-
1
-
-
84924412793
-
Enhanced tolerance of Saccharomyces cerevisiae to multiple lignocellulose-derived inhibitors through modulation of spermidine contents
-
Kim SK, Jin YS, Choi IG, Park YC, Seo JH. Enhanced tolerance of Saccharomyces cerevisiae to multiple lignocellulose-derived inhibitors through modulation of spermidine contents. Metab Eng. 2015;29:46-55.
-
(2015)
Metab Eng
, vol.29
, pp. 46-55
-
-
Kim, S.K.1
Jin, Y.S.2
Choi, I.G.3
Park, Y.C.4
Seo, J.H.5
-
2
-
-
12544249147
-
Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass
-
Klinke HB, Thomsen AB, Ahring BK. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microb Biot. 2004;66(1):10-26.
-
(2004)
Appl Microb Biot
, vol.66
, Issue.1
, pp. 10-26
-
-
Klinke, H.B.1
Thomsen, A.B.2
Ahring, B.K.3
-
3
-
-
69249214122
-
Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways
-
Liu ZL, Ma MG, Song MZ. Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways. Mol Genet Genomics. 2009;282(3):233-44.
-
(2009)
Mol Genet Genomics
, vol.282
, Issue.3
, pp. 233-244
-
-
Liu, Z.L.1
Ma, M.G.2
Song, M.Z.3
-
4
-
-
77953143899
-
Ethanolic cofermentation with glucose and xylose by the recombinant industrial strain Saccharomyces cerevisiae NAN-127 and the effect of furfural on xylitol production
-
Zhang X, Shen Y, Shi W, Bao X. Ethanolic cofermentation with glucose and xylose by the recombinant industrial strain Saccharomyces cerevisiae NAN-127 and the effect of furfural on xylitol production. Bioresour Technol. 2010;101(18):7104-10.
-
(2010)
Bioresour Technol
, vol.101
, Issue.18
, pp. 7104-7110
-
-
Zhang, X.1
Shen, Y.2
Shi, W.3
Bao, X.4
-
5
-
-
84910120716
-
High vanillin tolerance of an evolved Saccharomyces cerevisiae strain owing to its enhanced vanillin reduction and antioxidative capacity
-
Shen Y, Li H, Wang X, Zhang X, Hou J, Wang L, Gao N, Bao X. High vanillin tolerance of an evolved Saccharomyces cerevisiae strain owing to its enhanced vanillin reduction and antioxidative capacity. J Ind Microbiol Biotechnol. 2014;41(11):1637-45.
-
(2014)
J Ind Microbiol Biotechnol
, vol.41
, Issue.11
, pp. 1637-1645
-
-
Shen, Y.1
Li, H.2
Wang, X.3
Zhang, X.4
Hou, J.5
Wang, L.6
Gao, N.7
Bao, X.8
-
6
-
-
78651428997
-
Improvement of acetic acid tolerance and fermentation performance of Saccharomyces cerevisiae by disruption of the FPS1 aquaglyceroporin gene
-
Zhang JG, Liu XY, He XP, Guo XN, Lu Y, Zhang BR. Improvement of acetic acid tolerance and fermentation performance of Saccharomyces cerevisiae by disruption of the FPS1 aquaglyceroporin gene. Biotechnol Lett. 2011;33(2):277-84.
-
(2011)
Biotechnol Lett
, vol.33
, Issue.2
, pp. 277-284
-
-
Zhang, J.G.1
Liu, X.Y.2
He, X.P.3
Guo, X.N.4
Lu, Y.5
Zhang, B.R.6
-
7
-
-
77958162502
-
Adaptive response and tolerance to weak acids in saccharomyces cerevisiae: a genome-wide view
-
Mira NP, Teixeira MC, Sa-Correia I. Adaptive response and tolerance to weak acids in saccharomyces cerevisiae: a genome-wide view. Omics. 2010;14(5):525-40.
-
(2010)
Omics
, vol.14
, Issue.5
, pp. 525-540
-
-
Mira, N.P.1
Teixeira, M.C.2
Sa-Correia, I.3
-
8
-
-
76749140881
-
Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae
-
Allen SA, Clark W, McCaffery JM, Cai Z, Lanctot A, Slininger PJ, Liu ZL, Gorsich SW. Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol Biofuels. 2010;3:2.
-
(2010)
Biotechnol Biofuels
, vol.3
, pp. 2
-
-
Allen, S.A.1
Clark, W.2
McCaffery, J.M.3
Cai, Z.4
Lanctot, A.5
Slininger, P.J.6
Liu, Z.L.7
Gorsich, S.W.8
-
9
-
-
33947286326
-
Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae
-
Almeida JRM, Modig T, Petersson A, Hähn-Hägerdal B, Lidén G, Gorwa-Grauslund MF. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biot. 2007;82(4):340-9.
-
(2007)
J Chem Technol Biot
, vol.82
, Issue.4
, pp. 340-349
-
-
Almeida, J.R.M.1
Modig, T.2
Petersson, A.3
Hähn-Hägerdal, B.4
Lidén, G.5
Gorwa-Grauslund, M.F.6
-
11
-
-
0036566476
-
Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase
-
Modig T, Lidén G, Taherzadeh MJ. Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem J. 2002;363:769-76.
-
(2002)
Biochem J
, vol.363
, pp. 769-776
-
-
Modig, T.1
Lidén, G.2
Taherzadeh, M.J.3
-
12
-
-
79954648688
-
Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates
-
Liu ZL. Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates. Appl Microbiol Biotechnol. 2011;90(3):809-25.
-
(2011)
Appl Microbiol Biotechnol
, vol.90
, Issue.3
, pp. 809-825
-
-
Liu, Z.L.1
-
13
-
-
79960843079
-
Enhanced resistance of Saccharomyces cerevisiae to vanillin by expression of lacA from Trametes sp AH28-2
-
Ji L, Shen Y, Xu LL, Peng BY, Xiao YZ, Bao XM. Enhanced resistance of Saccharomyces cerevisiae to vanillin by expression of lacA from Trametes sp AH28-2. Bioresource Technol. 2011;102(17):8105-9.
-
(2011)
Bioresource Technol
, vol.102
, Issue.17
, pp. 8105-8109
-
-
Ji, L.1
Shen, Y.2
Xu, L.L.3
Peng, B.Y.4
Xiao, Y.Z.5
Bao, X.M.6
-
14
-
-
65549118633
-
De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and Baker's yeast (saccharomyces cerevisiae)
-
Hansen EH, Møller BL, Kock GR, Bünner CM, Kristensen C, Jensen OR, Okkels FT, Olsen CE, Motawia MS, Hansen J. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and Baker's yeast (saccharomyces cerevisiae). Appl Environ Microb. 2009;75(9):2765-74.
-
(2009)
Appl Environ Microb
, vol.75
, Issue.9
, pp. 2765-2774
-
-
Hansen, E.H.1
Møller, B.L.2
Kock, G.R.3
Bünner, C.M.4
Kristensen, C.5
Jensen, O.R.6
Okkels, F.T.7
Olsen, C.E.8
Motawia, M.S.9
Hansen, J.10
-
15
-
-
84895876374
-
A vanillin derivative causes mitochondrial dysfunction and triggers oxidative stress in Cryptococcus neoformans
-
Kim JH, Lee HO, Cho YJ, Kim J, Chun J, Choi J, Lee Y, Jung WH. A vanillin derivative causes mitochondrial dysfunction and triggers oxidative stress in Cryptococcus neoformans. Plos One. 2014;9(2):e89122.
-
(2014)
Plos One
, vol.9
, Issue.2
-
-
Kim, J.H.1
Lee, H.O.2
Cho, Y.J.3
Kim, J.4
Chun, J.5
Choi, J.6
Lee, Y.7
Jung, W.H.8
-
16
-
-
84876591791
-
Vanillin inhibits translation and induces messenger ribonucleoprotein (mRNP) granule formation in saccharomyces cerevisiae: application and validation of high-content, image-based profiling
-
Iwaki A, Ohnuki S, Suga Y, Izawa S, Ohya Y. Vanillin inhibits translation and induces messenger ribonucleoprotein (mRNP) granule formation in saccharomyces cerevisiae: application and validation of high-content, image-based profiling. Plos One. 2013;8(4):e61748.
-
(2013)
Plos One
, vol.8
, Issue.4
-
-
Iwaki, A.1
Ohnuki, S.2
Suga, Y.3
Izawa, S.4
Ohya, Y.5
-
17
-
-
69949164861
-
Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae
-
Endo A, Nakamura T, Shima J. Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. Fems Microbiol Lett. 2009;299(1):95-9.
-
(2009)
Fems Microbiol Lett
, vol.299
, Issue.1
, pp. 95-99
-
-
Endo, A.1
Nakamura, T.2
Shima, J.3
-
18
-
-
0036182468
-
Characterization of the Saccharomyces cerevisiae YMR318C (ADH6) gene product as a broad specificity NADPH-dependent alcohol dehydrogenase: relevance in aldehyde reduction
-
Larroy C, Fernández MR, González E, Parés X, Biosca JA. Characterization of the Saccharomyces cerevisiae YMR318C (ADH6) gene product as a broad specificity NADPH-dependent alcohol dehydrogenase: relevance in aldehyde reduction. Biochem J. 2002;361:163-72.
-
(2002)
Biochem J
, vol.361
, pp. 163-172
-
-
Larroy, C.1
Fernández, M.R.2
González, E.3
Parés, X.4
Biosca, J.A.5
-
19
-
-
84928584306
-
YNL134C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity for detoxification of furfural derived from lignocellulosic biomass
-
Zhao X, Tang J, Wang X, Yang R, Zhang X, Gu Y, Li X, Ma M. YNL134C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity for detoxification of furfural derived from lignocellulosic biomass. Yeast. 2015;32(5):409-22.
-
(2015)
Yeast
, vol.32
, Issue.5
, pp. 409-422
-
-
Zhao, X.1
Tang, J.2
Wang, X.3
Yang, R.4
Zhang, X.5
Gu, Y.6
Li, X.7
Ma, M.8
-
20
-
-
34047235380
-
Global protein expression profiling of budding yeast in response to DNA damage
-
Lee MW, Kim BJ, Choi HK, Ryu MJ, Kim SB, Kang KM, Cho EJ, Youn HD, Huh WK, Kim ST. Global protein expression profiling of budding yeast in response to DNA damage. Yeast. 2007;24(3):145-54.
-
(2007)
Yeast
, vol.24
, Issue.3
, pp. 145-154
-
-
Lee, M.W.1
Kim, B.J.2
Choi, H.K.3
Ryu, M.J.4
Kim, S.B.5
Kang, K.M.6
Cho, E.J.7
Youn, H.D.8
Huh, W.K.9
Kim, S.T.10
-
21
-
-
0036375898
-
Medium-chain dehydrogenases/reductases (MDR) - Family characterizations including genome comparisons and active site modelling
-
Nordling E, Jornvall H, Persson B. Medium-chain dehydrogenases/reductases (MDR) - Family characterizations including genome comparisons and active site modelling. Eur J Biochem. 2002;269(17):4267-76.
-
(2002)
Eur J Biochem
, vol.269
, Issue.17
, pp. 4267-4276
-
-
Nordling, E.1
Jornvall, H.2
Persson, B.3
-
22
-
-
33744474816
-
A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance
-
Petersson A, Almeida JR, Modig T, Karhumaa K, Hahn-Hagerdal B, Gorwa-Grauslund MF, Liden G. A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast. 2006;23(6):455-64.
-
(2006)
Yeast
, vol.23
, Issue.6
, pp. 455-464
-
-
Petersson, A.1
Almeida, J.R.2
Modig, T.3
Karhumaa, K.4
Hahn-Hagerdal, B.5
Gorwa-Grauslund, M.F.6
Liden, G.7
-
23
-
-
0036799466
-
Putative xylose and arabinose reductases in Saccharomyces cerevisiae
-
Träff KL, Jönsson LJ, Hahn-Hägerdal B. Putative xylose and arabinose reductases in Saccharomyces cerevisiae. Yeast. 2002;19(14):1233-41.
-
(2002)
Yeast
, vol.19
, Issue.14
, pp. 1233-1241
-
-
Träff, K.L.1
Jönsson, L.J.2
Hahn-Hägerdal, B.3
-
24
-
-
33847168661
-
Functional studies of aldo-keto reductases in Saccharomyces cerevisiae
-
Chang Q, Griest TA, Harter TM, Petrash JM. Functional studies of aldo-keto reductases in Saccharomyces cerevisiae. Bba-Mol Cell Res. 2007;1773(3):321-9.
-
(2007)
Bba-Mol Cell Res
, vol.1773
, Issue.3
, pp. 321-329
-
-
Chang, Q.1
Griest, T.A.2
Harter, T.M.3
Petrash, J.M.4
-
25
-
-
0038529613
-
The ALD6 gene product is indispensable for providing NADPH in yeast cells lacking glucose-6-phosphate dehydrogenase activity
-
Grabowska D, Chelstowska A. The ALD6 gene product is indispensable for providing NADPH in yeast cells lacking glucose-6-phosphate dehydrogenase activity. J Biol Chem. 2003;278(16):13984-8.
-
(2003)
J Biol Chem
, vol.278
, Issue.16
, pp. 13984-13988
-
-
Grabowska, D.1
Chelstowska, A.2
-
26
-
-
27744558510
-
Sources of NADPH in yeast vary with carbon source
-
Minard KI, McAlister-Henn L. Sources of NADPH in yeast vary with carbon source. J Biol Chem. 2005;280(48):39890-6.
-
(2005)
J Biol Chem
, vol.280
, Issue.48
, pp. 39890-39896
-
-
Minard, K.I.1
McAlister-Henn, L.2
-
27
-
-
79955012346
-
Expression of aldehyde dehydrogenase 6 reduces inhibitory effect of furan derivatives on cell growth and ethanol production in Saccharomyces cerevisiae
-
Park SE, Koo HM, Park YK, Park SM, Park JC, Lee OK, Park YC, Seo JH. Expression of aldehyde dehydrogenase 6 reduces inhibitory effect of furan derivatives on cell growth and ethanol production in Saccharomyces cerevisiae. Bioresource Technol. 2011;102(10):6033-8.
-
(2011)
Bioresource Technol
, vol.102
, Issue.10
, pp. 6033-6038
-
-
Park, S.E.1
Koo, H.M.2
Park, Y.K.3
Park, S.M.4
Park, J.C.5
Lee, O.K.6
Park, Y.C.7
Seo, J.H.8
-
28
-
-
84884791723
-
Engineering glutathione biosynthesis of Saccharomyces cerevisiae increases robustness to inhibitors in pretreated lignocellulosic materials
-
Ask M, Mapelli V, Hock H, Olsson L, Bettiga M. Engineering glutathione biosynthesis of Saccharomyces cerevisiae increases robustness to inhibitors in pretreated lignocellulosic materials. Microb Cell Factories. 2013;12:87.
-
(2013)
Microb Cell Factories
, vol.12
, pp. 87
-
-
Ask, M.1
Mapelli, V.2
Hock, H.3
Olsson, L.4
Bettiga, M.5
-
29
-
-
77956676759
-
Yeast mutant and plasmid collections
-
Entian KD, Kötter P. Yeast mutant and plasmid collections. Method Microbiol. 1998;26:431-49.
-
(1998)
Method Microbiol
, vol.26
, pp. 431-449
-
-
Entian, K.D.1
Kötter, P.2
-
30
-
-
84870994085
-
An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile
-
Shen Y, Chen X, Peng BY, Chen LY, Hou J, Bao XM. An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile. Appl Microbiol Biot. 2012;96(4):1079-91.
-
(2012)
Appl Microbiol Biot
, vol.96
, Issue.4
, pp. 1079-1091
-
-
Shen, Y.1
Chen, X.2
Peng, B.Y.3
Chen, L.Y.4
Hou, J.5
Bao, X.M.6
-
31
-
-
84855419323
-
Improvement of xylose fermentation in respiratory-deficient xylose-fermenting Saccharomyces cerevisiae
-
Peng BY, Shen Y, Li XW, Chen X, Hou J, Bao XM. Improvement of xylose fermentation in respiratory-deficient xylose-fermenting Saccharomyces cerevisiae. Metab Eng. 2012;14(1):9-18.
-
(2012)
Metab Eng
, vol.14
, Issue.1
, pp. 9-18
-
-
Peng, B.Y.1
Shen, Y.2
Li, X.W.3
Chen, X.4
Hou, J.5
Bao, X.M.6
-
32
-
-
84887045191
-
Engineering NAD(+) availability for Escherichia coli whole-cell biocatalysis: a case study for dihydroxyacetone production
-
Zhou YJJ, Yang W, Wang L, Zhu ZW, Zhang SF, Zhao ZBK. Engineering NAD(+) availability for Escherichia coli whole-cell biocatalysis: a case study for dihydroxyacetone production. Microb Cell Factories. 2013;12:103.
-
(2013)
Microb Cell Factories
, vol.12
, pp. 103
-
-
Zhou, Y.J.J.1
Yang, W.2
Wang, L.3
Zhu, Z.W.4
Zhang, S.F.5
Zhao, Z.B.K.6
-
33
-
-
80052731075
-
Determining the extremes of the cellular NAD(H) level by using an Escherichia coli NAD(+)-auxotrophic mutant
-
Zhou Y, Wang L, Yang F, Lin X, Zhang S, Zhao ZK. Determining the extremes of the cellular NAD(H) level by using an Escherichia coli NAD(+)-auxotrophic mutant. Appl Environ Microbiol. 2011;77(17):6133-40.
-
(2011)
Appl Environ Microbiol
, vol.77
, Issue.17
, pp. 6133-6140
-
-
Zhou, Y.1
Wang, L.2
Yang, F.3
Lin, X.4
Zhang, S.5
Zhao, Z.K.6
|