메뉴 건너뛰기




Volumn 119, Issue , 2016, Pages 294-308

Large-area settlement pattern recognition from Landsat-8 data

Author keywords

Central Asia; Landsat 8; Machine learning; Object based image analysis; Settlements

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); IMAGE ANALYSIS; LEARNING SYSTEMS; PATTERN RECOGNITION; SPATIAL DISTRIBUTION; SUPPORT VECTOR MACHINES; UNCERTAINTY ANALYSIS;

EID: 84976416964     PISSN: 09242716     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.isprsjprs.2016.06.010     Document Type: Article
Times cited : (27)

References (45)
  • 2
    • 84939939818 scopus 로고    scopus 로고
    • Global land cover mapping using earth observation satellite data: recent progresses and challenges
    • Ban Y., Gong P., Giri C. Global land cover mapping using earth observation satellite data: recent progresses and challenges. ISPRS J. Photogramm. Remote Sens. 2015, 103:1-6.
    • (2015) ISPRS J. Photogramm. Remote Sens. , vol.103 , pp. 1-6
    • Ban, Y.1    Gong, P.2    Giri, C.3
  • 3
    • 85008058318 scopus 로고    scopus 로고
    • Monitoring urban structure types as spatial indicators with CIR aerial photographs for a more effective urban environmental management
    • Banzhaf E., Hofer R. Monitoring urban structure types as spatial indicators with CIR aerial photographs for a more effective urban environmental management. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2008, 1(2):129-138.
    • (2008) IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. , vol.1 , Issue.2 , pp. 129-138
    • Banzhaf, E.1    Hofer, R.2
  • 4
    • 84906940880 scopus 로고    scopus 로고
    • Built-up area extraction using Landsat 8 OLI imagery
    • Bhatti S.S., Tripathia N.K. Built-up area extraction using Landsat 8 OLI imagery. GISci. Remote Sens. 2014, 51(4):445-467.
    • (2014) GISci. Remote Sens. , vol.51 , Issue.4 , pp. 445-467
    • Bhatti, S.S.1    Tripathia, N.K.2
  • 5
    • 63149099144 scopus 로고    scopus 로고
    • Toward the automatic updating of land-cover maps by a domain-adaptation SVM classifier and a circular validation strategy
    • Bruzzone L., Marconcini M. Toward the automatic updating of land-cover maps by a domain-adaptation SVM classifier and a circular validation strategy. IEEE Trans. Geosci. Remote Sens. 2009, 47(4):1108-1122.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.4 , pp. 1108-1122
    • Bruzzone, L.1    Marconcini, M.2
  • 12
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T. An introduction to ROC analysis. Pattern Recogn. Lett. 2006, 27(8):861-874.
    • (2006) Pattern Recogn. Lett. , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1
  • 15
    • 84880608412 scopus 로고    scopus 로고
    • Remote sensing contributing to assess earthquake risk: from a literature review towards a roadmap
    • Geiß C., Taubenböck H. Remote sensing contributing to assess earthquake risk: from a literature review towards a roadmap. Nat. Hazards 2013, 1-42.
    • (2013) Nat. Hazards , pp. 1-42
    • Geiß, C.1    Taubenböck, H.2
  • 16
    • 84976391573 scopus 로고    scopus 로고
    • Geonames, 2015. [Online]. Available: <> [accessed: 13-May-2015). http://www.geonames.org/.
    • (2015)
  • 17
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I., Weston J., Barnhill S., Vapnik V. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002, 46(1-3):389-422.
    • (2002) Mach. Learn. , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 18
    • 84865427954 scopus 로고    scopus 로고
    • A review of large area monitoring of land cover change using Landsat data
    • Hansen M.C., Loveland T.R. A review of large area monitoring of land cover change using Landsat data. Remote Sens. Environ. 2012, 122:66-74.
    • (2012) Remote Sens. Environ. , vol.122 , pp. 66-74
    • Hansen, M.C.1    Loveland, T.R.2
  • 21
    • 0042421792 scopus 로고    scopus 로고
    • Spatial metrics and image texture for mapping urban land use
    • Herold M., Liu X., Clarke K.C. Spatial metrics and image texture for mapping urban land use. Photogramm. Eng. Remote Sens. 2003, 69(9):991-1001.
    • (2003) Photogramm. Eng. Remote Sens. , vol.69 , Issue.9 , pp. 991-1001
    • Herold, M.1    Liu, X.2    Clarke, K.C.3
  • 22
    • 79957819255 scopus 로고    scopus 로고
    • Unsupervised image segmentation evaluation and refinement using a multi-scale approach
    • Johnson B., Xie Z. Unsupervised image segmentation evaluation and refinement using a multi-scale approach. ISPRS J. Photogramm. Remote Sens. 2011.
    • (2011) ISPRS J. Photogramm. Remote Sens.
    • Johnson, B.1    Xie, Z.2
  • 24
    • 84976356437 scopus 로고    scopus 로고
    • OpenStreetMap, 2011. [Online]. Available: <> (accessed: 10-Jan-2011). http://www.openstreetmap.org/.
    • (2011)
  • 25
    • 84976403416 scopus 로고    scopus 로고
    • Orfeo Toolbox Cookbook, 2015. [Online]. Available: <> (accessed: 13-May-2015). https://www.orfeo-toolbox.org.
    • (2015)
  • 29
    • 84976374145 scopus 로고    scopus 로고
    • Perspectives on global dynamic exposure modelling for geo-risk assessment: from remote sensing to crowd-sourcing
    • Nat. Hazards (accepted for publication).
    • Pittore, M., Wieland, M., Fleming, K., 2016. Perspectives on global dynamic exposure modelling for geo-risk assessment: from remote sensing to crowd-sourcing. Nat. Hazards (accepted for publication).
    • (2016)
    • Pittore, M.1    Wieland, M.2    Fleming, K.3
  • 30
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparison to regularized likelihood method
    • Platt J. Probabilistic outputs for support vector machines and comparison to regularized likelihood method. Adv. Large Margin Classif. 1999, 3(10):61-74.
    • (1999) Adv. Large Margin Classif. , vol.3 , Issue.10 , pp. 61-74
    • Platt, J.1
  • 31
    • 70450268046 scopus 로고    scopus 로고
    • Mapping urban areas on a global scale: which of the eight maps now available is more accurate?
    • Potere D., Schneider A., Angel S., Civco D.L. Mapping urban areas on a global scale: which of the eight maps now available is more accurate?. Int. J. Remote Sens. 2009, 30(24):6531-6558.
    • (2009) Int. J. Remote Sens. , vol.30 , Issue.24 , pp. 6531-6558
    • Potere, D.1    Schneider, A.2    Angel, S.3    Civco, D.L.4
  • 32
    • 84924420684 scopus 로고    scopus 로고
    • Landsat 8 vs. Landsat 5: a comparison based on urban and peri-urban land cover mapping
    • Poursanidisa D., Chrysoulakisa N., Mitrakaa Z. Landsat 8 vs. Landsat 5: a comparison based on urban and peri-urban land cover mapping. Int. J. Appl. Earth Obs. Geoinf. 2015, 35(2):259-269.
    • (2015) Int. J. Appl. Earth Obs. Geoinf. , vol.35 , Issue.2 , pp. 259-269
    • Poursanidisa, D.1    Chrysoulakisa, N.2    Mitrakaa, Z.3
  • 33
    • 0003818016 scopus 로고    scopus 로고
    • Principles and Recommendations for Population and Housing Censuses, United Nations
    • New York
    • Principles and Recommendations for Population and Housing Censuses, United Nations, New York, 1998.
    • (1998)
  • 36
    • 84976354149 scopus 로고    scopus 로고
    • Scikit-learn, 2015. [Online]. Available: <> (accessed: 08-Jan-2015). http://scikit-learn.org.
    • (2015)
  • 37
    • 0031996528 scopus 로고    scopus 로고
    • Communication in the presence of noise
    • Shannon C.E. Communication in the presence of noise. Proc. IEEE 1998, 86(2):447-457.
    • (1998) Proc. IEEE , vol.86 , Issue.2 , pp. 447-457
    • Shannon, C.E.1
  • 39
    • 84855458471 scopus 로고    scopus 로고
    • Remote sensing of impervious surfaces in the urban areas: requirements, methods, and trends
    • Weng Q. Remote sensing of impervious surfaces in the urban areas: requirements, methods, and trends. Remote Sens. Environ. 2012, 117:34-49.
    • (2012) Remote Sens. Environ. , vol.117 , pp. 34-49
    • Weng, Q.1
  • 40
    • 84898072545 scopus 로고    scopus 로고
    • Performance evaluation of machine learning algorithms for urban pattern recognition
    • Wieland M., Pittore M. Performance evaluation of machine learning algorithms for urban pattern recognition. Remote Sens. 2014, 6(4):2912-2939.
    • (2014) Remote Sens. , vol.6 , Issue.4 , pp. 2912-2939
    • Wieland, M.1    Pittore, M.2
  • 41
    • 84873143523 scopus 로고    scopus 로고
    • Exposure estimation from multi-resolution optical satellite imagery for seismic risk assessment
    • Wieland M., Pittore M., Parolai S., Zschau J. Exposure estimation from multi-resolution optical satellite imagery for seismic risk assessment. ISPRS Int. J. Geo-Inf. 2012, 1(3):69-88.
    • (2012) ISPRS Int. J. Geo-Inf. , vol.1 , Issue.3 , pp. 69-88
    • Wieland, M.1    Pittore, M.2    Parolai, S.3    Zschau, J.4
  • 42
    • 84857061301 scopus 로고    scopus 로고
    • Estimating building inventory for rapid seismic vulnerability assessment: towards an integrated approach based on multi-source imaging
    • Wieland M., Pittore M., Parolai S., Zschau J., Moldobekov B., Begaliev U. Estimating building inventory for rapid seismic vulnerability assessment: towards an integrated approach based on multi-source imaging. SDEE Soil Dyn. Earthq. Eng. 2012, 36:70-83.
    • (2012) SDEE Soil Dyn. Earthq. Eng. , vol.36 , pp. 70-83
    • Wieland, M.1    Pittore, M.2    Parolai, S.3    Zschau, J.4    Moldobekov, B.5    Begaliev, U.6
  • 44
    • 51349159085 scopus 로고    scopus 로고
    • Probability estimates for multi-class classification by pairwise coupling
    • Wu T.-F., Lin C.-J., Weng R.C. Probability estimates for multi-class classification by pairwise coupling. J. Mach. Learn. Res. 2004, 5:975-1005.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 975-1005
    • Wu, T.-F.1    Lin, C.-J.2    Weng, R.C.3
  • 45
    • 33750084387 scopus 로고    scopus 로고
    • Comparison of pixel-based and object-oriented image classification approaches-a case study in a coal fire area, Wuda, Inner Mongolia, China
    • Yan G., Mas J.-F., Maathuis B.H.P., Xiangmin Z., Van Dijk P.M. Comparison of pixel-based and object-oriented image classification approaches-a case study in a coal fire area, Wuda, Inner Mongolia, China. Int. J. Remote Sens. 2006, 27(18):4039-4055.
    • (2006) Int. J. Remote Sens. , vol.27 , Issue.18 , pp. 4039-4055
    • Yan, G.1    Mas, J.-F.2    Maathuis, B.H.P.3    Xiangmin, Z.4    Van Dijk, P.M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.