    • 70350568180 scopus 로고    scopus 로고
    • Histogram distance-based Bayesian network structure learning: A supervised classification specific approach
    • 2009
    • B. Sierra, E. Lazkano, E. Jauregi, and I. Irigoien. 2009. Histogram distance-based Bayesian network structure learning: A supervised classification specific approach. Decision Support Systems 48, 1 (2009), 180-190.
    • (2009) Decision Support Systems , vol.48 , Issue.1 , pp. 180-190
    • Sierra, B.1    Lazkano, E.2    Jauregi, E.3    Irigoien, I.4
  • 154
    • 0001173999 scopus 로고
    • Construction of Bayesian network structures from data: A brief survey and an efficient algorithm
    • 1995
    • M. Singh and M. Valtorta. 1995. Construction of Bayesian network structures from data: A brief survey and an efficient algorithm. International Journal of Approximate Reasoning 12, 2 (1995), 111-131.
    • (1995) International Journal of Approximate Reasoning , vol.12 , Issue.2 , pp. 111-131
    • Singh, M.1    Valtorta, M.2
  • 166
    • 14844351034 scopus 로고    scopus 로고
    • Not so naive Bayes: Aggregating one-dependence estimators
    • G. I. Webb, J. Boughton, and Z. Wang. 2005. Not so naive Bayes: Aggregating one-dependence estimators. Machine Learning 58 (2005), 5-24.
    • (2005) Machine Learning , vol.58 , Issue.2005 , pp. 5-24
    • Webb, G.I.1    Boughton, J.2    Wang, Z.3
  • 168
    • 60849091358 scopus 로고    scopus 로고
    • Alternative prior assumptions for improving the performance of naive Bayesian classifiers
    • 2009
    • T.-T.Wong. 2009. Alternative prior assumptions for improving the performance of naive Bayesian classifiers. Data Mining and Knowledge Discovery 18, 2 (2009), 183-213.
    • (2009) Data Mining and Knowledge Discovery , vol.18 , Issue.2 , pp. 183-213
    • Wong, T.-T.1
  • 169
    • 67650498428 scopus 로고    scopus 로고
    • Structure identification of Bayesian classifiers based onGMDH
    • J. Xiao,C.He, and X. Jiang. 2009. Structure identification of Bayesian classifiers based onGMDH.Knowledge-Based Systems 22 (2009), 461-470.
    • (2009) Knowledge-Based Systems , vol.22 , Issue.2009 , pp. 461-470
    • Xiao, J.1    He, C.2    Jiang, X.3
  • 170
    • 77951144596 scopus 로고    scopus 로고
    • Joint discriminative-generative modelling based on statistical tests for classification
    • 2010
    • J.-H. Xue and D. M. Titterington. 2010. Joint discriminative-generative modelling based on statistical tests for classification. Pattern Recognition Letters 31, 9 (2010), 1048-1055.
    • (2010) Pattern Recognition Letters , vol.31 , Issue.9 , pp. 1048-1055
    • Xue, J.-H.1    Titterington, D.M.2
  • 175
    • 0142157195 scopus 로고    scopus 로고
    • Tree-based credal networks for classification
    • 2003
    • M. Zaffalon and E. Fagiuoli. 2003. Tree-based credal networks for classification. Reliable Computing 9, 6 (2003), 487-509.
    • (2003) Reliable Computing , vol.9 , Issue.6 , pp. 487-509
    • Zaffalon, M.1    Fagiuoli, E.2
  • 181
    • 0034301677 scopus 로고    scopus 로고
    • Lazy learning of Bayesian rules
    • Z. Zheng and G. I. Webb. 2000. Lazy learning of Bayesian rules. Machine Learning 41 (2000), 53-84.
    • (2000) Machine Learning , vol.41 , Issue.2000 , pp. 53-84
    • Zheng, Z.1    Webb, G.I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.