메뉴 건너뛰기




Volumn 41, Issue 11, 2014, Pages 1637-1645

High vanillin tolerance of an evolved Saccharomyces cerevisiae strain owing to its enhanced vanillin reduction and antioxidative capacity

Author keywords

Antioxidant; Budding yeast; Inhibitor resistance; Oxidoreductase; Vanillin tolerance

Indexed keywords

MESYLIC ACID ETHYL ESTER; OXIDOREDUCTASE; TROLOX C; VANILLIN; ANTIOXIDANT; BENZALDEHYDE DERIVATIVE; LIGNIN; LIGNOCELLULOSE;

EID: 84910120716     PISSN: 13675435     EISSN: 14765535     Source Type: Journal    
DOI: 10.1007/s10295-014-1515-3     Document Type: Article
Times cited : (42)

References (24)
  • 2
    • 80053976356 scopus 로고    scopus 로고
    • Metabolomic study of interactive effects of phenol, furfural, and acetic acid on Saccharomyces cerevisiae
    • PID: 21978393, COI: 1:CAS:528:DC%2BC3MXhtlWit7jI
    • Ding MZ, Wang X, Yang Y, Yuan YJ (2011) Metabolomic study of interactive effects of phenol, furfural, and acetic acid on Saccharomyces cerevisiae. OMICS 15(10):647–653. doi:10.1089/omi.2011.0003
    • (2011) OMICS , vol.15 , Issue.10 , pp. 647-653
    • Ding, M.Z.1    Wang, X.2    Yang, Y.3    Yuan, Y.J.4
  • 3
    • 45149104923 scopus 로고    scopus 로고
    • Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae
    • PID: 18471310
    • Endo A, Nakamura T, Ando A, Tokuyasu K, Shima J (2008) Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. Biotechnol Biofuels 1(1):3. doi:10.1186/1754-6834-1-3
    • (2008) Biotechnol Biofuels , vol.1 , Issue.1 , pp. 3
    • Endo, A.1    Nakamura, T.2    Ando, A.3    Tokuyasu, K.4    Shima, J.5
  • 4
    • 69949164861 scopus 로고    scopus 로고
    • Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae
    • PID: 19686341, COI: 1:CAS:528:DC%2BD1MXhtFOgs77J
    • Endo A, Nakamura T, Shima J (2009) Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. FEMS Microbiol Lett 299(1):95–99. doi:10.1111/j.1574-6968.2009.01733.x
    • (2009) FEMS Microbiol Lett , vol.299 , Issue.1 , pp. 95-99
    • Endo, A.1    Nakamura, T.2    Shima, J.3
  • 5
    • 0038131426 scopus 로고    scopus 로고
    • Analysis of the inhibition of food spoilage yeasts by vanillin
    • PID: 12892926, COI: 1:CAS:528:DC%2BD3sXlvVCqtrk%3D
    • Fitzgerald DJ, Stratford M, Narbad A (2003) Analysis of the inhibition of food spoilage yeasts by vanillin. Int J Food Microbiol 86(1–2):113–122
    • (2003) Int J Food Microbiol , vol.86 , Issue.1-2 , pp. 113-122
    • Fitzgerald, D.J.1    Stratford, M.2    Narbad, A.3
  • 6
    • 33745667335 scopus 로고    scopus 로고
    • Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae
    • PID: 16222531, COI: 1:CAS:528:DC%2BD28XmtFCgur0%3D
    • Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD (2006) Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 71(3):339–349. doi:10.1007/s00253-005-0142-3
    • (2006) Appl Microbiol Biotechnol , vol.71 , Issue.3 , pp. 339-349
    • Gorsich, S.W.1    Dien, B.S.2    Nichols, N.N.3    Slininger, P.J.4    Liu, Z.L.5    Skory, C.D.6
  • 7
    • 79960843079 scopus 로고    scopus 로고
    • Enhanced resistance of Saccharomyces cerevisiae to vanillin by expression of lacA from Trametes sp. AH28-2
    • PID: 21727001, COI: 1:CAS:528:DC%2BC3MXps12qsLg%3D
    • Ji L, Shen Y, Xu L, Peng B, Xiao Y, Bao X (2011) Enhanced resistance of Saccharomyces cerevisiae to vanillin by expression of lacA from Trametes sp. AH28-2. Bioresour Technol 102(17):8105–8109. doi:10.1016/j.biortech.2011.06.057
    • (2011) Bioresour Technol , vol.102 , Issue.17 , pp. 8105-8109
    • Ji, L.1    Shen, Y.2    Xu, L.3    Peng, B.4    Xiao, Y.5    Bao, X.6
  • 8
    • 84872814927 scopus 로고    scopus 로고
    • Bioconversion of lignocellulose: inhibitors and detoxification
    • PID: 23356676
    • Jonsson LJ, Alriksson B, Nilvebrant NO (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6(1):16. doi:10.1186/1754-6834-6-16
    • (2013) Biotechnol Biofuels , vol.6 , Issue.1 , pp. 16
    • Jonsson, L.J.1    Alriksson, B.2    Nilvebrant, N.O.3
  • 9
    • 77952876202 scopus 로고    scopus 로고
    • Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae
    • PID: 20309542, COI: 1:CAS:528:DC%2BC3cXltVymu7g%3D
    • Li BZ, Yuan YJ (2010) Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 86(6):1915–1924. doi:10.1007/s00253-010-2518-2
    • (2010) Appl Microbiol Biotechnol , vol.86 , Issue.6 , pp. 1915-1924
    • Li, B.Z.1    Yuan, Y.J.2
  • 10
    • 33750290903 scopus 로고    scopus 로고
    • Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors
    • PID: 17028874, COI: 1:CAS:528:DC%2BD28XhtFSnsLnO
    • Liu ZL (2006) Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors. Appl Microbiol Biotechnol 73(1):27–36. doi:10.1007/s00253-006-0567-3
    • (2006) Appl Microbiol Biotechnol , vol.73 , Issue.1 , pp. 27-36
    • Liu, Z.L.1
  • 11
    • 69249214122 scopus 로고    scopus 로고
    • Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways
    • PID: 19517136
    • Liu ZL, Ma M, Song M (2009) Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways. Mol Genet Genomics 282(3):233–244. doi:10.1007/s00438-009-0461-7
    • (2009) Mol Genet Genomics , vol.282 , Issue.3 , pp. 233-244
    • Liu, Z.L.1    Ma, M.2    Song, M.3
  • 12
    • 80755172303 scopus 로고    scopus 로고
    • Preparative separation of phenylpropenoid glycerides from the bulbs of Lilium lancifolium by high-speed counter-current chromatography and evaluation of their antioxidant activities
    • COI: 1:CAS:528:DC%2BC3MXhsVWktLzE
    • Luo JG, Li L, Kong LY (2012) Preparative separation of phenylpropenoid glycerides from the bulbs of Lilium lancifolium by high-speed counter-current chromatography and evaluation of their antioxidant activities. Food Chem 131(3):1056–1062
    • (2012) Food Chem , vol.131 , Issue.3 , pp. 1056-1062
    • Luo, J.G.1    Li, L.2    Kong, L.Y.3
  • 13
    • 78549260740 scopus 로고    scopus 로고
    • Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC3cXhsFagt73K
    • Ma M, Liu ZL (2010) Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae. BMC Genomic 11:660. doi:10.1186/1471-2164-11-660
    • (2010) BMC Genomic , vol.11 , pp. 660
    • Ma, M.1    Liu, Z.L.2
  • 14
    • 77958135565 scopus 로고    scopus 로고
    • Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid
    • PID: 20973990
    • Mira NP, Palma M, Guerreiro JF, Sa-Correia I (2010) Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microb Cell Fact 9:79. doi:10.1186/1475-2859-9-79
    • (2010) Microb Cell Fact , vol.9 , pp. 79
    • Mira, N.P.1    Palma, M.2    Guerreiro, J.F.3    Sa-Correia, I.4
  • 15
    • 34548775911 scopus 로고    scopus 로고
    • Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid
    • PID: 17620418, COI: 1:CAS:528:DC%2BD2sXhtVKls7nO
    • Mollapour M, Piper PW (2007) Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Mol Cell Biol 27(18):6446–6456. doi:10.1128/MCB.02205-06
    • (2007) Mol Cell Biol , vol.27 , Issue.18 , pp. 6446-6456
    • Mollapour, M.1    Piper, P.W.2
  • 16
    • 41549121934 scopus 로고    scopus 로고
    • Novel stress responses facilitate Saccharomyces cerevisiae growth in the presence of the monocarboxylate preservatives
    • PID: 18240334, COI: 1:CAS:528:DC%2BD1cXkt1ajtbY%3D
    • Mollapour M, Shepherd A, Piper PW (2008) Novel stress responses facilitate Saccharomyces cerevisiae growth in the presence of the monocarboxylate preservatives. Yeast 25(3):169–177. doi:10.1002/yea.1576
    • (2008) Yeast , vol.25 , Issue.3 , pp. 169-177
    • Mollapour, M.1    Shepherd, A.2    Piper, P.W.3
  • 17
    • 84890116560 scopus 로고    scopus 로고
    • Vanillin causes the activation of Yap1 and mitochondrial fragmentation in Saccharomyces cerevisiae
    • Nguyen TT, Iwaki A, Ohya Y, Izawa S (2013) Vanillin causes the activation of Yap1 and mitochondrial fragmentation in Saccharomyces cerevisiae. J Biosci Bioeng. doi:10.1016/j.jbiosc.2013.06.008
    • (2013) J Biosci Bioeng
    • Nguyen, T.T.1    Iwaki, A.2    Ohya, Y.3    Izawa, S.4
  • 18
    • 0343183325 scopus 로고    scopus 로고
    • Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification
    • COI: 1:CAS:528:DC%2BD3cXjt1Kgtbk%3D
    • Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 74(1):17–24
    • (2000) Bioresour Technol , vol.74 , Issue.1 , pp. 17-24
    • Palmqvist, E.1    Hahn-Hägerdal, B.2
  • 19
    • 0343618697 scopus 로고    scopus 로고
    • Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition
    • COI: 1:CAS:528:DC%2BD3cXjt1Ggs7s%3D
    • Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74(1):25–33
    • (2000) Bioresour Technol , vol.74 , Issue.1 , pp. 25-33
    • Palmqvist, E.1    Hahn-Hägerdal, B.2
  • 20
    • 79955012346 scopus 로고    scopus 로고
    • Expression of aldehyde dehydrogenase 6 reduces inhibitory effect of furan derivatives on cell growth and ethanol production in Saccharomyces cerevisiae
    • PID: 21421300, COI: 1:CAS:528:DC%2BC3MXlt1Cmurk%3D
    • Park SE, Koo HM, Park YK, Park SM, Park JC, Lee OK, Park YC, Seo JH (2011) Expression of aldehyde dehydrogenase 6 reduces inhibitory effect of furan derivatives on cell growth and ethanol production in Saccharomyces cerevisiae. Bioresour Technol 102(10):6033–6038. doi:10.1016/j.biortech.2011.02.101
    • (2011) Bioresour Technol , vol.102 , Issue.10 , pp. 6033-6038
    • Park, S.E.1    Koo, H.M.2    Park, Y.K.3    Park, S.M.4    Park, J.C.5    Lee, O.K.6    Park, Y.C.7    Seo, J.H.8
  • 21
    • 83055187798 scopus 로고    scopus 로고
    • Identification of candidate genes for yeast engineering to improve bioethanol production in very high gravity and lignocellulosic biomass industrial fermentations
    • PID: 22152034, COI: 1:CAS:528:DC%2BC38XjslOls7Y%3D
    • Pereira FB, Guimaraes PM, Gomes DG, Mira NP, Teixeira MC, Sa-Correia I, Domingues L (2011) Identification of candidate genes for yeast engineering to improve bioethanol production in very high gravity and lignocellulosic biomass industrial fermentations. Biotechnol Biofuels 4(1):57. doi:10.1186/1754-6834-4-57
    • (2011) Biotechnol Biofuels , vol.4 , Issue.1 , pp. 57
    • Pereira, F.B.1    Guimaraes, P.M.2    Gomes, D.G.3    Mira, N.P.4    Teixeira, M.C.5    Sa-Correia, I.6    Domingues, L.7
  • 22
    • 84870994085 scopus 로고    scopus 로고
    • An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile
    • PID: 23053078, COI: 1:CAS:528:DC%2BC38XhsFGqsbzK
    • Shen Y, Chen X, Peng B, Chen L, Hou J, Bao X (2012) An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile. Appl Microbiol Biotechnol 96(4):1079–1091. doi:10.1007/s00253-012-4418-0
    • (2012) Appl Microbiol Biotechnol , vol.96 , Issue.4 , pp. 1079-1091
    • Shen, Y.1    Chen, X.2    Peng, B.3    Chen, L.4    Hou, J.5    Bao, X.6
  • 23
    • 84863930599 scopus 로고    scopus 로고
    • Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural, and phenol
    • PID: 22734833, COI: 1:CAS:528:DC%2BC38XhtVagtLzI
    • Yang J, Ding MZ, Li BZ, Liu ZL, Wang X, Yuan YJ (2012) Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural, and phenol. OMICS 16(7–8):374–386. doi:10.1089/omi.2011.0127
    • (2012) OMICS , vol.16 , Issue.7-8 , pp. 374-386
    • Yang, J.1    Ding, M.Z.2    Li, B.Z.3    Liu, Z.L.4    Wang, X.5    Yuan, Y.J.6
  • 24
    • 77953143899 scopus 로고    scopus 로고
    • Ethanolic cofermentation with glucose and xylose by the recombinant industrial strain Saccharomyces cerevisiae NAN-127 and the effect of furfural on xylitol production
    • PID: 20456950
    • Zhang X, Shen Y, Shi W, Bao X (2010) Ethanolic cofermentation with glucose and xylose by the recombinant industrial strain Saccharomyces cerevisiae NAN-127 and the effect of furfural on xylitol production. Bioresour Technol 101(18):7104–7110
    • (2010) Bioresour Technol , vol.101 , Issue.18 , pp. 7104-7110
    • Zhang, X.1    Shen, Y.2    Shi, W.3    Bao, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.