메뉴 건너뛰기




Volumn 103, Issue , 2015, Pages 1-6

Global land cover mapping using Earth observation satellite data: Recent progresses and challenges

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84939939818     PISSN: 09242716     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.isprsjprs.2015.01.001     Document Type: Editorial
Times cited : (154)

References (75)
  • 2
    • 84875675131 scopus 로고    scopus 로고
    • Object-based fusion of multitemporal multi-angle ENVISAT ASAR and HJ-1 multispectral data for urban land-cover mapping
    • Ban Y., Jacob A. Object-based fusion of multitemporal multi-angle ENVISAT ASAR and HJ-1 multispectral data for urban land-cover mapping. IEEE Trans. GeoSci. Rem. Sens. 2013, 51(4):1998-2006.
    • (2013) IEEE Trans. GeoSci. Rem. Sens. , vol.51 , Issue.4 , pp. 1998-2006
    • Ban, Y.1    Jacob, A.2
  • 3
    • 77951132822 scopus 로고    scopus 로고
    • Fusion of QuickBird MS and RADARSAT-1 SAR data for land-cover mapping: object-based and knowledge-based approach
    • Ban Y., Hu H., Rangel I. Fusion of QuickBird MS and RADARSAT-1 SAR data for land-cover mapping: object-based and knowledge-based approach. Int. J. Remote Sens. 2010, 31(6):1391-1410.
    • (2010) Int. J. Remote Sens. , vol.31 , Issue.6 , pp. 1391-1410
    • Ban, Y.1    Hu, H.2    Rangel, I.3
  • 4
    • 84940007716 scopus 로고    scopus 로고
    • Spaceborne SAR data for global urban mapping at 30m resolution using a robust urban extractor
    • Ban, Y., Jacob, A., Gamba, P., 2015. Spaceborne SAR data for global urban mapping at 30m resolution using a robust urban extractor. ISPRS J. Photogramm. Remote Sens. 103, 28-37.
    • (2015) ISPRS J. Photogramm. Remote Sens , vol.103 , pp. 28-37
    • Ban, Y.1    Jacob, A.2    Gamba, P.3
  • 5
    • 20944440113 scopus 로고    scopus 로고
    • GLC2000: a new approach to global land cover mapping from Earth observation data
    • Bartholomé E., Belward A.S. GLC2000: a new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens. 2005, 26:1959-1977.
    • (2005) Int. J. Remote Sens. , vol.26 , pp. 1959-1977
    • Bartholomé, E.1    Belward, A.S.2
  • 6
    • 84927804350 scopus 로고    scopus 로고
    • Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites
    • Belward, A., Skøien, J.O., 2015. Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites. ISPRS J. Photogramm. Remote Sens. 103, 115-128.
    • (2015) ISPRS J. Photogramm. Remote Sens , vol.103 , pp. 115-128
    • Belward, A.1    Skøien, J.O.2
  • 8
    • 84872739548 scopus 로고    scopus 로고
    • Revisiting land cover observation to address the needs of the climate modeling community
    • Bontemps S., Herold M., Kooistra L., et al. Revisiting land cover observation to address the needs of the climate modeling community. Biogeosciences 2012, 9:2145-2157.
    • (2012) Biogeosciences , vol.9 , pp. 2145-2157
    • Bontemps, S.1    Herold, M.2    Kooistra, L.3
  • 9
    • 62549151267 scopus 로고    scopus 로고
    • Delivering a global, terrestrial, biodiversity observation system through remote sensing
    • Buchanan G.M., Nelson A., Mayaux P., et al. Delivering a global, terrestrial, biodiversity observation system through remote sensing. Conserv. Biol. 2009, 23(2):499-502.
    • (2009) Conserv. Biol. , vol.23 , Issue.2 , pp. 499-502
    • Buchanan, G.M.1    Nelson, A.2    Mayaux, P.3
  • 11
    • 84946545763 scopus 로고    scopus 로고
    • China: Open access to Earth land-cover map
    • Chen J., Ban Y., Li S. China: Open access to Earth land-cover map. Nature 2014, 514:434. 10.1038/514434c.
    • (2014) Nature , vol.514 , pp. 434
    • Chen, J.1    Ban, Y.2    Li, S.3
  • 12
    • 84988214289 scopus 로고    scopus 로고
    • Global land cover mapping at 30m resolution: a POK-based operational approach
    • Chen, J., et al., 2015. Global land cover mapping at 30m resolution: a POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 103, 7-27.
    • (2015) ISPRS J. Photogramm. Remote Sens , vol.103 , pp. 7-27
    • Chen, J.1
  • 13
    • 84888254842 scopus 로고    scopus 로고
    • Stochastic gradient boosting classification trees for forest fuel types mapping through airborne laser scanning and IRS LISS-III imagery
    • Chirici G., Scotti R., Montaghi A., et al. Stochastic gradient boosting classification trees for forest fuel types mapping through airborne laser scanning and IRS LISS-III imagery. Int. J. Appl. Earth Obs. Geoinf. 2013, 25:87-97.
    • (2013) Int. J. Appl. Earth Obs. Geoinf. , vol.25 , pp. 87-97
    • Chirici, G.1    Scotti, R.2    Montaghi, A.3
  • 14
    • 0034655827 scopus 로고    scopus 로고
    • Land cover mapping of large areas from satellites: status and research priorities
    • Cihlar J. Land cover mapping of large areas from satellites: status and research priorities. Int. J. Remote Sens. 2000, 21:1093-1114.
    • (2000) Int. J. Remote Sens. , vol.21 , pp. 1093-1114
    • Cihlar, J.1
  • 15
    • 84930621165 scopus 로고    scopus 로고
    • Geographic stacking: Decision fusion to increase global land cover map accuracy
    • Clinton, N., Yu, L., Gong, P., 2015. Geographic stacking: Decision fusion to increase global land cover map accuracy. ISPRS J. Photogramm. Remote Sens. 103, 57-65.
    • (2015) ISPRS J. Photogramm. Remote Sens , vol.103 , pp. 57-65
    • Clinton, N.1    Yu, L.2    Gong, P.3
  • 16
    • 0028582679 scopus 로고
    • NDVI-derived land-cover classifications at a global-scale
    • DeFries R., Townshend J.R. NDVI-derived land-cover classifications at a global-scale. Int. J. Remote Sens. 1994, 15(17):3567-3586.
    • (1994) Int. J. Remote Sens. , vol.15 , Issue.17 , pp. 3567-3586
    • DeFries, R.1    Townshend, J.R.2
  • 17
    • 84879064950 scopus 로고    scopus 로고
    • Classification of time series of multispectral images with limited training data
    • Demir B., Bovolo F., Bruzzone L. Classification of time series of multispectral images with limited training data. IEEE Trans. Image Process. 2013, 22(8):3219-3233.
    • (2013) IEEE Trans. Image Process. , vol.22 , Issue.8 , pp. 3219-3233
    • Demir, B.1    Bovolo, F.2    Bruzzone, L.3
  • 18
    • 18344394401 scopus 로고    scopus 로고
    • Monitoring global rates of biodiversity change: challenges that arise in meeting the Convention on Biological Diversity (CBD) 2010 goals
    • Dobson A. Monitoring global rates of biodiversity change: challenges that arise in meeting the Convention on Biological Diversity (CBD) 2010 goals. Phil. Trans. Roy. Soc. B 2005, 360:229-241.
    • (2005) Phil. Trans. Roy. Soc. B , vol.360 , pp. 229-241
    • Dobson, A.1
  • 19
    • 34548371842 scopus 로고    scopus 로고
    • Object-oriented and textural image classification of the Siberia GBFM radar mosaic combined with MERIS imagery for continental scale land cover mapping
    • Durieux L., Kropacek J., De Grandi G.D., et al. Object-oriented and textural image classification of the Siberia GBFM radar mosaic combined with MERIS imagery for continental scale land cover mapping. Int. J. Remote Sens. 2007, 28(18):4175-4182.
    • (2007) Int. J. Remote Sens. , vol.28 , Issue.18 , pp. 4175-4182
    • Durieux, L.1    Kropacek, J.2    De Grandi, G.D.3
  • 21
    • 34249694767 scopus 로고    scopus 로고
    • How Well Do We Know Northern Land Cover? Comparison of Four Global Vegetation and Wetland Products with a New Ground-Truth Database for West Siberia
    • Frey, K.E., Smith, L.C., 2007. How Well Do We Know Northern Land Cover? Comparison of Four Global Vegetation and Wetland Products with a New Ground-Truth Database for West Siberia. Global Biogeochemical Cycles, 21: GB1016.
    • (2007) Global Biogeochemical Cycles , vol.21 , pp. GB1016
    • Frey, K.E.1    Smith, L.C.2
  • 22
    • 70350041108 scopus 로고    scopus 로고
    • MODIS Collection 5 global land cover: algorithm refinements and characteristization of new datasets
    • Friedl M.A., Sulla-Menashe D., Tan B., et al. MODIS Collection 5 global land cover: algorithm refinements and characteristization of new datasets. Remote Sens. Environ. 2010, 114:168-182.
    • (2010) Remote Sens. Environ. , vol.114 , pp. 168-182
    • Friedl, M.A.1    Sulla-Menashe, D.2    Tan, B.3
  • 23
    • 77952339583 scopus 로고    scopus 로고
    • Comparison of global and regional land cover maps with statistical information for the agricultural domain in Africa
    • Fritz S., See L., Rembold F. Comparison of global and regional land cover maps with statistical information for the agricultural domain in Africa. Int. J. Remote Sens. 2010, 31:2237-2256.
    • (2010) Int. J. Remote Sens. , vol.31 , pp. 2237-2256
    • Fritz, S.1    See, L.2    Rembold, F.3
  • 24
    • 84939975297 scopus 로고    scopus 로고
    • The need for improved maps for global croplands
    • Fritz S., See L., You L.Z., et al. The need for improved maps for global croplands. EOS Trans. AGU 2013, 91(3):31-32.
    • (2013) EOS Trans. AGU , vol.91 , Issue.3 , pp. 31-32
    • Fritz, S.1    See, L.2    You, L.Z.3
  • 25
    • 84884815527 scopus 로고    scopus 로고
    • Fast and efficient urban extent extraction using ASAR wide swath mode data
    • Gamba P., Lisini G. Fast and efficient urban extent extraction using ASAR wide swath mode data. IEEE J. Select. Top. Appl. Earth Observ. Rem. Sens. 2013, 6(5):2184-2195.
    • (2013) IEEE J. Select. Top. Appl. Earth Observ. Rem. Sens. , vol.6 , Issue.5 , pp. 2184-2195
    • Gamba, P.1    Lisini, G.2
  • 26
    • 33746932125 scopus 로고    scopus 로고
    • On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance
    • Gao F., Masek J., Schwaller M., et al. On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44(8):2207-2218.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.8 , pp. 2207-2218
    • Gao, F.1    Masek, J.2    Schwaller, M.3
  • 27
    • 8844279202 scopus 로고    scopus 로고
    • A comparative analysis of the Global Land Cover 2000 and MODIS land cover data sets
    • Giri C., Zhu Z., Reed B. A comparative analysis of the Global Land Cover 2000 and MODIS land cover data sets. Remote Sens. Environ. 2005, 94:123-132.
    • (2005) Remote Sens. Environ. , vol.94 , pp. 123-132
    • Giri, C.1    Zhu, Z.2    Reed, B.3
  • 28
    • 78650071672 scopus 로고    scopus 로고
    • Status and distribution of mangrove forests of the world using earth observation satellite data
    • Giri C., Ochieng E., Tieszen L.L., et al. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 2011, 20:154-159.
    • (2011) Glob. Ecol. Biogeogr. , vol.20 , pp. 154-159
    • Giri, C.1    Ochieng, E.2    Tieszen, L.L.3
  • 29
    • 84888211006 scopus 로고    scopus 로고
    • Next generation of global land cover characterization, mapping and monitoring
    • Giri C., Pengra B., Long J., Loveland T.R. Next generation of global land cover characterization, mapping and monitoring. Int. J. Appl. Earth Obs. Geoinf. 2013, 25:30-37.
    • (2013) Int. J. Appl. Earth Obs. Geoinf. , vol.25 , pp. 30-37
    • Giri, C.1    Pengra, B.2    Long, J.3    Loveland, T.R.4
  • 30
    • 84865516936 scopus 로고    scopus 로고
    • Remote sensing of environmental change over China: a review
    • Gong P. Remote sensing of environmental change over China: a review. Chin. Sci. Bull. 2012, 57(22):2793-2801. 10.1007/s11434-012-5268-y.
    • (2012) Chin. Sci. Bull. , vol.57 , Issue.22 , pp. 2793-2801
    • Gong, P.1
  • 31
    • 84872359932 scopus 로고    scopus 로고
    • Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data
    • Gong P., Wang Jie., Le Yu. Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34(7):2607-2654.
    • (2013) Int. J. Remote Sens. , vol.34 , Issue.7 , pp. 2607-2654
    • Gong, P.1    Wang, J.2    Le, Y.3
  • 32
    • 84927805963 scopus 로고    scopus 로고
    • A web-based system for supporting global land cover data production
    • Han, G., et al., 2015. A web-based system for supporting global land cover data production. ISPRS J. Photogramm. Remote Sens. 103, 66-80.
    • (2015) ISPRS J. Photogramm. Remote Sens , vol.103 , pp. 66-80
    • Han, G.1
  • 33
    • 0034655867 scopus 로고    scopus 로고
    • Global land cover classification at 1 km spatial resolution using a classification tree approach
    • Hansen M.C., DeFries R.S., Townshend J.R.G., et al. Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens. 2000, 21:1331-1364.
    • (2000) Int. J. Remote Sens. , vol.21 , pp. 1331-1364
    • Hansen, M.C.1    DeFries, R.S.2    Townshend, J.R.G.3
  • 34
    • 84887724460 scopus 로고    scopus 로고
    • High-resolution global maps of 21st-century forest cover change
    • Hansen M.C., Potapov P.V., Moore R., et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342:850-853.
    • (2013) Science , vol.342 , pp. 850-853
    • Hansen, M.C.1    Potapov, P.V.2    Moore, R.3
  • 35
    • 41249085127 scopus 로고    scopus 로고
    • Some challenges in global land cover mapping: an assessment of agreement and accuracy in existing 1km datasets
    • Herold M., Mayaux P., Woodcock C.E., et al. Some challenges in global land cover mapping: an assessment of agreement and accuracy in existing 1km datasets. Remote Sens. Environ. 2008, 112:2538-2556.
    • (2008) Remote Sens. Environ. , vol.112 , pp. 2538-2556
    • Herold, M.1    Mayaux, P.2    Woodcock, C.E.3
  • 36
    • 85027945983 scopus 로고    scopus 로고
    • Unsupervised change detection in multitemporal SAR images over large urban areas
    • Hu H., Ban Y. Unsupervised change detection in multitemporal SAR images over large urban areas. IEEE J. Select. Topics Appl. Earth Observ. Rem. Sens. 2014, 7(8):3248-3261.
    • (2014) IEEE J. Select. Topics Appl. Earth Observ. Rem. Sens. , vol.7 , Issue.8 , pp. 3248-3261
    • Hu, H.1    Ban, Y.2
  • 37
    • 84920250204 scopus 로고    scopus 로고
    • A 30 meter land cover mapping of China with an efficient clustering algorithm CBEST
    • Hu L.Y., Chen Y.L., Xu Y., et al. A 30 meter land cover mapping of China with an efficient clustering algorithm CBEST. Sci. China-Earth Sci. 2014, 57(10):2293-2304.
    • (2014) Sci. China-Earth Sci. , vol.57 , Issue.10 , pp. 2293-2304
    • Hu, L.Y.1    Chen, Y.L.2    Xu, Y.3
  • 38
    • 52649098470 scopus 로고    scopus 로고
    • Reduction of atmospheric and topographic effect on Landsat TM data for forest classification
    • Huang H.B., Gong P., Hui F.M., Clinton N. Reduction of atmospheric and topographic effect on Landsat TM data for forest classification. Int. J. Remote Sens. 2008, 29(19):5623-5642.
    • (2008) Int. J. Remote Sens. , vol.29 , Issue.19 , pp. 5623-5642
    • Huang, H.B.1    Gong, P.2    Hui, F.M.3    Clinton, N.4
  • 39
    • 70350050130 scopus 로고    scopus 로고
    • An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks
    • Huang C.Q., Goward S.N., Masek J.G., et al. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens. Environ. 2010, 114:183-198.
    • (2010) Remote Sens. Environ. , vol.114 , pp. 183-198
    • Huang, C.Q.1    Goward, S.N.2    Masek, J.G.3
  • 40
    • 84864415476 scopus 로고    scopus 로고
    • Land use classification from multitemporal Landsat imagery using the Yearly Land Cover Dynamics (YLCD) method
    • Julien Y., Sobrino J.A., Jimenez-Munos J.C. Land use classification from multitemporal Landsat imagery using the Yearly Land Cover Dynamics (YLCD) method. Int. J. Appl. Earth Obs. Geoinf. 2011, 13(5):711-720.
    • (2011) Int. J. Appl. Earth Obs. Geoinf. , vol.13 , Issue.5 , pp. 711-720
    • Julien, Y.1    Sobrino, J.A.2    Jimenez-Munos, J.C.3
  • 41
    • 77956882349 scopus 로고    scopus 로고
    • Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr - temporal segmentation algorithms
    • Kennedy R.E., Yang Z.Q., Cohen W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr - temporal segmentation algorithms. Remote Sens. Environ. 2010, 114:2897-2910.
    • (2010) Remote Sens. Environ. , vol.114 , pp. 2897-2910
    • Kennedy, R.E.1    Yang, Z.Q.2    Cohen, W.B.3
  • 42
    • 48249130927 scopus 로고    scopus 로고
    • An overview of small satellites in remote sensing
    • Kramer H.J., Cracknell A.P. An overview of small satellites in remote sensing. Int. J. Remote Sens. 2008, 29(15):4285-4337.
    • (2008) Int. J. Remote Sens. , vol.29 , Issue.15 , pp. 4285-4337
    • Kramer, H.J.1    Cracknell, A.P.2
  • 43
    • 0029729078 scopus 로고    scopus 로고
    • The surface temperature-vegetation index space for land cover and land-cover change analysis
    • Lambin E.F., Ehrlich D. The surface temperature-vegetation index space for land cover and land-cover change analysis. Int. J. Remote Sens. 1996, 17(3):163-187.
    • (1996) Int. J. Remote Sens. , vol.17 , Issue.3 , pp. 163-187
    • Lambin, E.F.1    Ehrlich, D.2
  • 44
    • 84894607481 scopus 로고    scopus 로고
    • Comparison of classification algorithms and training sample sizes in urban land classification with landsat thematic mapper imagery
    • Li C.C., Wang J., Wang L., et al. Comparison of classification algorithms and training sample sizes in urban land classification with landsat thematic mapper imagery. Rem. Sens. 2014, 6:964-983.
    • (2014) Rem. Sens. , vol.6 , pp. 964-983
    • Li, C.C.1    Wang, J.2    Wang, L.3
  • 45
    • 0034655807 scopus 로고    scopus 로고
    • Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data
    • Loveland T.R., Reed B.C., Brown J.F., et al. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 2000, 21:1303-1330.
    • (2000) Int. J. Remote Sens. , vol.21 , pp. 1303-1330
    • Loveland, T.R.1    Reed, B.C.2    Brown, J.F.3
  • 46
    • 33947591833 scopus 로고    scopus 로고
    • A survey of image classification methods and techniques for improving classification performance
    • Lu D.S., Weng Q.H. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28(5):823-870.
    • (2007) Int. J. Remote Sens. , vol.28 , Issue.5 , pp. 823-870
    • Lu, D.S.1    Weng, Q.H.2
  • 47
    • 84988287143 scopus 로고    scopus 로고
    • Bidirectional effects in Landsat reflectance estimates: is there a problem to solve?
    • Nagol, J., et al., 2015. Bidirectional effects in Landsat reflectance estimates: is there a problem to solve? ISPRS J. Photogramm. Remote Sens. 103, 129-135.
    • (2015) ISPRS J. Photogramm. Remote Sens , vol.103 , pp. 129-135
    • Nagol, J.1
  • 48
    • 84872480014 scopus 로고    scopus 로고
    • Essential biodiversity variables
    • Pereira H.M., Ferrier S., Walters M., et al. Essential biodiversity variables. Science 2013, 399:277-278.
    • (2013) Science , vol.399 , pp. 277-278
    • Pereira, H.M.1    Ferrier, S.2    Walters, M.3
  • 50
    • 0032456576 scopus 로고    scopus 로고
    • Characterizing patterns of global land use: an analysis of global cropland areas
    • Ramankutty N., Foley J. Characterizing patterns of global land use: an analysis of global cropland areas. Global Biogeochem. Cycles 1998, 12:667-685.
    • (1998) Global Biogeochem. Cycles , vol.12 , pp. 667-685
    • Ramankutty, N.1    Foley, J.2
  • 51
    • 44149102637 scopus 로고    scopus 로고
    • Multi-temporal MODIS-Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data
    • Roy D.P., Ju J., Lewis P., et al. Multi-temporal MODIS-Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data. Remote Sens. Environ. 2008, 112:3112-3130.
    • (2008) Remote Sens. Environ. , vol.112 , pp. 3112-3130
    • Roy, D.P.1    Ju, J.2    Lewis, P.3
  • 52
    • 70350067845 scopus 로고    scopus 로고
    • Web-enabled Landsat Data (WELD): landsat ETM plus composited mosaics of the conterminous United States
    • Roy D.P., Ju J., Kline K., et al. Web-enabled Landsat Data (WELD): landsat ETM plus composited mosaics of the conterminous United States. Remote Sens. Environ. 2010, 114:35-49.
    • (2010) Remote Sens. Environ. , vol.114 , pp. 35-49
    • Roy, D.P.1    Ju, J.2    Kline, K.3
  • 53
    • 70450253287 scopus 로고    scopus 로고
    • A new map of global urban extent from MODIS satellite data
    • Schneider A., Friedl M., Potere D. A new map of global urban extent from MODIS satellite data. Environ. Res. Lett. 2009, 4(4):044003.
    • (2009) Environ. Res. Lett. , vol.4 , Issue.4 , pp. 044003
    • Schneider, A.1    Friedl, M.2    Potere, D.3
  • 54
    • 84926299150 scopus 로고    scopus 로고
    • Building a hybrid land cover map with crowdsourcing and geographically weighted regression
    • See, L., et al., 2015. Building a hybrid land cover map with crowdsourcing and geographically weighted regression. ISPRS J. Photogramm. Remote Sens. 103, 48-56.
    • (2015) ISPRS J. Photogramm. Remote Sens , vol.103 , pp. 48-56
    • See, L.1
  • 55
    • 84882659985 scopus 로고    scopus 로고
    • Global, 30-m resolution continuous fields of tree cover: landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error
    • Sexton J., Song X.P., Feng M., et al. Global, 30-m resolution continuous fields of tree cover: landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. Int. J. Digital Earth 2013, 6(5):427-448.
    • (2013) Int. J. Digital Earth , vol.6 , Issue.5 , pp. 427-448
    • Sexton, J.1    Song, X.P.2    Feng, M.3
  • 56
    • 60649095400 scopus 로고    scopus 로고
    • Super-resolution reconstruction algorithm to MODIS remote sensing images
    • Shen H.F., Ng M.K., Li P.X., et al. Super-resolution reconstruction algorithm to MODIS remote sensing images. Comput. J. 2009, 52:90-100.
    • (2009) Comput. J. , vol.52 , pp. 90-100
    • Shen, H.F.1    Ng, M.K.2    Li, P.X.3
  • 57
    • 84909647782 scopus 로고    scopus 로고
    • New global forest/non-forest maps from ALOS PALSAR data (2007-2010)
    • Shimada, M., Itoh, T., Motooka, T., et al., 2014, New global forest/non-forest maps from ALOS PALSAR data (2007-2010). Rem. Sens. Environ. doi: . doi:10.1016/j.rse.2014.04.014.
    • (2014) Rem. Sens. Environ
    • Shimada, M.1    Itoh, T.2    Motooka, T.3
  • 58
    • 84907469318 scopus 로고    scopus 로고
    • Annual detection of forest cover loss using time series satellite measurements of percent tree cover
    • Song X.P., Huang C.Q., Sexton J., et al. Annual detection of forest cover loss using time series satellite measurements of percent tree cover. Rem. Sens. 2014, 6(9):8878-8903.
    • (2014) Rem. Sens. , vol.6 , Issue.9 , pp. 8878-8903
    • Song, X.P.1    Huang, C.Q.2    Sexton, J.3
  • 59
    • 84988226848 scopus 로고    scopus 로고
    • Use of Landsat and Corona data for mapping forest cover change from the mid-1960s to 2000s: Case studies from the Eastern United States and Central Brazil
    • Song, D., et al., 2015. Use of Landsat and Corona data for mapping forest cover change from the mid-1960s to 2000s: Case studies from the Eastern United States and Central Brazil. ISPRS J. Photogramm. Remote Sens. 103, 81-92.
    • (2015) ISPRS J. Photogramm. Remote Sens , vol.103 , pp. 81-92
    • Song, D.1
  • 61
    • 84927804881 scopus 로고    scopus 로고
    • Assessing global land cover reference datasets for different user communities
    • Tsendbazar et al., 2015. Assessing global land cover reference datasets for different user communities. ISPRS J. Photogramm. Remote Sens. 103, 93-114.
    • (2015) ISPRS J. Photogramm. Remote Sens , vol.103 , pp. 93-114
    • Tsendbazar1
  • 62
    • 84880113869 scopus 로고    scopus 로고
    • The effect of atmospheric and topographic correction methods on land cover classification accuracy
    • Vanonckelen S., Lhermitte S., van Rompaey A. The effect of atmospheric and topographic correction methods on land cover classification accuracy. Int. J. Appl. Earth Obs. Geoinf. 2013, 24:9-21.
    • (2013) Int. J. Appl. Earth Obs. Geoinf. , vol.24 , pp. 9-21
    • Vanonckelen, S.1    Lhermitte, S.2    van Rompaey, A.3
  • 63
    • 78650783264 scopus 로고    scopus 로고
    • Challenges in using land use and land cover data for global change studies
    • Verburg P.H., Neumann K., Nol L. Challenges in using land use and land cover data for global change studies. Glob. Change Biol. 2011, 17:974-989.
    • (2011) Glob. Change Biol. , vol.17 , pp. 974-989
    • Verburg, P.H.1    Neumann, K.2    Nol, L.3
  • 64
    • 84927805919 scopus 로고    scopus 로고
    • Mapping global land cover in 2001 and 2010 with spatial-temporal consistency at 250m resolution
    • Wang, J., Zhao, Y., Li, C., Yu, L., Liu, D., Gong, P., 2015. Mapping global land cover in 2001 and 2010 with spatial-temporal consistency at 250m resolution. ISPRS J. Photogramm. Remote Sens. 103, 38-47.
    • (2015) ISPRS J. Photogramm. Remote Sens , vol.103 , pp. 38-47
    • Wang, J.1    Zhao, Y.2    Li, C.3    Yu, L.4    Liu, D.5    Gong, P.6
  • 65
    • 84865529487 scopus 로고    scopus 로고
    • Mapping 1990-2010 urban sprawl of all cities in China
    • Wang L., Li C.C., Ying Q., et al. Mapping 1990-2010 urban sprawl of all cities in China. Chin. Sci. Bull. 2012, 57(22):2802-2812.
    • (2012) Chin. Sci. Bull. , vol.57 , Issue.22 , pp. 2802-2812
    • Wang, L.1    Li, C.C.2    Ying, Q.3
  • 66
    • 70449369788 scopus 로고    scopus 로고
    • Does single broadband or multispectral thermal data add information for classification of visible, near- and shortwave infrared imagery of urban areas?
    • Warner T.A., Nerry F. Does single broadband or multispectral thermal data add information for classification of visible, near- and shortwave infrared imagery of urban areas?. Int. J. Remote Sens. 2009, 30(9):2155-2171.
    • (2009) Int. J. Remote Sens. , vol.30 , Issue.9 , pp. 2155-2171
    • Warner, T.A.1    Nerry, F.2
  • 67
    • 80051908447 scopus 로고    scopus 로고
    • Changes of impervious surface area between 2001 and 2006 in the conterminous United States
    • Xian G., Homer C., Dewitz J., et al. Changes of impervious surface area between 2001 and 2006 in the conterminous United States. Photogramm. Eng. Rem. Sens. 2011, 77(8):758-762.
    • (2011) Photogramm. Eng. Rem. Sens. , vol.77 , Issue.8 , pp. 758-762
    • Xian, G.1    Homer, C.2    Dewitz, J.3
  • 68
    • 84875648585 scopus 로고    scopus 로고
    • Improving urban change detection from multitemporal SAR images using PCA-NLM
    • Yousif O., Ban Y. Improving urban change detection from multitemporal SAR images using PCA-NLM. IEEE Trans. GeoSci. Rem. Sens. 2013, 51(4):2032-2041.
    • (2013) IEEE Trans. GeoSci. Rem. Sens. , vol.51 , Issue.4 , pp. 2032-2041
    • Yousif, O.1    Ban, Y.2
  • 69
    • 84879047611 scopus 로고    scopus 로고
    • Improving 30 m global land-cover map FROM-GLC with time series MODIS and auxiliary data sets: a segmentation-based approach
    • Yu L., Wang J., Gong P. Improving 30 m global land-cover map FROM-GLC with time series MODIS and auxiliary data sets: a segmentation-based approach. Int. J. Remote Sens. 2013, 34(16):5851-5867.
    • (2013) Int. J. Remote Sens. , vol.34 , Issue.16 , pp. 5851-5867
    • Yu, L.1    Wang, J.2    Gong, P.3
  • 70
    • 84888134923 scopus 로고    scopus 로고
    • FROM-GC: 30 m global cropland extent derived through multi-source data integration
    • Yu L., Wang J., Clinton N.E. FROM-GC: 30 m global cropland extent derived through multi-source data integration. Int. J. Digital Earth 2013, 6(6):521-533.
    • (2013) Int. J. Digital Earth , vol.6 , Issue.6 , pp. 521-533
    • Yu, L.1    Wang, J.2    Clinton, N.E.3
  • 71
    • 84904971625 scopus 로고    scopus 로고
    • Knowledge discovery by mapping remote sensing-based land cover classification efforts in the world
    • Yu L., Liang Lu., Wang Jie., et al. Knowledge discovery by mapping remote sensing-based land cover classification efforts in the world. Int. J. Remote Sens. 2014, 35(13):4573-4588.
    • (2014) Int. J. Remote Sens. , vol.35 , Issue.13 , pp. 4573-4588
    • Yu, L.1    Liang, L.2    Wang, J.3
  • 72
    • 84899793783 scopus 로고    scopus 로고
    • A 2010 update of National Land Use/Cover Database of China at 1:100000 scale using medium spatial resolution satellite images
    • Zhang Z.X., Wang X., Zhao X., et al. A 2010 update of National Land Use/Cover Database of China at 1:100000 scale using medium spatial resolution satellite images. Remote Sens. Environ. 2014, 149:142-154.
    • (2014) Remote Sens. Environ. , vol.149 , pp. 142-154
    • Zhang, Z.X.1    Wang, X.2    Zhao, X.3
  • 73
    • 84905026799 scopus 로고    scopus 로고
    • A common validation sample set for global land cover mapping
    • Zhao Y.Y., Gong P., Yu L., et al. A common validation sample set for global land cover mapping. Int. J. Remote Sens. 2014, 35(13):4795-4814.
    • (2014) Int. J. Remote Sens. , vol.35 , Issue.13 , pp. 4795-4814
    • Zhao, Y.Y.1    Gong, P.2    Yu, L.3
  • 74
    • 84884264508 scopus 로고    scopus 로고
    • Efficient corn and soybean mapping with temporal extendability: a multi-year experiment using Landsat imagery
    • Zhong L.H., Gong P., Biging G.S. Efficient corn and soybean mapping with temporal extendability: a multi-year experiment using Landsat imagery. Remote Sens. Environ. 2014, 140:1-13.
    • (2014) Remote Sens. Environ. , vol.140 , pp. 1-13
    • Zhong, L.H.1    Gong, P.2    Biging, G.S.3
  • 75
    • 84893747703 scopus 로고    scopus 로고
    • Continuous change detection and classification of land cover using all available Landsat data
    • Zhu Z., Woodcock C. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144:152-171.
    • (2014) Remote Sens. Environ. , vol.144 , pp. 152-171
    • Zhu, Z.1    Woodcock, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.