-
1
-
-
84953911718
-
Influence of extreme weather disasters on global crop production
-
[1] Lesk, C., Rowhani, P., Ramankutty, N., Influence of extreme weather disasters on global crop production. Nature 529 (2016), 84–87.
-
(2016)
Nature
, vol.529
, pp. 84-87
-
-
Lesk, C.1
Rowhani, P.2
Ramankutty, N.3
-
2
-
-
84877655395
-
Seed-development programs: a systems biology-based comparison between dicots and monocots
-
[2] Sreenivasulu, N., Wobus, U., Seed-development programs: a systems biology-based comparison between dicots and monocots. Annu. Rev. Plant Biol. 64 (2013), 189–217.
-
(2013)
Annu. Rev. Plant Biol.
, vol.64
, pp. 189-217
-
-
Sreenivasulu, N.1
Wobus, U.2
-
3
-
-
77953244003
-
Reproductive cross-talk: seed development in flowering plants
-
[3] Nowack, M.K., Ungru, A., Bjerkan, K.N., Grini, P.E., Schnittger, A., Reproductive cross-talk: seed development in flowering plants. Biochem. Soc. Trans. 38 (2010), 604–612.
-
(2010)
Biochem. Soc. Trans.
, vol.38
, pp. 604-612
-
-
Nowack, M.K.1
Ungru, A.2
Bjerkan, K.N.3
Grini, P.E.4
Schnittger, A.5
-
4
-
-
84962076609
-
A developmental switch of gene expression in the barley seed mediated by HvVP1 (Viviparous1) and HvGAMYB interactions
-
[4] Abraham, Z., et al. A developmental switch of gene expression in the barley seed mediated by HvVP1 (Viviparous1) and HvGAMYB interactions. Plant Physiol. 170 (2016), 2146–2158.
-
(2016)
Plant Physiol.
, vol.170
, pp. 2146-2158
-
-
Abraham, Z.1
-
5
-
-
84856671107
-
Controlling lipid accumulation in cereal grains
-
[5] Barthole, G., Lepiniec, L., Rogowsky, P.M., Baud, S., Controlling lipid accumulation in cereal grains. Plant Sci. 185–186 (2012), 33–39.
-
(2012)
Plant Sci.
, vol.185–186
, pp. 33-39
-
-
Barthole, G.1
Lepiniec, L.2
Rogowsky, P.M.3
Baud, S.4
-
6
-
-
20444375868
-
Molecular physiology of legume seed development
-
[6] Weber, H., Borisjuk, L., Wobus, U., Molecular physiology of legume seed development. Annu. Rev. Plant Biol. 56 (2005), 253–279.
-
(2005)
Annu. Rev. Plant Biol.
, vol.56
, pp. 253-279
-
-
Weber, H.1
Borisjuk, L.2
Wobus, U.3
-
7
-
-
77952109327
-
Physiological and developmental regulation of seed oil production
-
[7] Baud, S., Lepiniec, L., Physiological and developmental regulation of seed oil production. Prog. Lipid Res. 49 (2010), 235–249.
-
(2010)
Prog. Lipid Res.
, vol.49
, pp. 235-249
-
-
Baud, S.1
Lepiniec, L.2
-
8
-
-
84907994137
-
Analogous reserve distribution and tissue characteristics in quinoa and grass seeds suggest convergent evolution
-
[8] Burrieza, H.P., Lopez-Fernandez, M.P., Maldonado, S., Analogous reserve distribution and tissue characteristics in quinoa and grass seeds suggest convergent evolution. Front. Plant Sci., 5, 2014, 546.
-
(2014)
Front. Plant Sci.
, vol.5
, pp. 546
-
-
Burrieza, H.P.1
Lopez-Fernandez, M.P.2
Maldonado, S.3
-
9
-
-
77950407888
-
Arabidopsis seed secrets unravelled after a decade of genetic and omics-driven research
-
[9] North, H., et al. Arabidopsis seed secrets unravelled after a decade of genetic and omics-driven research. Plant J. 61 (2010), 971–981.
-
(2010)
Plant J.
, vol.61
, pp. 971-981
-
-
North, H.1
-
10
-
-
84908193869
-
Genomic dissection of the seed
-
[10] Becker, M.G., Hsu, S.W., Harada, J.J., Belmonte, M.F., Genomic dissection of the seed. Front. Plant Sci., 5, 2014, 464.
-
(2014)
Front. Plant Sci.
, vol.5
, pp. 464
-
-
Becker, M.G.1
Hsu, S.W.2
Harada, J.J.3
Belmonte, M.F.4
-
11
-
-
84863081613
-
Transcriptomic analysis of rice (Oryza sativa) developing embryos using the RNA-Seq technique
-
[11] Xu, H., Gao, Y., Wang, J., Transcriptomic analysis of rice (Oryza sativa) developing embryos using the RNA-Seq technique. PLoS One, 7, 2012, e30646.
-
(2012)
PLoS One
, vol.7
, pp. e30646
-
-
Xu, H.1
Gao, Y.2
Wang, J.3
-
12
-
-
84907042232
-
Dynamic transcriptome landscape of maize embryo and endosperm development
-
[12] Chen, J., et al. Dynamic transcriptome landscape of maize embryo and endosperm development. Plant Physiol. 166 (2014), 252–264.
-
(2014)
Plant Physiol.
, vol.166
, pp. 252-264
-
-
Chen, J.1
-
13
-
-
84925496113
-
Networks controlling seed size in Arabidopsis
-
[13] Orozco-Arroyo, G., Paolo, D., Ezquer, I., Colombo, L., Networks controlling seed size in Arabidopsis. Plant Reprod. 28 (2015), 17–32.
-
(2015)
Plant Reprod.
, vol.28
, pp. 17-32
-
-
Orozco-Arroyo, G.1
Paolo, D.2
Ezquer, I.3
Colombo, L.4
-
14
-
-
84964318429
-
Cytokinin: a key driver of seed yield
-
[14] Jameson, P.E., Song, J., Cytokinin: a key driver of seed yield. J. Exp. Bot. 67 (2016), 593–606.
-
(2016)
J. Exp. Bot.
, vol.67
, pp. 593-606
-
-
Jameson, P.E.1
Song, J.2
-
15
-
-
84885236036
-
Alterations in seed development gene expression affect size and oil content of Arabidopsis seeds
-
[15] Fatihi, A., Zbierzak, A.M., Dormann, P., Alterations in seed development gene expression affect size and oil content of Arabidopsis seeds. Plant Physiol. 163 (2013), 973–985.
-
(2013)
Plant Physiol.
, vol.163
, pp. 973-985
-
-
Fatihi, A.1
Zbierzak, A.M.2
Dormann, P.3
-
16
-
-
56549091074
-
LECs go crazy in embryo development
-
[16] Braybrook, S.A., Harada, J.J., LECs go crazy in embryo development. Trends Plant Sci. 13 (2008), 624–630.
-
(2008)
Trends Plant Sci.
, vol.13
, pp. 624-630
-
-
Braybrook, S.A.1
Harada, J.J.2
-
17
-
-
43549090392
-
Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis
-
[17] Santos-Mendoza, M., et al. Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis. Plant J. 54 (2008), 608–620.
-
(2008)
Plant J.
, vol.54
, pp. 608-620
-
-
Santos-Mendoza, M.1
-
18
-
-
51749096934
-
Transcriptional regulation of storage protein synthesis during dicotyledon seed filling
-
[18] Verdier, J., Thompson, R.D., Transcriptional regulation of storage protein synthesis during dicotyledon seed filling. Plant Cell Physiol. 49 (2008), 1263–1271.
-
(2008)
Plant Cell Physiol.
, vol.49
, pp. 1263-1271
-
-
Verdier, J.1
Thompson, R.D.2
-
19
-
-
84930703560
-
Complementation of seed maturation phenotypes by ectopic expression of ABSCISIC ACID INSENSITIVE3, FUSCA3 and LEAFY COTYLEDON2 in Arabidopsis
-
[19] Roscoe, T.T., Guilleminot, J., Bessoule, J.J., Berger, F., Devic, M., Complementation of seed maturation phenotypes by ectopic expression of ABSCISIC ACID INSENSITIVE3, FUSCA3 and LEAFY COTYLEDON2 in Arabidopsis. Plant Cell Physiol. 56 (2015), 1215–1228.
-
(2015)
Plant Cell Physiol.
, vol.56
, pp. 1215-1228
-
-
Roscoe, T.T.1
Guilleminot, J.2
Bessoule, J.J.3
Berger, F.4
Devic, M.5
-
20
-
-
84922424512
-
Cell-by-cell developmental transition from embryo to post-germination phase revealed by heterochronic gene expression and ER-body formation in Arabidopsis leafy cotyledon mutants
-
[20] Yamamoto, A., et al. Cell-by-cell developmental transition from embryo to post-germination phase revealed by heterochronic gene expression and ER-body formation in Arabidopsis leafy cotyledon mutants. Plant Cell Physiol. 55 (2014), 2112–2125.
-
(2014)
Plant Cell Physiol.
, vol.55
, pp. 2112-2125
-
-
Yamamoto, A.1
-
21
-
-
84973657611
-
Deciphering the molecular mechanisms underpinning the transcriptional control of gene expression by L-AFL proteins in Arabidopsis seed
-
[21] Baud, S., et al. Deciphering the molecular mechanisms underpinning the transcriptional control of gene expression by L-AFL proteins in Arabidopsis seed. Plant Physiol. 171 (2016), 1099–1112.
-
(2016)
Plant Physiol.
, vol.171
, pp. 1099-1112
-
-
Baud, S.1
-
22
-
-
84885082568
-
ABI3 controls embryo degreening through Mendel's I locus
-
[22] Delmas, F., et al. ABI3 controls embryo degreening through Mendel's I locus. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), 3888–3894.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, pp. 3888-3894
-
-
Delmas, F.1
-
23
-
-
84871249904
-
Multifunctionality of the LEC1 transcription factor during plant development
-
[23] Junker, A., Baumlein, H., Multifunctionality of the LEC1 transcription factor during plant development. Plant Signal. Behav. 7 (2012), 1718–1720.
-
(2012)
Plant Signal. Behav.
, vol.7
, pp. 1718-1720
-
-
Junker, A.1
Baumlein, H.2
-
24
-
-
84882990244
-
LEAFY COTYLEDON2 (LEC2) promotes embryogenic induction in somatic tissues of Arabidopsis, via YUCCA-mediated auxin biosynthesis
-
[24] Wojcikowska, B., et al. LEAFY COTYLEDON2 (LEC2) promotes embryogenic induction in somatic tissues of Arabidopsis, via YUCCA-mediated auxin biosynthesis. Planta 238 (2013), 425–440.
-
(2013)
Planta
, vol.238
, pp. 425-440
-
-
Wojcikowska, B.1
-
25
-
-
84886799117
-
Regulation of the seed to seedling developmental phase transition by the LAFL and VAL transcription factor networks
-
[25] Jia, H., Suzuki, M., McCarty, D.R., Regulation of the seed to seedling developmental phase transition by the LAFL and VAL transcription factor networks. Wiley Interdiscip. Rev. Dev. Biol. 3 (2014), 135–145.
-
(2014)
Wiley Interdiscip. Rev. Dev. Biol.
, vol.3
, pp. 135-145
-
-
Jia, H.1
Suzuki, M.2
McCarty, D.R.3
-
26
-
-
84855251873
-
Transcriptional regulation of Arabidopsis LEAFY COTYLEDON2 involves RLE, a cis-element that regulates trimethylation of histone H3 at lysine-27
-
[26] Berger, N., Dubreucq, B., Roudier, F., Dubos, C., Lepiniec, L., Transcriptional regulation of Arabidopsis LEAFY COTYLEDON2 involves RLE, a cis-element that regulates trimethylation of histone H3 at lysine-27. Plant Cell 23 (2011), 4065–4078.
-
(2011)
Plant Cell
, vol.23
, pp. 4065-4078
-
-
Berger, N.1
Dubreucq, B.2
Roudier, F.3
Dubos, C.4
Lepiniec, L.5
-
27
-
-
79953754165
-
Polycomb repressive complex 2 controls the embryo-to-seedling phase transition
-
[27] Bouyer, D., et al. Polycomb repressive complex 2 controls the embryo-to-seedling phase transition. PLoS Genet., 7, 2011, e1002014.
-
(2011)
PLoS Genet.
, vol.7
, pp. e1002014
-
-
Bouyer, D.1
-
28
-
-
84880697730
-
VAL- and AtBMI1-mediated H2Aub initiate the switch from embryonic to postgerminative growth in Arabidopsis
-
[28] Yang, C., et al. VAL- and AtBMI1-mediated H2Aub initiate the switch from embryonic to postgerminative growth in Arabidopsis. Curr. Biol. 23 (2013), 1324–1329.
-
(2013)
Curr. Biol.
, vol.23
, pp. 1324-1329
-
-
Yang, C.1
-
29
-
-
84896724331
-
Arabidopsis AL PHD-PRC1 complexes promote seed germination through H3K4me3-to-H3K27me3 chromatin state switch in repression of seed developmental genes
-
[29] Molitor, A.M., Bu, Z., Yu, Y., Shen, W.H., Arabidopsis AL PHD-PRC1 complexes promote seed germination through H3K4me3-to-H3K27me3 chromatin state switch in repression of seed developmental genes. PLoS Genet., 10, 2014, e1004091.
-
(2014)
PLoS Genet.
, vol.10
, pp. e1004091
-
-
Molitor, A.M.1
Bu, Z.2
Yu, Y.3
Shen, W.H.4
-
30
-
-
84943604422
-
PRC2 represses dedifferentiation of mature somatic cells in Arabidopsis
-
[30] Ikeuchi, M., et al. PRC2 represses dedifferentiation of mature somatic cells in Arabidopsis. Nat. Plants, 1, 2015, 15089.
-
(2015)
Nat. Plants
, vol.1
, pp. 15089
-
-
Ikeuchi, M.1
-
31
-
-
84964873803
-
CURLY LEAF regulates gene sets coordinating seed size and lipid biosynthesis in arabidopsis
-
[31] Liu, J., et al. CURLY LEAF regulates gene sets coordinating seed size and lipid biosynthesis in arabidopsis. Plant Physiol. 171 (2016), 424–436.
-
(2016)
Plant Physiol.
, vol.171
, pp. 424-436
-
-
Liu, J.1
-
32
-
-
84871160194
-
Evolutionarily conserved histone methylation dynamics during seed life-cycle transitions
-
[32] Muller, K., Bouyer, D., Schnittger, A., Kermode, A.R., Evolutionarily conserved histone methylation dynamics during seed life-cycle transitions. PLoS One, 7, 2012, e51532.
-
(2012)
PLoS One
, vol.7
, pp. e51532
-
-
Muller, K.1
Bouyer, D.2
Schnittger, A.3
Kermode, A.R.4
-
33
-
-
84976896639
-
Crosstalk between sporophyte and gametophyte generations is promoted by chd3 chromatin remodelers in Arabidopsis thaliana
-
[33] Carter, B., et al. Crosstalk between sporophyte and gametophyte generations is promoted by chd3 chromatin remodelers in Arabidopsis thaliana. Genetics, 2016, 10.1534/genetics.1115.180141.
-
(2016)
Genetics
-
-
Carter, B.1
-
34
-
-
79955579142
-
The CHD3 chromatin remodeler PICKLE and polycomb group proteins antagonistically regulate meristem activity in the Arabidopsis root
-
[34] Aichinger, E., Villar, C.B., Di Mambro, R., Sabatini, S., Kohler, C., The CHD3 chromatin remodeler PICKLE and polycomb group proteins antagonistically regulate meristem activity in the Arabidopsis root. Plant Cell 23 (2011), 1047–1060.
-
(2011)
Plant Cell
, vol.23
, pp. 1047-1060
-
-
Aichinger, E.1
Villar, C.B.2
Di Mambro, R.3
Sabatini, S.4
Kohler, C.5
-
35
-
-
84932192472
-
Roles and activities of chromatin remodeling ATPases in plants
-
[35] Han, S.K., Wu, M.F., Cui, S., Wagner, D., Roles and activities of chromatin remodeling ATPases in plants. Plant J. 83 (2015), 62–77.
-
(2015)
Plant J.
, vol.83
, pp. 62-77
-
-
Han, S.K.1
Wu, M.F.2
Cui, S.3
Wagner, D.4
-
36
-
-
84936847677
-
Chromodomain, Helicase and DNA-binding CHD1 protein, CHR5, are involved in establishing active chromatin state of seed maturation genes
-
[36] Shen, Y., Devic, M., Lepiniec, L., Zhou, D.X., Chromodomain, Helicase and DNA-binding CHD1 protein, CHR5, are involved in establishing active chromatin state of seed maturation genes. Plant Biotech. J. 13 (2015), 811–820.
-
(2015)
Plant Biotech. J.
, vol.13
, pp. 811-820
-
-
Shen, Y.1
Devic, M.2
Lepiniec, L.3
Zhou, D.X.4
-
37
-
-
84935097190
-
SCARECROW-LIKE15 interacts with HISTONE DEACETYLASE19 and is essential for repressing the seed maturation programme
-
[37] Gao, M.J., et al. SCARECROW-LIKE15 interacts with HISTONE DEACETYLASE19 and is essential for repressing the seed maturation programme. Nat. Commun., 6, 2015, 7243.
-
(2015)
Nat. Commun.
, vol.6
, pp. 7243
-
-
Gao, M.J.1
-
38
-
-
84955573702
-
Potential targets of VIVIPAROUS1/ABI3-LIKE1 (VAL1) repression in developing Arabidopsis thaliana embryos
-
[38] Schneider, A., et al. Potential targets of VIVIPAROUS1/ABI3-LIKE1 (VAL1) repression in developing Arabidopsis thaliana embryos. Plant J. 85 (2016), 305–319.
-
(2016)
Plant J.
, vol.85
, pp. 305-319
-
-
Schneider, A.1
-
39
-
-
78649806773
-
MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis
-
[39] Nodine, M.D., Bartel, D.P., MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis. Genes Dev. 24 (2010), 2678–2692.
-
(2010)
Genes Dev.
, vol.24
, pp. 2678-2692
-
-
Nodine, M.D.1
Bartel, D.P.2
-
40
-
-
79953698444
-
MicroRNAs regulate the timing of embryo maturation in Arabidopsis
-
[40] Willmann, M.R., Mehalick, A.J., Packer, R.L., Jenik, P.D., MicroRNAs regulate the timing of embryo maturation in Arabidopsis. Plant Physiol. 155 (2011), 1871–1884.
-
(2011)
Plant Physiol.
, vol.155
, pp. 1871-1884
-
-
Willmann, M.R.1
Mehalick, A.J.2
Packer, R.L.3
Jenik, P.D.4
-
41
-
-
84870664436
-
MicroRNA-mediated repression of the seed maturation program during vegetative development in Arabidopsis
-
[41] Tang, X., et al. MicroRNA-mediated repression of the seed maturation program during vegetative development in Arabidopsis. PLoS Genet., 8, 2012, e1003091.
-
(2012)
PLoS Genet.
, vol.8
, pp. e1003091
-
-
Tang, X.1
-
42
-
-
70849092086
-
Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like15
-
[42] Zheng, Y., Ren, N., Wang, H., Stromberg, A.J., Perry, S.E., Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like15. Plant Cell 21 (2009), 2563–2577.
-
(2009)
Plant Cell
, vol.21
, pp. 2563-2577
-
-
Zheng, Y.1
Ren, N.2
Wang, H.3
Stromberg, A.J.4
Perry, S.E.5
-
43
-
-
84908247535
-
MYB118 represses endosperm maturation in seeds of Arabidopsis
-
[43] Barthole, G., et al. MYB118 represses endosperm maturation in seeds of Arabidopsis. Plant Cell 26 (2014), 3519–3537.
-
(2014)
Plant Cell
, vol.26
, pp. 3519-3537
-
-
Barthole, G.1
-
44
-
-
85027929401
-
Transcriptional regulation of fatty acid production in higher plants: molecular bases and biotechnological outcomes
-
[44] Marchive, C., Nikovics, K., To, A., Lepiniec, L., Baud, S., Transcriptional regulation of fatty acid production in higher plants: molecular bases and biotechnological outcomes. Eur. J. Lipid Sci. Technol. 116 (2014), 1332–1343.
-
(2014)
Eur. J. Lipid Sci. Technol.
, vol.116
, pp. 1332-1343
-
-
Marchive, C.1
Nikovics, K.2
To, A.3
Lepiniec, L.4
Baud, S.5
-
45
-
-
84873021270
-
WRINKLED transcription factors orchestrate tissue-specific regulation of fatty acid biosynthesis in Arabidopsis
-
[45] To, A., et al. WRINKLED transcription factors orchestrate tissue-specific regulation of fatty acid biosynthesis in Arabidopsis. Plant Cell 24 (2012), 5007–5023.
-
(2012)
Plant Cell
, vol.24
, pp. 5007-5023
-
-
To, A.1
-
46
-
-
34249800908
-
WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis
-
[46] Baud, S., et al. WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant J. 50 (2007), 825–838.
-
(2007)
Plant J.
, vol.50
, pp. 825-838
-
-
Baud, S.1
-
47
-
-
70349233864
-
A pivotal role of the basic leucine zipper transcription factor bZIP53 in the regulation of Arabidopsis seed maturation gene expression based on heterodimerization and protein complex formation
-
[47] Alonso, R., et al. A pivotal role of the basic leucine zipper transcription factor bZIP53 in the regulation of Arabidopsis seed maturation gene expression based on heterodimerization and protein complex formation. Plant Cell 21 (2009), 1747–1761.
-
(2009)
Plant Cell
, vol.21
, pp. 1747-1761
-
-
Alonso, R.1
-
48
-
-
84864423903
-
Elongation-related functions of LEAFY COTYLEDON1 during the development of Arabidopsis thaliana
-
[48] Junker, A., et al. Elongation-related functions of LEAFY COTYLEDON1 during the development of Arabidopsis thaliana. Plant J. 71 (2012), 427–442.
-
(2012)
Plant J.
, vol.71
, pp. 427-442
-
-
Junker, A.1
-
49
-
-
84949672080
-
Arabidopsis leafy cotyledon1 mediates postembryonic development via interacting with phytochrome-interacting factor4
-
[49] Huang, M., Hu, Y., Liu, X., Li, Y., Hou, X., Arabidopsis leafy cotyledon1 mediates postembryonic development via interacting with phytochrome-interacting factor4. Plant Cell 27 (2015), 3099–3111.
-
(2015)
Plant Cell
, vol.27
, pp. 3099-3111
-
-
Huang, M.1
Hu, Y.2
Liu, X.3
Li, Y.4
Hou, X.5
-
50
-
-
84964834064
-
ZmMADS47 regulates zein gene transcription through interaction with opaque2
-
[50] Qiao, Z., et al. ZmMADS47 regulates zein gene transcription through interaction with opaque2. PLoS Genet., 12, 2016, e1005991.
-
(2016)
PLoS Genet.
, vol.12
, pp. e1005991
-
-
Qiao, Z.1
-
51
-
-
84902194331
-
New insights on the evolution of Leafy cotyledon1 (LEC1) type genes in vascular plants
-
[51] Cagliari, A., et al. New insights on the evolution of Leafy cotyledon1 (LEC1) type genes in vascular plants. Genomics 103 (2014), 380–387.
-
(2014)
Genomics
, vol.103
, pp. 380-387
-
-
Cagliari, A.1
-
52
-
-
84876733963
-
Genome-wide identification and analysis of the B3 superfamily of transcription factors in Brassicaceae and major crop plants
-
[52] Peng, F.Y., Weselake, R.J., Genome-wide identification and analysis of the B3 superfamily of transcription factors in Brassicaceae and major crop plants. Theor. Appl. Genet. 126 (2013), 1305–1319.
-
(2013)
Theor. Appl. Genet.
, vol.126
, pp. 1305-1319
-
-
Peng, F.Y.1
Weselake, R.J.2
-
53
-
-
84863737242
-
Systematic analysis of plant-specific B3 domain-containing proteins based on the genome resources of 11 sequenced species
-
[53] Wang, Y., et al. Systematic analysis of plant-specific B3 domain-containing proteins based on the genome resources of 11 sequenced species. Mol. Biol. Rep. 39 (2012), 6267–6282.
-
(2012)
Mol. Biol. Rep.
, vol.39
, pp. 6267-6282
-
-
Wang, Y.1
-
54
-
-
84939474684
-
Decreased seed oil production in FUSCA3 Brassica napus mutant plants
-
[54] Elahi, N., Duncan, R.W., Stasolla, C., Decreased seed oil production in FUSCA3 Brassica napus mutant plants. Plant Physiol. Biochem. 96 (2015), 222–230.
-
(2015)
Plant Physiol. Biochem.
, vol.96
, pp. 222-230
-
-
Elahi, N.1
Duncan, R.W.2
Stasolla, C.3
-
55
-
-
40549140157
-
FUSCA3 from barley unveils a common transcriptional regulation of seed-specific genes between cereals and Arabidopsis
-
[55] Moreno-Risueno, M.A., et al. FUSCA3 from barley unveils a common transcriptional regulation of seed-specific genes between cereals and Arabidopsis. Plant J., 2008, 10.1111/j.1365-1313X.2007.03382.x.
-
(2008)
Plant J.
-
-
Moreno-Risueno, M.A.1
-
56
-
-
84927699679
-
Role of B3 domain transcription factors of the AFL family in maize kernel filling
-
[56] Grimault, A., et al. Role of B3 domain transcription factors of the AFL family in maize kernel filling. Plant Sci. 236 (2015), 116–125.
-
(2015)
Plant Sci.
, vol.236
, pp. 116-125
-
-
Grimault, A.1
-
57
-
-
79955011779
-
Expression analysis of somatic embryogenesis-related SERK, LEC1 VP1 and NiR ortologues in rye (Secale cereale L.)
-
[57] Gruszczynska, A., Rakoczy-Trojanowska, M., Expression analysis of somatic embryogenesis-related SERK, LEC1 VP1 and NiR ortologues in rye (Secale cereale L.). J. Appl. Genet. 52 (2011), 1–8.
-
(2011)
J. Appl. Genet.
, vol.52
, pp. 1-8
-
-
Gruszczynska, A.1
Rakoczy-Trojanowska, M.2
-
58
-
-
84959386225
-
Transcriptional identification and characterization of differentially expressed genes associated with embryogenesis in radish (Raphanus sativus L.)
-
[58] Zhai, L., et al. Transcriptional identification and characterization of differentially expressed genes associated with embryogenesis in radish (Raphanus sativus L.). Sci. Rep., 6, 2016, 21652.
-
(2016)
Sci. Rep.
, vol.6
, pp. 21652
-
-
Zhai, L.1
-
59
-
-
77954257814
-
Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize
-
[59] Shen, B., et al. Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize. Plant Physiol. 153 (2010), 980–987.
-
(2010)
Plant Physiol.
, vol.153
, pp. 980-987
-
-
Shen, B.1
-
60
-
-
84927728155
-
Seed maturation regulators are related to the control of seed dormancy in wheat (Triticum aestivum L.)
-
[60] Rikiishi, K., Maekawa, M., Seed maturation regulators are related to the control of seed dormancy in wheat (Triticum aestivum L.). PLoS One, 9, 2014, e107618.
-
(2014)
PLoS One
, vol.9
, pp. e107618
-
-
Rikiishi, K.1
Maekawa, M.2
-
61
-
-
79958030700
-
Duplicate maize Wrinkled1 transcription factors activate target genes involved in seed oil biosynthesis
-
[61] Pouvreau, B., et al. Duplicate maize Wrinkled1 transcription factors activate target genes involved in seed oil biosynthesis. Plant Physiol. 156 (2011), 674–686.
-
(2011)
Plant Physiol.
, vol.156
, pp. 674-686
-
-
Pouvreau, B.1
-
62
-
-
84880825628
-
Wrinkled1, a ubiquitous regulator in oil accumulating tissues from Arabidopsis embryos to oil palm mesocarp
-
[62] Ma, W., et al. Wrinkled1, a ubiquitous regulator in oil accumulating tissues from Arabidopsis embryos to oil palm mesocarp. PLoS One, 8, 2013, e68887.
-
(2013)
PLoS One
, vol.8
, pp. e68887
-
-
Ma, W.1
-
63
-
-
84926360507
-
New insights into the genetic networks affecting seed fatty acid concentrations in Brassica napus
-
[63] Wang, X., et al. New insights into the genetic networks affecting seed fatty acid concentrations in Brassica napus. BMC Plant Biol. 15 (2015), 1–18.
-
(2015)
BMC Plant Biol.
, vol.15
, pp. 1-18
-
-
Wang, X.1
-
64
-
-
84961574790
-
CRISPR/Cas9: an advanced tool for editing plant genomes
-
[64] Samanta, M.K., Dey, A., Gayen, S., CRISPR/Cas9: an advanced tool for editing plant genomes. Transgenic Res., 2016, 10.1007/s11248-11016-19953-11245.
-
(2016)
Transgenic Res.
-
-
Samanta, M.K.1
Dey, A.2
Gayen, S.3
-
65
-
-
84948761978
-
Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease
-
[65] Lawrenson, T., et al. Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol., 16, 2015, 258.
-
(2015)
Genome Biol.
, vol.16
, pp. 258
-
-
Lawrenson, T.1
-
66
-
-
84947555524
-
WRINKLED1 accelerates flowering and regulates lipid homeostasis between oil accumulation and membrane lipid anabolism in Brassica napus
-
[66] Li, Q., et al. WRINKLED1 accelerates flowering and regulates lipid homeostasis between oil accumulation and membrane lipid anabolism in Brassica napus. Front. Plant Sci., 6, 2015, 1015.
-
(2015)
Front. Plant Sci.
, vol.6
, pp. 1015
-
-
Li, Q.1
-
67
-
-
85028274136
-
Potato tuber expression of Arabidopsis WRINKLED1 increase triacylglycerol and membrane lipids while affecting central carbohydrate metabolism
-
[67] Hofvander, P., et al. Potato tuber expression of Arabidopsis WRINKLED1 increase triacylglycerol and membrane lipids while affecting central carbohydrate metabolism. Plant Biotech. J., 2016, 10.1111/pbi.12550.
-
(2016)
Plant Biotech. J.
-
-
Hofvander, P.1
-
68
-
-
84937761196
-
Overexpression of Arabidopsis WRI1 enhanced seed mass and storage oil content in Camelina sativa
-
[68] An, D., Suh, M.C., Overexpression of Arabidopsis WRI1 enhanced seed mass and storage oil content in Camelina sativa. Plant Biotech. Rep. 9 (2015), 137–148.
-
(2015)
Plant Biotech. Rep.
, vol.9
, pp. 137-148
-
-
An, D.1
Suh, M.C.2
-
69
-
-
84930608908
-
Metabolic engineering of sugarcane to accumulate energy-dense triacylglycerols in vegetative biomass
-
[69] Zale, J., et al. Metabolic engineering of sugarcane to accumulate energy-dense triacylglycerols in vegetative biomass. Plant Biotech. J. 14 (2016), 661–669.
-
(2016)
Plant Biotech. J.
, vol.14
, pp. 661-669
-
-
Zale, J.1
-
70
-
-
79959972478
-
Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds
-
[70] Tan, H., et al. Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds. Plant Physiol. 156 (2011), 1577–1588.
-
(2011)
Plant Physiol.
, vol.156
, pp. 1577-1588
-
-
Tan, H.1
-
71
-
-
84954520534
-
Modification of oil and glucosinolate content in canola seeds with altered expression of Brassica napus LEAFY COTYLEDON1
-
[71] Elahi, N., Duncan, R.W., Stasolla, C., Modification of oil and glucosinolate content in canola seeds with altered expression of Brassica napus LEAFY COTYLEDON1. Plant Physiol. Biochem. 100 (2016), 52–63.
-
(2016)
Plant Physiol. Biochem.
, vol.100
, pp. 52-63
-
-
Elahi, N.1
Duncan, R.W.2
Stasolla, C.3
-
72
-
-
84946203931
-
ectopic expression of WRINKLED1 affects fatty acid homeostasis in Brachypodium distachyon vegetative tissues
-
[72] Yang, Y., et al. ectopic expression of WRINKLED1 affects fatty acid homeostasis in Brachypodium distachyon vegetative tissues. Plant Physiol. 169 (2015), 1836–1847.
-
(2015)
Plant Physiol.
, vol.169
, pp. 1836-1847
-
-
Yang, Y.1
-
73
-
-
84945273582
-
Extension of oil biosynthesis during the mid-phase of seed development enhances oil content in Arabidopsis seeds
-
[73] Kanai, M., Mano, S., Kondo, M., Hayashi, M., Nishimura, M., Extension of oil biosynthesis during the mid-phase of seed development enhances oil content in Arabidopsis seeds. Plant Biotech. J. 14 (2016), 1241–1250.
-
(2016)
Plant Biotech. J.
, vol.14
, pp. 1241-1250
-
-
Kanai, M.1
Mano, S.2
Kondo, M.3
Hayashi, M.4
Nishimura, M.5
-
74
-
-
84964846209
-
WRINKLED1 rescues feedback inhibition of fatty acid synthesis in hydroxylase-expressing seeds
-
[74] Adhikari, N.D., Bates, P.D., Browse, J., WRINKLED1 rescues feedback inhibition of fatty acid synthesis in hydroxylase-expressing seeds. Plant Physiol. 171 (2016), 179–191.
-
(2016)
Plant Physiol.
, vol.171
, pp. 179-191
-
-
Adhikari, N.D.1
Bates, P.D.2
Browse, J.3
-
75
-
-
84927761390
-
Transcription factors SOD7/NGAL2 and DPA4/NGAL3 act redundantly to regulate seed size by directly repressing KLU expression in Arabidopsis thaliana
-
[75] Zhang, Y., et al. Transcription factors SOD7/NGAL2 and DPA4/NGAL3 act redundantly to regulate seed size by directly repressing KLU expression in Arabidopsis thaliana. Plant Cell 27 (2015), 620–632.
-
(2015)
Plant Cell
, vol.27
, pp. 620-632
-
-
Zhang, Y.1
-
76
-
-
84921516467
-
DASH transcription factor impacts Medicago truncatula seed size by its action on embryo morphogenesis and auxin homeostasis
-
[76] Noguero, M., et al. DASH transcription factor impacts Medicago truncatula seed size by its action on embryo morphogenesis and auxin homeostasis. Plant J. 81 (2015), 453–466.
-
(2015)
Plant J.
, vol.81
, pp. 453-466
-
-
Noguero, M.1
-
77
-
-
84960193696
-
OsSPL13 controls grain size in cultivated rice
-
[77] Si, L., et al. OsSPL13 controls grain size in cultivated rice. Nat. Genet. 48 (2016), 447–456.
-
(2016)
Nat. Genet.
, vol.48
, pp. 447-456
-
-
Si, L.1
-
78
-
-
84951299251
-
TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield
-
[78] Ma, L., et al. TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield. Plant Biotech. J. 14 (2016), 1269–1280.
-
(2016)
Plant Biotech. J.
, vol.14
, pp. 1269-1280
-
-
Ma, L.1
-
79
-
-
84949580156
-
Metabolite profiles of maize leaves in drought, heat, and combined stress field trials reveal the relationship between metabolism and grain yield
-
[79] Obata, T., et al. Metabolite profiles of maize leaves in drought, heat, and combined stress field trials reveal the relationship between metabolism and grain yield. Plant Physiol. 169 (2015), 2665–2683.
-
(2015)
Plant Physiol.
, vol.169
, pp. 2665-2683
-
-
Obata, T.1
-
80
-
-
84947791559
-
Abiotic factors influence plant storage lipid accumulation and composition
-
[80] Singer, S.D., Zou, J., Weselake, R.J., Abiotic factors influence plant storage lipid accumulation and composition. Plant Sci. 243 (2016), 1–9.
-
(2016)
Plant Sci.
, vol.243
, pp. 1-9
-
-
Singer, S.D.1
Zou, J.2
Weselake, R.J.3
-
81
-
-
84937521897
-
Heat waves imposed during early pod development in soybean (Glycine max) cause significant yield loss despite a rapid recovery from oxidative stress
-
[81] Siebers, M.H., et al. Heat waves imposed during early pod development in soybean (Glycine max) cause significant yield loss despite a rapid recovery from oxidative stress. Glob. Chang. Biol. 21 (2015), 3114–3125.
-
(2015)
Glob. Chang. Biol.
, vol.21
, pp. 3114-3125
-
-
Siebers, M.H.1
-
82
-
-
79551517326
-
Transcriptome analysis of high-temperature stress in developing barley caryopses: early stress responses and effects on storage compound biosynthesis
-
[82] Mangelsen, E., et al. Transcriptome analysis of high-temperature stress in developing barley caryopses: early stress responses and effects on storage compound biosynthesis. Mol. Plant 4 (2011), 97–115.
-
(2011)
Mol. Plant
, vol.4
, pp. 97-115
-
-
Mangelsen, E.1
-
83
-
-
84940185077
-
Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects
-
[83] Kole, C., et al. Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects. Front. Plant Sci., 6, 2015, 563.
-
(2015)
Front. Plant Sci.
, vol.6
, pp. 563
-
-
Kole, C.1
-
84
-
-
84938256925
-
Identification of a molecular dialogue between developing seeds of Medicago truncatula and seedborne xanthomonads
-
[84] Terrasson, E., et al. Identification of a molecular dialogue between developing seeds of Medicago truncatula and seedborne xanthomonads. J. Exp. Bot. 66 (2015), 3737–3752.
-
(2015)
J. Exp. Bot.
, vol.66
, pp. 3737-3752
-
-
Terrasson, E.1
-
85
-
-
84964898946
-
Molecular characterization of rice endosperm development under heat stress identifies OsMADS87 as a determinant of seed size and thermal sensitivity
-
[85] Chen, C., et al. Molecular characterization of rice endosperm development under heat stress identifies OsMADS87 as a determinant of seed size and thermal sensitivity. Plant Physiol. 171 (2016), 606–622.
-
(2016)
Plant Physiol.
, vol.171
, pp. 606-622
-
-
Chen, C.1
-
86
-
-
84925327120
-
Transcriptome changes in rice (Oryza sativa L.) in response to high night temperature stress at the early milky stage
-
[86] Liao, J.L., et al. Transcriptome changes in rice (Oryza sativa L.) in response to high night temperature stress at the early milky stage. BMC Genomics, 16, 2015, 18.
-
(2015)
BMC Genomics
, vol.16
, pp. 18
-
-
Liao, J.L.1
-
87
-
-
84928914747
-
Designing climate-resilient rice with ideal grain quality suited for high-temperature stress
-
[87] Sreenivasulu, N., et al. Designing climate-resilient rice with ideal grain quality suited for high-temperature stress. J. Exp. Bot. 66 (2015), 1737–1748.
-
(2015)
J. Exp. Bot.
, vol.66
, pp. 1737-1748
-
-
Sreenivasulu, N.1
-
88
-
-
84900835896
-
Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops
-
[88] Bita, C.E., Gerats, T., Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci., 4, 2013, 273.
-
(2013)
Front. Plant Sci.
, vol.4
, pp. 273
-
-
Bita, C.E.1
Gerats, T.2
-
89
-
-
84876328430
-
Epigenetics and development in plants: green light to convergent innovations
-
[89] Grimanelli, D., Roudier, F., Epigenetics and development in plants: green light to convergent innovations. Curr. Top. Dev. Biol. 104 (2013), 189–222.
-
(2013)
Curr. Top. Dev. Biol.
, vol.104
, pp. 189-222
-
-
Grimanelli, D.1
Roudier, F.2
-
90
-
-
84873135198
-
Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed
-
[90] Belmonte, M.F., et al. Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), 435–444.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, pp. 435-444
-
-
Belmonte, M.F.1
-
91
-
-
40349091686
-
An Electronic Fluorescent Pictograph browser for exploring and analyzing large-scale biological data sets
-
[91] Winter, D., et al. An Electronic Fluorescent Pictograph browser for exploring and analyzing large-scale biological data sets. PLoS One, 2, 2007, e718.
-
(2007)
PLoS One
, vol.2
, pp. e718
-
-
Winter, D.1
|