메뉴 건너뛰기




Volumn 21, Issue 8, 2016, Pages 1291-1302

Descriptors and their selection methods in QSAR analysis: paradigm for drug design

Author keywords

[No Author keywords available]

Indexed keywords

CHEMICAL STRUCTURE; DRUG DESIGN; DRUG DEVELOPMENT; HUMAN; MOLECULAR BIOLOGY; MOLECULAR FINGERPRINT; MOLECULAR SELECTION; PHYSICAL CHEMISTRY; QUANTITATIVE STRUCTURE ACTIVITY RELATION; REVIEW;

EID: 84977621260     PISSN: 13596446     EISSN: 18785832     Source Type: Journal    
DOI: 10.1016/j.drudis.2016.06.013     Document Type: Review
Times cited : (278)

References (79)
  • 1
    • 84927746174 scopus 로고    scopus 로고
    • Structure based virtual screening to discover putative drug candidates: necessary considerations and successful case studies
    • Danishuddin, M., Khan, A.U., Structure based virtual screening to discover putative drug candidates: necessary considerations and successful case studies. Methods 71 (2015), 135–145.
    • (2015) Methods , vol.71 , pp. 135-145
    • Danishuddin, M.1    Khan, A.U.2
  • 2
    • 84980585760 scopus 로고    scopus 로고
    • Virtual screening strategies: a state of art to combat with multiple drug resistance strains
    • Danishuddin, M., Khan, A.U., Virtual screening strategies: a state of art to combat with multiple drug resistance strains. MOJ. Proteomics Bioinform., 2, 2015, 00042.
    • (2015) MOJ. Proteomics Bioinform. , vol.2 , pp. 00042
    • Danishuddin, M.1    Khan, A.U.2
  • 3
    • 84885587431 scopus 로고    scopus 로고
    • Descriptor selection methods in quantitative structure-activity relationship studies: a review study
    • Shahlaei, M., Descriptor selection methods in quantitative structure-activity relationship studies: a review study. Chem. Rev. 113 (2013), 8093–8103.
    • (2013) Chem. Rev. , vol.113 , pp. 8093-8103
    • Shahlaei, M.1
  • 4
    • 84873093805 scopus 로고    scopus 로고
    • In silico virtual screening approaches for anti-viral drug discovery
    • Murgueitio, M.S., et al. In silico virtual screening approaches for anti-viral drug discovery. Drug Discov. Today. 9 (2012), 219–225.
    • (2012) Drug Discov. Today. , vol.9 , pp. 219-225
    • Murgueitio, M.S.1
  • 5
    • 84899881824 scopus 로고    scopus 로고
    • QSAR modeling: where have you been? Where are you going to?
    • Cherkasov, A., et al. QSAR modeling: where have you been? Where are you going to?. J Med. Chem. 57 (2014), 4977–5010.
    • (2014) J Med. Chem. , vol.57 , pp. 4977-5010
    • Cherkasov, A.1
  • 6
    • 84975748264 scopus 로고    scopus 로고
    • Activity prediction and identification of mis-annotated chemical compounds using extreme descriptors
    • Borysov, P., et al. Activity prediction and identification of mis-annotated chemical compounds using extreme descriptors. J. Chemometrics. 30 (2016), 99–108.
    • (2016) J. Chemometrics. , vol.30 , pp. 99-108
    • Borysov, P.1
  • 7
    • 84954397413 scopus 로고    scopus 로고
    • Comparative analysis of QSAR-based vs. chemical similarity based predictors of GPCR binding affinity
    • Luo, M., et al. Comparative analysis of QSAR-based vs. chemical similarity based predictors of GPCR binding affinity. Mol. Inf. 35 (2015), 36–41.
    • (2015) Mol. Inf. , vol.35 , pp. 36-41
    • Luo, M.1
  • 8
    • 84925400066 scopus 로고    scopus 로고
    • Machine-learning approaches in drug discovery: methods and applications
    • Lavecchia, A., Machine-learning approaches in drug discovery: methods and applications. Drug Discov. Today. 3 (2015), 318–331.
    • (2015) Drug Discov. Today. , vol.3 , pp. 318-331
    • Lavecchia, A.1
  • 9
    • 80053173508 scopus 로고    scopus 로고
    • Top scoring pairs for feature selection in machine learning and applications to cancer outcome prediction
    • Shi, P., et al. Top scoring pairs for feature selection in machine learning and applications to cancer outcome prediction. BMC Bioinform., 12, 2011, 375.
    • (2011) BMC Bioinform. , vol.12 , pp. 375
    • Shi, P.1
  • 10
    • 85047686957 scopus 로고    scopus 로고
    • Feature selection methods in QSAR studies
    • Goodarzi, M., et al. Feature selection methods in QSAR studies. J. AOAC Int. 95 (2012), 636–651.
    • (2012) J. AOAC Int. , vol.95 , pp. 636-651
    • Goodarzi, M.1
  • 11
    • 0003780715 scopus 로고
    • Graph Theory
    • Addison-Wesley
    • Harary, F., Graph Theory. 1971, Addison-Wesley.
    • (1971)
    • Harary, F.1
  • 12
    • 8544258061 scopus 로고    scopus 로고
    • Topological descriptors in drug design and modeling studies
    • Roy, K., Topological descriptors in drug design and modeling studies. Mol. Diver. 8 (2004), 321–323.
    • (2004) Mol. Diver. , vol.8 , pp. 321-323
    • Roy, K.1
  • 13
    • 8544254107 scopus 로고
    • Structural determination of paraffin boiling points
    • Wiener, H., Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69 (1947), 17–20.
    • (1947) J. Am. Chem. Soc. , vol.69 , pp. 17-20
    • Wiener, H.1
  • 14
    • 8644280181 scopus 로고
    • On characterization of molecular branching
    • Randic, M., On characterization of molecular branching. J. Am. Chem. Soc. 97 (1975), 6609–6614.
    • (1975) J. Am. Chem. Soc. , vol.97 , pp. 6609-6614
    • Randic, M.1
  • 15
    • 0001365270 scopus 로고
    • Indexes of molecular shape from chemical graphs
    • Kier, L.B., Indexes of molecular shape from chemical graphs. Acta Pharm. Jugosl. 36 (1986), 171–188.
    • (1986) Acta Pharm. Jugosl. , vol.36 , pp. 171-188
    • Kier, L.B.1
  • 16
    • 9444296174 scopus 로고
    • Highly discriminating distance-based topological index
    • Balaban, A.T., Highly discriminating distance-based topological index. Chem. Phys. Lett. 89 (1982), 399–404.
    • (1982) Chem. Phys. Lett. , vol.89 , pp. 399-404
    • Balaban, A.T.1
  • 18
    • 0003816887 scopus 로고
    • Molecular Connectivity in Structure Activity Analysis
    • Wiley
    • Kier, L.B., Hall, L.H., Molecular Connectivity in Structure Activity Analysis. 1986, Wiley.
    • (1986)
    • Kier, L.B.1    Hall, L.H.2
  • 19
    • 0000680194 scopus 로고
    • Generalized molecular descriptors
    • Randic, M., Generalized molecular descriptors. J. Math. Chem. 7 (1991), 155–168.
    • (1991) J. Math. Chem. , vol.7 , pp. 155-168
    • Randic, M.1
  • 20
    • 34247251874 scopus 로고    scopus 로고
    • TMACC: interpretable correlation descriptors for quantitative structure-activity relationships
    • Melville, J.L., Hirst, J.D., TMACC: interpretable correlation descriptors for quantitative structure-activity relationships. J. Chem. Inf. Model. 47 (2007), 626–634.
    • (2007) J. Chem. Inf. Model. , vol.47 , pp. 626-634
    • Melville, J.L.1    Hirst, J.D.2
  • 21
    • 76749120557 scopus 로고    scopus 로고
    • Interpretable correlation descriptors for quantitative structure-activity relationships
    • Spowage, B.W., Interpretable correlation descriptors for quantitative structure-activity relationships. J. Cheminf., 1, 2009, 22.
    • (2009) J. Cheminf. , vol.1 , pp. 22
    • Spowage, B.W.1
  • 22
    • 0004315104 scopus 로고    scopus 로고
    • Handbook of Molecular Descriptors
    • Wlley-VCH
    • Todeschini, R., Consonni, V., Handbook of Molecular Descriptors. 2000, Wlley-VCH.
    • (2000)
    • Todeschini, R.1    Consonni, V.2
  • 23
    • 84988109729 scopus 로고
    • Atomic physicochemical parameters for three-dimensional structure-directed quantitative structure-activity relationships I. Partition coefficients as a measure of hydrophobicity
    • Ghose, A.K., Crippen, G.M., Atomic physicochemical parameters for three-dimensional structure-directed quantitative structure-activity relationships I. Partition coefficients as a measure of hydrophobicity. J. Comput. Chem. 4 (1986), 565–577.
    • (1986) J. Comput. Chem. , vol.4 , pp. 565-577
    • Ghose, A.K.1    Crippen, G.M.2
  • 24
    • 84897498691 scopus 로고    scopus 로고
    • Lipophilicity indices for drug development
    • Arnott, J.A., et al. Lipophilicity indices for drug development. J. Appl. Biopharm. Pharmacokinet., 1, 2013, 31.
    • (2013) J. Appl. Biopharm. Pharmacokinet. , vol.1 , pp. 31
    • Arnott, J.A.1
  • 25
    • 0001938735 scopus 로고
    • The parameterization of lipophilicity and other structural properties in drug design
    • Waterbeemd, H., Testa, B., The parameterization of lipophilicity and other structural properties in drug design. Adv. Drug. Res. 16 (1987), 85–225.
    • (1987) Adv. Drug. Res. , vol.16 , pp. 85-225
    • Waterbeemd, H.1    Testa, B.2
  • 26
    • 77749315417 scopus 로고    scopus 로고
    • Lipophilicity in drug discovery
    • Waring, M.J., Lipophilicity in drug discovery. Expert Opin. Drug Discov. 5 (2010), 235–248.
    • (2010) Expert Opin. Drug Discov. , vol.5 , pp. 235-248
    • Waring, M.J.1
  • 27
    • 0016721416 scopus 로고
    • Calculation of hydrophobic constant (log P) from pi. and f constants
    • Leo, A., et al. Calculation of hydrophobic constant (log P) from pi. and f constants. J. Med. Chem. 18 (1975), 865–868.
    • (1975) J. Med. Chem. , vol.18 , pp. 865-868
    • Leo, A.1
  • 28
    • 0037212497 scopus 로고    scopus 로고
    • Hydrogen bonding descriptors in the prediction of human in vivo intestinal permeability
    • Winiwarter, S., et al. Hydrogen bonding descriptors in the prediction of human in vivo intestinal permeability. J. Mol. Graph. Model. 21 (2003), 273–287.
    • (2003) J. Mol. Graph. Model. , vol.21 , pp. 273-287
    • Winiwarter, S.1
  • 29
    • 79960153981 scopus 로고    scopus 로고
    • Intramolecular hydrogen bonding to improve membrane permeability and absorption in beyond rule of five chemical space
    • Alex, A., et al. Intramolecular hydrogen bonding to improve membrane permeability and absorption in beyond rule of five chemical space. Med. Chem. Commun. 2 (2011), 669–674.
    • (2011) Med. Chem. Commun. , vol.2 , pp. 669-674
    • Alex, A.1
  • 30
    • 84964799737 scopus 로고    scopus 로고
    • Cell permeability beyond the rule-of-5
    • Matsson, P., Cell permeability beyond the rule-of-5. Adv. Drug Deliv. 101 (2015), 42–61.
    • (2015) Adv. Drug Deliv. , vol.101 , pp. 42-61
    • Matsson, P.1
  • 31
    • 84961123582 scopus 로고    scopus 로고
    • Computational prediction of formulation strategies for beyond-rule-of-5 compounds
    • Bergströma, A.S., et al. Computational prediction of formulation strategies for beyond-rule-of-5 compounds. Adv. Drug Deliv. Rev. 101 (2016), 6–21.
    • (2016) Adv. Drug Deliv. Rev. , vol.101 , pp. 6-21
    • Bergströma, A.S.1
  • 32
    • 47349119393 scopus 로고    scopus 로고
    • Prediction of drug solubility from molecular structure using a drug-like training set
    • Huuskonen, J., et al. Prediction of drug solubility from molecular structure using a drug-like training set. SAR QSAR Environ. Res. 19 (2008), 191–212.
    • (2008) SAR QSAR Environ. Res. , vol.19 , pp. 191-212
    • Huuskonen, J.1
  • 33
    • 1542741028 scopus 로고    scopus 로고
    • ADME evaluation in drug discovery. 4. Prediction of aqueous solubility based on atom contribution approach
    • Hou, T.J., ADME evaluation in drug discovery. 4. Prediction of aqueous solubility based on atom contribution approach. J. Chem. Inf. Comput. Sci. 44 (2004), 266–275.
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 266-275
    • Hou, T.J.1
  • 34
    • 84923247255 scopus 로고    scopus 로고
    • A review of methods for the calculation of solution free energies and the modelling of systems in solution
    • Skyner, R.E., et al. A review of methods for the calculation of solution free energies and the modelling of systems in solution. Phys. Chem. Chem. Phys. 17 (2015), 6174–6191.
    • (2015) Phys. Chem. Chem. Phys. , vol.17 , pp. 6174-6191
    • Skyner, R.E.1
  • 35
    • 33846856225 scopus 로고    scopus 로고
    • Random forest models to predict aqueous solubility
    • Palmer, D.S., et al. Random forest models to predict aqueous solubility. J. Chem. Inf. Model. 47 (2007), 150–158.
    • (2007) J. Chem. Inf. Model. , vol.47 , pp. 150-158
    • Palmer, D.S.1
  • 36
    • 33747183101 scopus 로고    scopus 로고
    • Recent progress in the computational prediction of aqueous solubility and absorption
    • Johnson, S.R., Zheng, W., Recent progress in the computational prediction of aqueous solubility and absorption. AAPS J. 8 (2006), 27–40.
    • (2006) AAPS J. , vol.8 , pp. 27-40
    • Johnson, S.R.1    Zheng, W.2
  • 37
    • 84939455735 scopus 로고    scopus 로고
    • Visual analytics in cheminformatics: user-supervised descriptor selection for QSAR methods
    • Martínez, M.J., et al. Visual analytics in cheminformatics: user-supervised descriptor selection for QSAR methods. J. Cheminform., 7, 2015, 39.
    • (2015) J. Cheminform. , vol.7 , pp. 39
    • Martínez, M.J.1
  • 38
    • 5644251993 scopus 로고    scopus 로고
    • Mapping chemical space using molecular descriptors and chemical genetics: deacetylase inhibitors
    • Hggarty, S.J., et al. Mapping chemical space using molecular descriptors and chemical genetics: deacetylase inhibitors. Comb. Chem. High Throughput Screen. 7 (2004), 669–676.
    • (2004) Comb. Chem. High Throughput Screen. , vol.7 , pp. 669-676
    • Hggarty, S.J.1
  • 39
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys, Y., et al. A review of feature selection techniques in bioinformatics. Bioinformatics 23 (2007), 2507–2517.
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1
  • 40
    • 5444266247 scopus 로고    scopus 로고
    • Evaluation of mutual information and genetic programming for feature selection in QSAR
    • Venkatraman, V., et al. Evaluation of mutual information and genetic programming for feature selection in QSAR. J. Chem. Inf. Comput. Sci. 44 (2004), 1686–1692.
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 1686-1692
    • Venkatraman, V.1
  • 41
    • 79955515705 scopus 로고    scopus 로고
    • Application of information: theoretic concepts in chemoinformatics
    • Vogt, M., et al. Application of information: theoretic concepts in chemoinformatics. Information 1 (2010), 60–73.
    • (2010) Information , vol.1 , pp. 60-73
    • Vogt, M.1
  • 42
    • 74049138056 scopus 로고    scopus 로고
    • Combining multiple classifiers for wrapper feature selection
    • Chrysostomou, K.A., et al. Combining multiple classifiers for wrapper feature selection. Int. J. Data Manage. Mining Model. 1 (2009), 91–102.
    • (2009) Int. J. Data Manage. Mining Model. , vol.1 , pp. 91-102
    • Chrysostomou, K.A.1
  • 43
    • 0035914576 scopus 로고    scopus 로고
    • Comparison of different methods for variable selection
    • Xu, L., Zhang, W.J., Comparison of different methods for variable selection. Anal. Chim. Acta 446 (2001), 477–483.
    • (2001) Anal. Chim. Acta , vol.446 , pp. 477-483
    • Xu, L.1    Zhang, W.J.2
  • 44
    • 64749086339 scopus 로고    scopus 로고
    • A wrapper method for feature selection using support vector machines
    • Maldonado, S., Weber, R., A wrapper method for feature selection using support vector machines. Inf. Sci. 179 (2009), 2208–2217.
    • (2009) Inf. Sci. , vol.179 , pp. 2208-2217
    • Maldonado, S.1    Weber, R.2
  • 45
    • 84923828257 scopus 로고    scopus 로고
    • DWFS: a wrapper feature selection tool based on a parallel genetic algorithm
    • Soufan, O., et al. DWFS: a wrapper feature selection tool based on a parallel genetic algorithm. PLoS ONE, 10, 2015, e0117988.
    • (2015) PLoS ONE , vol.10 , pp. e0117988
    • Soufan, O.1
  • 46
    • 33748076461 scopus 로고    scopus 로고
    • A GA-based feature selection and parameters optimization for support vector machines
    • Huang, C.L., Wang, C.J., A GA-based feature selection and parameters optimization for support vector machines. Expert Syst. Appl. 31 (2006), 231–240.
    • (2006) Expert Syst. Appl. , vol.31 , pp. 231-240
    • Huang, C.L.1    Wang, C.J.2
  • 47
    • 84893420234 scopus 로고    scopus 로고
    • Ligand and structure-based classification models for prediction of P-glycoprotein inhibitors
    • Klepsch, F., et al. Ligand and structure-based classification models for prediction of P-glycoprotein inhibitors. J. Chem. Inform. Model. 54 (2014), 218–229.
    • (2014) J. Chem. Inform. Model. , vol.54 , pp. 218-229
    • Klepsch, F.1
  • 48
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon, I., et al. Gene selection for cancer classification using support vector machines. Mach. Learn. 46 (2002), 389–422.
    • (2002) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1
  • 49
    • 33745882975 scopus 로고    scopus 로고
    • Improved feature selection algorithm based on SVM and correlation
    • Xie, Z., et al. Improved feature selection algorithm based on SVM and correlation. Adv. Neural Netw. 3971 (2006), 1373–1380.
    • (2006) Adv. Neural Netw. , vol.3971 , pp. 1373-1380
    • Xie, Z.1
  • 50
    • 26944502743 scopus 로고    scopus 로고
    • Effect of selection of molecular descriptors on the prediction of blood-brain barrier penetrating and nonpenetrating agents by statistical learning methods
    • Li, H., et al. Effect of selection of molecular descriptors on the prediction of blood-brain barrier penetrating and nonpenetrating agents by statistical learning methods. J. Chem. Inf. Model. 45 (2005), 1376–1384.
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 1376-1384
    • Li, H.1
  • 51
    • 77949543342 scopus 로고    scopus 로고
    • Feature selection combining linear support vector machines and concave optimization
    • Rinaldi, F., Sciandrone, M., Feature selection combining linear support vector machines and concave optimization. Optim. Methods Softw. 25 (2010), 117–128.
    • (2010) Optim. Methods Softw. , vol.25 , pp. 117-128
    • Rinaldi, F.1    Sciandrone, M.2
  • 52
    • 84868640681 scopus 로고    scopus 로고
    • Improving accuracy for cancer classification with a new algorithm for genes selection
    • Zhang, H., et al. Improving accuracy for cancer classification with a new algorithm for genes selection. BMC Bioinform., 13, 2012, 298.
    • (2012) BMC Bioinform. , vol.13 , pp. 298
    • Zhang, H.1
  • 53
    • 77951979146 scopus 로고    scopus 로고
    • Hybrid-genetic algorithm based descriptor optimization and QSAR models for predicting the biological activity of Tipranavir analogs for HIV protease inhibition
    • Reddy, A.S., et al. Hybrid-genetic algorithm based descriptor optimization and QSAR models for predicting the biological activity of Tipranavir analogs for HIV protease inhibition. J. Mol. Graph. Model. 28 (2010), 852–862.
    • (2010) J. Mol. Graph. Model. , vol.28 , pp. 852-862
    • Reddy, A.S.1
  • 54
    • 84929622273 scopus 로고    scopus 로고
    • A hybrid feature selection method based on rough conditional mutual information and Naive Bayesian classifier
    • Zeng, Z., et al. A hybrid feature selection method based on rough conditional mutual information and Naive Bayesian classifier. ISRN Appl. Math., 2014, 1–11.
    • (2014) ISRN Appl. Math. , pp. 1-11
    • Zeng, Z.1
  • 55
    • 76049122386 scopus 로고    scopus 로고
    • Prediction of HIV-1 protease inhibitors using machine learning approaches
    • Rao, H.B., et al. Prediction of HIV-1 protease inhibitors using machine learning approaches. QSAR Comb. Sci. 28 (2009), 1346–1357.
    • (2009) QSAR Comb. Sci. , vol.28 , pp. 1346-1357
    • Rao, H.B.1
  • 56
    • 84938629390 scopus 로고    scopus 로고
    • Prediction of core cancer genes using a hybrid of feature selection and machine learning methods
    • Liu, Y.X., Prediction of core cancer genes using a hybrid of feature selection and machine learning methods. Genet. Mol. Res. 14 (2015), 8871–8882.
    • (2015) Genet. Mol. Res. , vol.14 , pp. 8871-8882
    • Liu, Y.X.1
  • 57
    • 33751246188 scopus 로고    scopus 로고
    • Similarity-based virtual screening using 2D fingerprints
    • Willett, P., Similarity-based virtual screening using 2D fingerprints. Drug Discov. Today. 11 (2006), 1046–1053.
    • (2006) Drug Discov. Today. , vol.11 , pp. 1046-1053
    • Willett, P.1
  • 58
    • 0029783934 scopus 로고    scopus 로고
    • Neighborhood behavior: a useful concept for validation of molecular diversity descriptors
    • Patterson, D.E., et al. Neighborhood behavior: a useful concept for validation of molecular diversity descriptors. J. Med. Chem. 39 (1996), 3049–3059.
    • (1996) J. Med. Chem. , vol.39 , pp. 3049-3059
    • Patterson, D.E.1
  • 59
    • 84961133475 scopus 로고    scopus 로고
    • Public domain HTS fingerprints: design and evaluation of compound bioactivity profiles from PubChem's Bioassay Repository
    • Helal, K.Y., Public domain HTS fingerprints: design and evaluation of compound bioactivity profiles from PubChem's Bioassay Repository. J. Chem. Inf. Model. 56 (2016), 390–398.
    • (2016) J. Chem. Inf. Model. , vol.56 , pp. 390-398
    • Helal, K.Y.1
  • 60
    • 77952772341 scopus 로고    scopus 로고
    • Extended-connectivity fingerprints
    • Rogers, D., Hahn, M., Extended-connectivity fingerprints. J. Chem. Inf. Model. 50 (2010), 724–754.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 724-754
    • Rogers, D.1    Hahn, M.2
  • 61
    • 77956276766 scopus 로고    scopus 로고
    • Analysis and comparison of 2D fingerprints: insights into database screening performance using eight fingerprint methods
    • Duan, J., et al. Analysis and comparison of 2D fingerprints: insights into database screening performance using eight fingerprint methods. J. Mol. Graph. Model. 29 (2010), 157–170.
    • (2010) J. Mol. Graph. Model. , vol.29 , pp. 157-170
    • Duan, J.1
  • 62
    • 5544290537 scopus 로고    scopus 로고
    • Similarity searching of chemical databases using atom environment descriptors (MOLPRINT 2D): evaluation of performance
    • Bender, A., et al. Similarity searching of chemical databases using atom environment descriptors (MOLPRINT 2D): evaluation of performance. J. Chem. Inf. Comput. Sci. 44 (2004), 1708–1718.
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 1708-1718
    • Bender, A.1
  • 63
    • 44449107147 scopus 로고    scopus 로고
    • Support vector machine-based ranking significantly improves the effectiveness of similarity searching using 2D fingerprints and multiple reference compounds
    • Geppert, H., et al. Support vector machine-based ranking significantly improves the effectiveness of similarity searching using 2D fingerprints and multiple reference compounds. J. Chem. Inf. Model. 48 (2008), 742–746.
    • (2008) J. Chem. Inf. Model. , vol.48 , pp. 742-746
    • Geppert, H.1
  • 64
    • 67650085848 scopus 로고    scopus 로고
    • Development of a fingerprint reduction approach for bayesian similarity searching based on Kullback Leibler divergence analysis
    • Nisius, B., et al. Development of a fingerprint reduction approach for bayesian similarity searching based on Kullback Leibler divergence analysis. J. Chem. Inf. Model. 49 (2009), 1347–1358.
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 1347-1358
    • Nisius, B.1
  • 65
    • 80053320090 scopus 로고    scopus 로고
    • How do 2D fingerprints detect structurally diverse active compounds? Revealing compound subset-specific fingerprint features through systematic selection
    • Heikamp, K., Bajorath, J., How do 2D fingerprints detect structurally diverse active compounds? Revealing compound subset-specific fingerprint features through systematic selection. J. Chem. Inf. Model. 51 (2011), 2254–2265.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2254-2265
    • Heikamp, K.1    Bajorath, J.2
  • 66
    • 73449116746 scopus 로고    scopus 로고
    • Fingerprints recombination-generating hybrid fingerprints for similarity searching from different fingerprints types
    • Nisius, B., Bajorath, J., Fingerprints recombination-generating hybrid fingerprints for similarity searching from different fingerprints types. ChemMedChem. 4 (2009), 1859–1863.
    • (2009) ChemMedChem. , vol.4 , pp. 1859-1863
    • Nisius, B.1    Bajorath, J.2
  • 67
    • 0001219776 scopus 로고
    • Topological index. A newly proposal quantity characterizing the topological nature of structural isomers of saturated hydrocarbons
    • Hosoya, H., Topological index. A newly proposal quantity characterizing the topological nature of structural isomers of saturated hydrocarbons. Bull. Chem. Soc. Jpn. 44 (1971), 2332–2339.
    • (1971) Bull. Chem. Soc. Jpn. , vol.44 , pp. 2332-2339
    • Hosoya, H.1
  • 68
    • 0034784262 scopus 로고    scopus 로고
    • The connectivity index 25 years after
    • Randic, M., The connectivity index 25 years after. J. Mol. Graph. Model. 20 (2001), 19–35.
    • (2001) J. Mol. Graph. Model. , vol.20 , pp. 19-35
    • Randic, M.1
  • 69
    • 0001057103 scopus 로고
    • The autocorrelation of a topological structure: a new molecular descriptor
    • Moreau, G., Broto, P., The autocorrelation of a topological structure: a new molecular descriptor. Nouv. J. Chim. 4 (1980), 359–360.
    • (1980) Nouv. J. Chim. , vol.4 , pp. 359-360
    • Moreau, G.1    Broto, P.2
  • 70
    • 0022636023 scopus 로고
    • Shape indexes of orders one and three from molecular graphs
    • Kier, L.B., Shape indexes of orders one and three from molecular graphs. Quant. Struct-Act. Relat. 5 (1985), 1–7.
    • (1985) Quant. Struct-Act. Relat. , vol.5 , pp. 1-7
    • Kier, L.B.1
  • 71
    • 0000984584 scopus 로고
    • Novel molecular description for structure-property studies
    • Randic, M., Novel molecular description for structure-property studies. Chem. Phys. Lett. 211 (1993), 478–483.
    • (1993) Chem. Phys. Lett. , vol.211 , pp. 478-483
    • Randic, M.1
  • 72
    • 0002345564 scopus 로고
    • A formula for the Wiener number of trees and its extension to graph containing cycles
    • Gutman, I., A formula for the Wiener number of trees and its extension to graph containing cycles. Graph Theory Notes 27 (1994), 9–15.
    • (1994) Graph Theory Notes , vol.27 , pp. 9-15
    • Gutman, I.1
  • 73
    • 0035353661 scopus 로고    scopus 로고
    • On interpretation of well-known topological indices
    • Randić, M., Zupan, J., On interpretation of well-known topological indices. J. Chem. Inf. Comput. Sci. 41 (2001), 550–560.
    • (2001) J. Chem. Inf. Comput. Sci. , vol.41 , pp. 550-560
    • Randić, M.1    Zupan, J.2
  • 74
    • 0000311814 scopus 로고    scopus 로고
    • Wiener index revisited
    • Nikolic, S., et al. Wiener index revisited. Chem. Phys. Lett. 333 (2001), 319–321.
    • (2001) Chem. Phys. Lett. , vol.333 , pp. 319-321
    • Nikolic, S.1
  • 75
    • 0042656848 scopus 로고    scopus 로고
    • A novel set of Wiener indices
    • Li, X., et al. A novel set of Wiener indices. J. Mol. Graph Model 22 (2003), 161–172.
    • (2003) J. Mol. Graph Model , vol.22 , pp. 161-172
    • Li, X.1
  • 76
    • 77954457136 scopus 로고    scopus 로고
    • Augmented Zagreb index
    • Furtula, B., et al. Augmented Zagreb index. J. Math. Chem. 48 (2010), 370–380.
    • (2010) J. Math. Chem. , vol.48 , pp. 370-380
    • Furtula, B.1
  • 77
    • 84155164224 scopus 로고    scopus 로고
    • Superaugmented eccentric distance sum connectivity indices: novel highly discriminating topological descriptors for QSAR/QSPR
    • Gupta, M., et al. Superaugmented eccentric distance sum connectivity indices: novel highly discriminating topological descriptors for QSAR/QSPR. Chem. Biol. Drug. Des. 79 (2012), 38–52.
    • (2012) Chem. Biol. Drug. Des. , vol.79 , pp. 38-52
    • Gupta, M.1
  • 78
    • 0001231386 scopus 로고
    • Molecular transforms: a potential tool for structure-activity studies
    • Soltzberg, L.J., et al. Molecular transforms: a potential tool for structure-activity studies. J. Am. Chem. Soc. 99 (1977), 439–443.
    • (1977) J. Am. Chem. Soc. , vol.99 , pp. 439-443
    • Soltzberg, L.J.1
  • 79
    • 0028851251 scopus 로고
    • Autocorrelation of molecular surface properties for modeling corticosteroid binding globulin and cytosolic Ah receptor activity by neural networks
    • Wagener, M., et al. Autocorrelation of molecular surface properties for modeling corticosteroid binding globulin and cytosolic Ah receptor activity by neural networks. J. Am. Chem. Soc. 117 (1995), 7769–7775.
    • (1995) J. Am. Chem. Soc. , vol.117 , pp. 7769-7775
    • Wagener, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.