-
1
-
-
4744372082
-
Evolution of the Fgf and Fgfr gene families
-
Itoh N, Ornitz DM. Evolution of the Fgf and Fgfr gene families. Trends Genet 2004;20:563-9.
-
(2004)
Trends Genet
, vol.20
, pp. 563-569
-
-
Itoh, N.1
Ornitz, D.M.2
-
2
-
-
0031600117
-
The heparan sulfate-fibroblast growth factor family: diversity of structure and function
-
McKeehan WL, Wang F, Kan M. The heparan sulfate-fibroblast growth factor family: diversity of structure and function. Prog Nucleic Acid Res Mol Biol 1998;59:135-76.
-
(1998)
Prog Nucleic Acid Res Mol Biol
, vol.59
, pp. 135-176
-
-
McKeehan, W.L.1
Wang, F.2
Kan, M.3
-
4
-
-
66549097241
-
Fibroblast growth factor 21: a novel metabolic regulator with potential therapeutic properties in obesity/type 2 diabetes mellitus
-
Dostalova I, Haluzikova D, Haluzik M. Fibroblast growth factor 21: a novel metabolic regulator with potential therapeutic properties in obesity/type 2 diabetes mellitus. Physiol Res 2009;58:1-7.
-
(2009)
Physiol Res
, vol.58
, pp. 1-7
-
-
Dostalova, I.1
Haluzikova, D.2
Haluzik, M.3
-
5
-
-
41649109108
-
betaKlotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c
-
Suzuki M, Uehara Y, Motomura-Matsuzaka K, Oki J, Koyama Y, Kimura M, Asada M, Komi-Kuramochi A, Oka S, Imamura T. betaKlotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c. Mol Endocrinol 2008;22:1006-14.
-
(2008)
Mol Endocrinol
, vol.22
, pp. 1006-1014
-
-
Suzuki, M.1
Uehara, Y.2
Motomura-Matsuzaka, K.3
Oki, J.4
Koyama, Y.5
Kimura, M.6
Asada, M.7
Komi-Kuramochi, A.8
Oka, S.9
Imamura, T.10
-
6
-
-
33646578195
-
Regulation of fibroblast growth factor-23 signaling by klotho
-
Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kuro-o M. Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 2006;281:6120-3.
-
(2006)
J Biol Chem
, vol.281
, pp. 6120-6123
-
-
Kurosu, H.1
Ogawa, Y.2
Miyoshi, M.3
Yamamoto, M.4
Nandi, A.5
Rosenblatt, K.P.6
Baum, M.G.7
Schiavi, S.8
Hu, M.C.9
Moe, O.W.10
Kuro-o, M.11
-
7
-
-
34848869695
-
Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21
-
Kurosu H, Choi M, Ogawa Y, Dickson AS, Goetz R, Eliseenkova AV, Mohammadi M, Rosenblatt KP, Kliewer SA, Kuro-o M. Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem 2007; 282:26687-95.
-
(2007)
J Biol Chem
, vol.282
, pp. 26687-26695
-
-
Kurosu, H.1
Choi, M.2
Ogawa, Y.3
Dickson, A.S.4
Goetz, R.5
Eliseenkova, A.V.6
Mohammadi, M.7
Rosenblatt, K.P.8
Kliewer, S.A.9
Kuro-o, M.10
-
8
-
-
35748973876
-
Co-receptor requirements for fibroblast growth factor-19 signaling
-
Wu X, Ge H, Gupte J, Weiszmann J, Shimamoto G, Stevens J, Hawkins N, Lemon B, Shen W, Xu J, Veniant MM, Li YS, Lindberg R, Chen JL, Tian H, Li Y. Co-receptor requirements for fibroblast growth factor-19 signaling. J Biol Chem 2007;282:29069-72.
-
(2007)
J Biol Chem
, vol.282
, pp. 29069-29072
-
-
Wu, X.1
Ge, H.2
Gupte, J.3
Weiszmann, J.4
Shimamoto, G.5
Stevens, J.6
Hawkins, N.7
Lemon, B.8
Shen, W.9
Xu, J.10
Veniant, M.M.11
Li, Y.S.12
Lindberg, R.13
Chen, J.L.14
Tian, H.15
Li, Y.16
-
9
-
-
33845631059
-
Klotho converts canonical FGF receptor into a specific receptor for FGF23
-
Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 2006;444:770-4.
-
(2006)
Nature
, vol.444
, pp. 770-774
-
-
Urakawa, I.1
Yamazaki, Y.2
Shimada, T.3
Iijima, K.4
Hasegawa, H.5
Okawa, K.6
Fujita, T.7
Fukumoto, S.8
Yamashita, T.9
-
10
-
-
20444435873
-
FGF-21 as a novel metabolic regulator
-
Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, Sandusky GE, Hammond LJ, Moyers JS, Owens RA, Gromada J, Brozinick JT, Hawkins ED, Wroblewski VJ, Li DS, Mehrbod F, Jaskunas SR, Shanafelt AB. FGF-21 as a novel metabolic regulator. J Clin Invest 2005;115:1627-35.
-
(2005)
J Clin Invest
, vol.115
, pp. 1627-1635
-
-
Kharitonenkov, A.1
Shiyanova, T.L.2
Koester, A.3
Ford, A.M.4
Micanovic, R.5
Galbreath, E.J.6
Sandusky, G.E.7
Hammond, L.J.8
Moyers, J.S.9
Owens, R.A.10
Gromada, J.11
Brozinick, J.T.12
Hawkins, E.D.13
Wroblewski, V.J.14
Li, D.S.15
Mehrbod, F.16
Jaskunas, S.R.17
Shanafelt, A.B.18
-
11
-
-
33846418834
-
The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21
-
Kharitonenkov A, Wroblewski VJ, Koester A, Chen YF, Clutinger CK, Tigno XT, Hansen BC, Shanafelt AB, Etgen GJ. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 2007;148: 774-81.
-
(2007)
Endocrinology
, vol.148
, pp. 774-781
-
-
Kharitonenkov, A.1
Wroblewski, V.J.2
Koester, A.3
Chen, Y.F.4
Clutinger, C.K.5
Tigno, X.T.6
Hansen, B.C.7
Shanafelt, A.B.8
Etgen, G.J.9
-
12
-
-
45649085226
-
Inhibition of growth hormone signaling by the fasting-induced hormone FGF21
-
Inagaki T, Lin VY, Goetz R, Mohammadi M, Mangelsdorf DJ, Kliewer SA. Inhibition of growth hormone signaling by the fasting-induced hormone FGF21. Cell Metab 2008;8: 77-83.
-
(2008)
Cell Metab
, vol.8
, pp. 77-83
-
-
Inagaki, T.1
Lin, V.Y.2
Goetz, R.3
Mohammadi, M.4
Mangelsdorf, D.J.5
Kliewer, S.A.6
-
13
-
-
84905679771
-
The breadth of FGF21's metabolic actions are governed by FGFR1 in adipose tissue
-
Adams AC, Yang C, Coskun T, Cheng CC, Gimeno RE, Luo Y, Kharitonenkov A. The breadth of FGF21's metabolic actions are governed by FGFR1 in adipose tissue. Mol Metab 2012;2:31-7.
-
(2012)
Mol Metab
, vol.2
, pp. 31-37
-
-
Adams, A.C.1
Yang, C.2
Coskun, T.3
Cheng, C.C.4
Gimeno, R.E.5
Luo, Y.6
Kharitonenkov, A.7
-
14
-
-
84857185764
-
Endocrine fibroblast growth factors 15/19 and 21: from feast to famine
-
PotthoffMJ, Kliewer SA, Mangelsdorf DJ. Endocrine fibroblast growth factors 15/19 and 21: from feast to famine. Genes Dev 2012;26:312-24.
-
(2012)
Genes Dev
, vol.26
, pp. 312-324
-
-
Potthoff, M.J.1
Kliewer, S.A.2
Mangelsdorf, D.J.3
-
15
-
-
34249711964
-
Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states
-
Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 2007;5:426-37.
-
(2007)
Cell Metab
, vol.5
, pp. 426-437
-
-
Badman, M.K.1
Pissios, P.2
Kennedy, A.R.3
Koukos, G.4
Flier, J.S.5
Maratos-Flier, E.6
-
16
-
-
34249686631
-
Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21
-
Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L, Parameswara V, Li Y, Goetz R, Mohammadi M, Esser V, Elmquist JK, Gerard RD, Burgess SC, Hammer RE, Mangelsdorf DJ, Kliewer SA. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab 2007;5:415-25.
-
(2007)
Cell Metab
, vol.5
, pp. 415-425
-
-
Inagaki, T.1
Dutchak, P.2
Zhao, G.3
Ding, X.4
Gautron, L.5
Parameswara, V.6
Li, Y.7
Goetz, R.8
Mohammadi, M.9
Esser, V.10
Elmquist, J.K.11
Gerard, R.D.12
Burgess, S.C.13
Hammer, R.E.14
Mangelsdorf, D.J.15
Kliewer, S.A.16
-
17
-
-
31144434817
-
Constant darkness is a circadian metabolic signal in mammals
-
Zhang J, Kaasik K, Blackburn MR, Lee CC. Constant darkness is a circadian metabolic signal in mammals. Nature 2006;439:340-3.
-
(2006)
Nature
, vol.439
, pp. 340-343
-
-
Zhang, J.1
Kaasik, K.2
Blackburn, M.R.3
Lee, C.C.4
-
18
-
-
33749407193
-
ChREBP*Mlx is the principal mediator of glucose-induced gene expression in the liver
-
Ma L, Robinson LN, Towle HC. ChREBP*Mlx is the principal mediator of glucose-induced gene expression in the liver. J Biol Chem 2006;281:28721-30.
-
(2006)
J Biol Chem
, vol.281
, pp. 28721-28730
-
-
Ma, L.1
Robinson, L.N.2
Towle, H.C.3
-
19
-
-
47949111205
-
Adipose fibroblast growth factor 21 is up-regulated by peroxisome proliferator-activated receptor gamma and altered metabolic states
-
Muise ES, Azzolina B, Kuo DW, El-Sherbeini M, Tan Y, Yuan X, Mu J, Thompson JR, Berger JP, Wong KK. Adipose fibroblast growth factor 21 is up-regulated by peroxisome proliferator-activated receptor gamma and altered metabolic states. Mol Pharmacol 2008;74:403-12.
-
(2008)
Mol Pharmacol
, vol.74
, pp. 403-412
-
-
Muise, E.S.1
Azzolina, B.2
Kuo, D.W.3
El-Sherbeini, M.4
Tan, Y.5
Yuan, X.6
Mu, J.7
Thompson, J.R.8
Berger, J.P.9
Wong, K.K.10
-
20
-
-
37549052177
-
Identification of a domain within peroxisome proliferator-activated receptor gamma regulating expression of a group of genes containing fibroblast growth factor 21 that are selectively repressed by SIRT1 in adipocytes
-
Wang H, Qiang L, Farmer SR. Identification of a domain within peroxisome proliferator-activated receptor gamma regulating expression of a group of genes containing fibroblast growth factor 21 that are selectively repressed by SIRT1 in adipocytes. Mol Cell Biol 2008;28:188-200.
-
(2008)
Mol Cell Biol
, vol.28
, pp. 188-200
-
-
Wang, H.1
Qiang, L.2
Farmer, S.R.3
-
21
-
-
84863012459
-
Fibroblast growth factor-21 regulates PPARgamma activity and the antidiabetic actions of thiazolidinediones
-
Dutchak PA, Katafuchi T, Bookout AL, Choi JH, Yu RT, Mangelsdorf DJ, Kliewer SA. Fibroblast growth factor-21 regulates PPARgamma activity and the antidiabetic actions of thiazolidinediones. Cell 2012;148:556-67.
-
(2012)
Cell
, vol.148
, pp. 556-567
-
-
Dutchak, P.A.1
Katafuchi, T.2
Bookout, A.L.3
Choi, J.H.4
Yu, R.T.5
Mangelsdorf, D.J.6
Kliewer, S.A.7
-
22
-
-
57349098220
-
Fibroblast growth factor 21 corrects obesity in mice
-
Coskun T, Bina HA, Schneider MA, Dunbar JD, Hu CC, Chen Y, Moller DE, Kharitonenkov A. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 2008;149: 6018-27.
-
(2008)
Endocrinology
, vol.149
, pp. 6018-6027
-
-
Coskun, T.1
Bina, H.A.2
Schneider, M.A.3
Dunbar, J.D.4
Hu, C.C.5
Chen, Y.6
Moller, D.E.7
Kharitonenkov, A.8
-
23
-
-
48349146527
-
Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans
-
Zhang X, Yeung DC, Karpisek M, Stejskal D, Zhou ZG, Liu F, Wong RL, Chow WS, Tso AW, Lam KS, Xu A. Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes 2008;57:1246-53.
-
(2008)
Diabetes
, vol.57
, pp. 1246-1253
-
-
Zhang, X.1
Yeung, D.C.2
Karpisek, M.3
Stejskal, D.4
Zhou, Z.G.5
Liu, F.6
Wong, R.L.7
Chow, W.S.8
Tso, A.W.9
Lam, K.S.10
Xu, A.11
-
24
-
-
78049297991
-
Obesity is a fibroblast growth factor 21 (FGF21)-resistant state
-
Fisher FM, Chui PC, Antonellis PJ, Bina HA, Kharitonenkov A, Flier JS, Maratos-Flier E. Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes 2010;59: 2781-9.
-
(2010)
Diabetes
, vol.59
, pp. 2781-2789
-
-
Fisher, F.M.1
Chui, P.C.2
Antonellis, P.J.3
Bina, H.A.4
Kharitonenkov, A.5
Flier, J.S.6
Maratos-Flier, E.7
-
25
-
-
33750587755
-
Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways
-
Wente W, Efanov AM, Brenner M, Kharitonenkov A, Koster A, Sandusky GE, Sewing S, Treinies I, Zitzer H, Gromada J. Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes 2006;55:2470-8.
-
(2006)
Diabetes
, vol.55
, pp. 2470-2478
-
-
Wente, W.1
Efanov, A.M.2
Brenner, M.3
Kharitonenkov, A.4
Koster, A.5
Sandusky, G.E.6
Sewing, S.7
Treinies, I.8
Zitzer, H.9
Gromada, J.10
-
26
-
-
84875124153
-
Fibroblast growth factor 21 as an emerging metabolic regulator: clinical perspectives
-
Woo YC, Xu A, Wang Y, Lam KS. Fibroblast growth factor 21 as an emerging metabolic regulator: clinical perspectives. Clin Endocrinol (Oxf) 2013;78:489-96.
-
(2013)
Clin Endocrinol (Oxf)
, vol.78
, pp. 489-496
-
-
Woo, Y.C.1
Xu, A.2
Wang, Y.3
Lam, K.S.4
-
27
-
-
74049108945
-
Fibroblast growth factor 21: from pharmacology to physiology
-
Kliewer SA, Mangelsdorf DJ. Fibroblast growth factor 21: from pharmacology to physiology. Am J Clin Nutr 2010;91: 254S-7S.
-
(2010)
Am J Clin Nutr
, vol.91
, pp. 254S-257S
-
-
Kliewer, S.A.1
Mangelsdorf, D.J.2
-
28
-
-
34447265235
-
PPARalpha is a key regulator of hepatic FGF21
-
Lundasen T, Hunt MC, Nilsson LM, Sanyal S, Angelin B, Alexson SE, Rudling M. PPARalpha is a key regulator of hepatic FGF21. Biochem Biophys Res Commun 2007;360: 437-40.
-
(2007)
Biochem Biophys Res Commun
, vol.360
, pp. 437-440
-
-
Lundasen, T.1
Hunt, M.C.2
Nilsson, L.M.3
Sanyal, S.4
Angelin, B.5
Alexson, S.E.6
Rudling, M.7
-
29
-
-
0032699670
-
Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting
-
Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W. Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J Clin Invest 1999;103:1489-98.
-
(1999)
J Clin Invest
, vol.103
, pp. 1489-1498
-
-
Kersten, S.1
Seydoux, J.2
Peters, J.M.3
Gonzalez, F.J.4
Desvergne, B.5
Wahli, W.6
-
30
-
-
0034666132
-
Defect in peroxisome proliferator-activated receptor alpha-inducible fatty acid oxidation determines the severity of hepatic steatosis in response to fasting
-
Hashimoto T, Cook WS, Qi C, Yeldandi AV, Reddy JK, Rao MS. Defect in peroxisome proliferator-activated receptor alpha-inducible fatty acid oxidation determines the severity of hepatic steatosis in response to fasting. J Biol Chem 2000;275:28918-28.
-
(2000)
J Biol Chem
, vol.275
, pp. 28918-28928
-
-
Hashimoto, T.1
Cook, W.S.2
Qi, C.3
Yeldandi, A.V.4
Reddy, J.K.5
Rao, M.S.6
-
32
-
-
28944446431
-
The many faces of PPARgamma
-
Lehrke M, Lazar MA. The many faces of PPARgamma. Cell 2005;123:993-9.
-
(2005)
Cell
, vol.123
, pp. 993-999
-
-
Lehrke, M.1
Lazar, M.A.2
-
33
-
-
33646346627
-
Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor gamma agonists
-
Nawrocki AR, Rajala MW, Tomas E, Pajvani UB, Saha AK, Trumbauer ME, Pang Z, Chen AS, Ruderman NB, Chen H, Rossetti L, Scherer PE. Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor gamma agonists. J Biol Chem 2006;281:2654-60.
-
(2006)
J Biol Chem
, vol.281
, pp. 2654-2660
-
-
Nawrocki, A.R.1
Rajala, M.W.2
Tomas, E.3
Pajvani, U.B.4
Saha, A.K.5
Trumbauer, M.E.6
Pang, Z.7
Chen, A.S.8
Ruderman, N.B.9
Chen, H.10
Rossetti, L.11
Scherer, P.E.12
-
34
-
-
51749091289
-
Role of complexes formation between drugs and penetration enhancers in transdermal delivery
-
Drakulic BJ, Juranic IO, Eric S, Zloh M. Role of complexes formation between drugs and penetration enhancers in transdermal delivery. Int J Pharm 2008;363:40-9.
-
(2008)
Int J Pharm
, vol.363
, pp. 40-49
-
-
Drakulic, B.J.1
Juranic, I.O.2
Eric, S.3
Zloh, M.4
-
35
-
-
77951995518
-
Thyroid hormone regulates hepatic expression of fibroblast growth factor 21 in a PPARalpha-dependent manner
-
Adams AC, Astapova I, Fisher FM, Badman MK, Kurgansky KE, Flier JS, Hollenberg AN, Maratos-Flier E. Thyroid hormone regulates hepatic expression of fibroblast growth factor 21 in a PPARalpha-dependent manner. J Biol Chem 2010;285:14078-82.
-
(2010)
J Biol Chem
, vol.285
, pp. 14078-14082
-
-
Adams, A.C.1
Astapova, I.2
Fisher, F.M.3
Badman, M.K.4
Kurgansky, K.E.5
Flier, J.S.6
Hollenberg, A.N.7
Maratos-Flier, E.8
-
36
-
-
84860584916
-
Retinoic acid upregulates preadipocyte genes to block adipogenesis and suppress diet-induced obesity
-
Berry DC, DeSantis D, Soltanian H, Croniger CM, Noy N. Retinoic acid upregulates preadipocyte genes to block adipogenesis and suppress diet-induced obesity. Diabetes 2012;61:1112-21.
-
(2012)
Diabetes
, vol.61
, pp. 1112-1121
-
-
Berry, D.C.1
DeSantis, D.2
Soltanian, H.3
Croniger, C.M.4
Noy, N.5
-
37
-
-
84867147609
-
Retinoids ameliorate insulin resistance in a leptin-dependent manner in mice
-
Tsuchiya H, Ikeda Y, Ebata Y, Kojima C, Katsuma R, Tsuruyama T, Sakabe T, Shomori K, Komeda N, Oshiro S, Okamoto H, Takubo K, Hama S, Shudo K, Kogure K, Shiota G. Retinoids ameliorate insulin resistance in a leptin-dependent manner in mice. Hepatology 2012;56:1319-30.
-
(2012)
Hepatology
, vol.56
, pp. 1319-1330
-
-
Tsuchiya, H.1
Ikeda, Y.2
Ebata, Y.3
Kojima, C.4
Katsuma, R.5
Tsuruyama, T.6
Sakabe, T.7
Shomori, K.8
Komeda, N.9
Oshiro, S.10
Okamoto, H.11
Takubo, K.12
Hama, S.13
Shudo, K.14
Kogure, K.15
Shiota, G.16
-
38
-
-
84876238033
-
Retinoic acid receptor beta stimulates hepatic induction of fibroblast growth factor 21 to promote fatty acid oxidation and control whole-body energy homeostasis in mice
-
Li Y, Wong K, Walsh K, Gao B, Zang M. Retinoic acid receptor beta stimulates hepatic induction of fibroblast growth factor 21 to promote fatty acid oxidation and control whole-body energy homeostasis in mice. J Biol Chem 2013;288:10490-504.
-
(2013)
J Biol Chem
, vol.288
, pp. 10490-10504
-
-
Li, Y.1
Wong, K.2
Walsh, K.3
Gao, B.4
Zang, M.5
-
39
-
-
13344270920
-
Disruption of the nuclear hormone receptor RORalpha in staggerer mice
-
Hamilton BA, Frankel WN, Kerrebrock AW, Hawkins TL, FitzHugh W, Kusumi K, Russell LB, Mueller KL, van Berkel V, Birren BW, Kruglyak L, Lander ES. Disruption of the nuclear hormone receptor RORalpha in staggerer mice. Nature 1996;379:736-9.
-
(1996)
Nature
, vol.379
, pp. 736-739
-
-
Hamilton, B.A.1
Frankel, W.N.2
Kerrebrock, A.W.3
Hawkins, T.L.4
FitzHugh, W.5
Kusumi, K.6
Russell, L.B.7
Mueller, K.L.8
van Berkel, V.9
Birren, B.W.10
Kruglyak, L.11
Lander, E.S.12
-
40
-
-
77952334180
-
Regulation of FGF21 expression and secretion by retinoic acid receptor-related orphan receptor alpha
-
Wang Y, Solt LA, Burris TP. Regulation of FGF21 expression and secretion by retinoic acid receptor-related orphan receptor alpha. J Biol Chem 2010;285:15668-73.
-
(2010)
J Biol Chem
, vol.285
, pp. 15668-15673
-
-
Wang, Y.1
Solt, L.A.2
Burris, T.P.3
-
41
-
-
17844395201
-
The liver-enriched transcription factor CREB-H is a growth suppressor protein underexpressed in hepatocellular carcinoma
-
Chin KT, Zhou HJ, Wong CM, Lee JM, Chan CP, Qiang BQ, Yuan JG, Ng IO, Jin DY. The liver-enriched transcription factor CREB-H is a growth suppressor protein underexpressed in hepatocellular carcinoma. Nucleic Acids Res 2005;33:1859-73.
-
(2005)
Nucleic Acids Res
, vol.33
, pp. 1859-1873
-
-
Chin, K.T.1
Zhou, H.J.2
Wong, C.M.3
Lee, J.M.4
Chan, C.P.5
Qiang, B.Q.6
Yuan, J.G.7
Ng, I.O.8
Jin, D.Y.9
-
42
-
-
0035873671
-
CREB-H: a novel mammalian transcription factor belonging to the CREB/ATF family and functioning via the box-B element with a liver-specific expression
-
Omori Y, Imai J, Watanabe M, Komatsu T, Suzuki Y, Kataoka K, Watanabe S, Tanigami A, Sugano S. CREB-H: a novel mammalian transcription factor belonging to the CREB/ATF family and functioning via the box-B element with a liver-specific expression. Nucleic Acids Res 2001; 29:2154-62.
-
(2001)
Nucleic Acids Res
, vol.29
, pp. 2154-2162
-
-
Omori, Y.1
Imai, J.2
Watanabe, M.3
Komatsu, T.4
Suzuki, Y.5
Kataoka, K.6
Watanabe, S.7
Tanigami, A.8
Sugano, S.9
-
43
-
-
79960110157
-
The transcription factor cyclic AMP-responsive element-binding protein H regulates triglyceride metabolism
-
Lee JH, Giannikopoulos P, Duncan SA, Wang J, Johansen CT, Brown JD, Plutzky J, Hegele RA, Glimcher LH, Lee AH. The transcription factor cyclic AMP-responsive element-binding protein H regulates triglyceride metabolism. Nat Med 2011;17:812-5.
-
(2011)
Nat Med
, vol.17
, pp. 812-815
-
-
Lee, J.H.1
Giannikopoulos, P.2
Duncan, S.A.3
Wang, J.4
Johansen, C.T.5
Brown, J.D.6
Plutzky, J.7
Hegele, R.A.8
Glimcher, L.H.9
Lee, A.H.10
-
44
-
-
84878806915
-
cAMP response element binding protein H mediates fenofibrate-induced suppression of hepatic lipogenesis
-
Min AK, Jeong JY, Go Y, Choi YK, Kim YD, Lee IK, Park KG. cAMP response element binding protein H mediates fenofibrate-induced suppression of hepatic lipogenesis. Diabetologia 2013;56:412-22.
-
(2013)
Diabetologia
, vol.56
, pp. 412-422
-
-
Min, A.K.1
Jeong, J.Y.2
Go, Y.3
Choi, Y.K.4
Kim, Y.D.5
Lee, I.K.6
Park, K.G.7
-
45
-
-
0024804250
-
Isolation and characterization of human TR3 receptor: a member of steroid receptor superfamily
-
Chang C, Kokontis J, Liao SS, Chang Y. Isolation and characterization of human TR3 receptor: a member of steroid receptor superfamily. J Steroid Biochem 1989;34:391-5.
-
(1989)
J Steroid Biochem
, vol.34
, pp. 391-395
-
-
Chang, C.1
Kokontis, J.2
Liao, S.S.3
Chang, Y.4
-
46
-
-
0030579943
-
Structure, mapping and expression of a human NOR-1 gene, the third member of the Nur77/NGFI-B family
-
Ohkura N, Ito M, Tsukada T, Sasaki K, Yamaguchi K, Miki K. Structure, mapping and expression of a human NOR-1 gene, the third member of the Nur77/NGFI-B family. Biochim Biophys Acta 1996;1308:205-14.
-
(1996)
Biochim Biophys Acta
, vol.1308
, pp. 205-214
-
-
Ohkura, N.1
Ito, M.2
Tsukada, T.3
Sasaki, K.4
Yamaguchi, K.5
Miki, K.6
-
47
-
-
0028606279
-
Molecular cloning of a novel thyroid/steroid receptor superfamily gene from cultured rat neuronal cells
-
Ohkura N, Hijikuro M, Yamamoto A, Miki K. Molecular cloning of a novel thyroid/steroid receptor superfamily gene from cultured rat neuronal cells. Biochem Biophys Res Commun 1994;205:1959-65.
-
(1994)
Biochem Biophys Res Commun
, vol.205
, pp. 1959-1965
-
-
Ohkura, N.1
Hijikuro, M.2
Yamamoto, A.3
Miki, K.4
-
48
-
-
33747154772
-
Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network
-
Bookout AL, Jeong Y, Downes M, Yu RT, Evans RM, Mangelsdorf DJ. Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell 2006;126:789-99.
-
(2006)
Cell
, vol.126
, pp. 789-799
-
-
Bookout, A.L.1
Jeong, Y.2
Downes, M.3
Yu, R.T.4
Evans, R.M.5
Mangelsdorf, D.J.6
-
49
-
-
0029069135
-
Signal-transduction-pathway-specific desensitization of expression of orphan nuclear receptor TIS1
-
Lim RW, Yang WL, Yu H. Signal-transduction-pathway-specific desensitization of expression of orphan nuclear receptor TIS1. Biochem J 1995;308(Pt 3):785-9.
-
(1995)
Biochem J
, vol.308
, pp. 785-789
-
-
Lim, R.W.1
Yang, W.L.2
Yu, H.3
-
50
-
-
0032574626
-
Alternative splicing generates isoforms of human neuron-derived orphan receptor-1 (NOR-1) mRNA
-
Ohkura N, Ito M, Tsukada T, Sasaki K, Yamaguchi K, Miki K. Alternative splicing generates isoforms of human neuron-derived orphan receptor-1 (NOR-1) mRNA. Gene 1998;211:79-85.
-
(1998)
Gene
, vol.211
, pp. 79-85
-
-
Ohkura, N.1
Ito, M.2
Tsukada, T.3
Sasaki, K.4
Yamaguchi, K.5
Miki, K.6
-
51
-
-
0034059827
-
Structure and expression of the mouse gene encoding the orphan nuclear receptor TEC
-
Maltais A, Labelle Y. Structure and expression of the mouse gene encoding the orphan nuclear receptor TEC. DNA Cell Biol 2000;19:121-30.
-
(2000)
DNA Cell Biol
, vol.19
, pp. 121-130
-
-
Maltais, A.1
Labelle, Y.2
-
52
-
-
33748463364
-
NR4A orphan nuclear receptors are transcriptional regulators of hepatic glucose metabolism
-
Pei L, Waki H, Vaitheesvaran B, Wilpitz DC, Kurland IJ, Tontonoz P. NR4A orphan nuclear receptors are transcriptional regulators of hepatic glucose metabolism. Nat Med 2006;12:1048-55.
-
(2006)
Nat Med
, vol.12
, pp. 1048-1055
-
-
Pei, L.1
Waki, H.2
Vaitheesvaran, B.3
Wilpitz, D.C.4
Kurland, I.J.5
Tontonoz, P.6
-
53
-
-
0030952937
-
Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta
-
Forman BM, Chen J, Evans RM. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. Proc Natl Acad Sci U S A 1997;94:4312-7.
-
(1997)
Proc Natl Acad Sci U S A
, vol.94
, pp. 4312-4317
-
-
Forman, B.M.1
Chen, J.2
Evans, R.M.3
-
54
-
-
48349127924
-
The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARalpha activation in man
-
Galman C, Lundasen T, Kharitonenkov A, Bina HA, Eriksson M, Hafstrom I, Dahlin M, Amark P, Angelin B, Rudling M. The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARalpha activation in man. Cell Metab 2008;8:169-74.
-
(2008)
Cell Metab
, vol.8
, pp. 169-174
-
-
Galman, C.1
Lundasen, T.2
Kharitonenkov, A.3
Bina, H.A.4
Eriksson, M.5
Hafstrom, I.6
Dahlin, M.7
Amark, P.8
Angelin, B.9
Rudling, M.10
-
55
-
-
0031013395
-
Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs
-
Lehmann JM, Lenhard JM, Oliver BB, Ringold GM, Kliewer SA. Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J Biol Chem 1997; 272:3406-10.
-
(1997)
J Biol Chem
, vol.272
, pp. 3406-3410
-
-
Lehmann, J.M.1
Lenhard, J.M.2
Oliver, B.B.3
Ringold, G.M.4
Kliewer, S.A.5
-
56
-
-
33845407972
-
Molecular determinants of FGF-21 activity-synergy and cross-talk with PPARgamma signaling
-
Moyers JS, Shiyanova TL, Mehrbod F, Dunbar JD, Noblitt TW, Otto KA, Reifel-Miller A, Kharitonenkov A. Molecular determinants of FGF-21 activity-synergy and cross-talk with PPARgamma signaling. J Cell Physiol 2007;210:1-6.
-
(2007)
J Cell Physiol
, vol.210
, pp. 1-6
-
-
Moyers, J.S.1
Shiyanova, T.L.2
Mehrbod, F.3
Dunbar, J.D.4
Noblitt, T.W.5
Otto, K.A.6
Reifel-Miller, A.7
Kharitonenkov, A.8
-
57
-
-
39149091423
-
FGF-21/FGF-21 receptor interaction and activation is determined by betaKlotho
-
Kharitonenkov A, Dunbar JD, Bina HA, Bright S, Moyers JS, Zhang C, Ding L, Micanovic R, Mehrbod SF, Knierman MD, Hale JE, Coskun T, Shanafelt AB. FGF-21/FGF-21 receptor interaction and activation is determined by betaKlotho. J Cell Physiol 2008;215:1-7.
-
(2008)
J Cell Physiol
, vol.215
, pp. 1-7
-
-
Kharitonenkov, A.1
Dunbar, J.D.2
Bina, H.A.3
Bright, S.4
Moyers, J.S.5
Zhang, C.6
Ding, L.7
Micanovic, R.8
Mehrbod, S.F.9
Knierman, M.D.10
Hale, J.E.11
Coskun, T.12
Shanafelt, A.B.13
-
58
-
-
80052273194
-
The roles of ER stress and P450 2E1 in CCl(4)-induced steatosis
-
Lee GH, Bhandary B, Lee EM, Park JK, Jeong KS, Kim IK, Kim HR, Chae HJ. The roles of ER stress and P450 2E1 in CCl(4)-induced steatosis. Int J Biochem Cell Biol 2011; 43:1469-82.
-
(2011)
Int J Biochem Cell Biol
, vol.43
, pp. 1469-1482
-
-
Lee, G.H.1
Bhandary, B.2
Lee, E.M.3
Park, J.K.4
Jeong, K.S.5
Kim, I.K.6
Kim, H.R.7
Chae, H.J.8
-
59
-
-
0028845524
-
Treatment of symptomatic diabetic peripheral neuropathy with the anti-oxidant alpha-lipoic acid. A 3-week multicentre randomized controlled trial (ALADIN Study)
-
Ziegler D, Hanefeld M, Ruhnau KJ, Meissner HP, Lobisch M, Schutte K, Gries FA. Treatment of symptomatic diabetic peripheral neuropathy with the anti-oxidant alpha-lipoic acid. A 3-week multicentre randomized controlled trial (ALADIN Study). Diabetologia 1995;38:1425-33.
-
(1995)
Diabetologia
, vol.38
, pp. 1425-1433
-
-
Ziegler, D.1
Hanefeld, M.2
Ruhnau, K.J.3
Meissner, H.P.4
Lobisch, M.5
Schutte, K.6
Gries, F.A.7
-
60
-
-
0030884244
-
Alpha-lipoic acid in the treatment of diabetic peripheral and cardiac autonomic neuropathy
-
Ziegler D, Gries FA. Alpha-lipoic acid in the treatment of diabetic peripheral and cardiac autonomic neuropathy. Diabetes 1997;46 Suppl 2:S62-6.
-
(1997)
Diabetes
, vol.46
, pp. S62-S66
-
-
Ziegler, D.1
Gries, F.A.2
-
61
-
-
56249123934
-
The "rejuvenatory" impact of lipoic acid on mitochondrial function in aging rats may reflect induction and activation of PPAR-gamma coactivator-1alpha
-
McCarty MF, Barroso-Aranda J, Contreras F. The "rejuvenatory" impact of lipoic acid on mitochondrial function in aging rats may reflect induction and activation of PPAR-gamma coactivator-1alpha. Med Hypotheses 2009;72:29-33.
-
(2009)
Med Hypotheses
, vol.72
, pp. 29-33
-
-
McCarty, M.F.1
Barroso-Aranda, J.2
Contreras, F.3
-
62
-
-
56149098763
-
Alpha-lipoic acid decreases hepatic lipogenesis through adenosine monophosphate-activated protein kinase (AMPK)-dependent and AMPK-independent pathways
-
Park KG, Min AK, Koh EH, Kim HS, Kim MO, Park HS, Kim YD, Yoon TS, Jang BK, Hwang JS, Kim JB, Choi HS, Park JY, Lee IK, Lee KU. Alpha-lipoic acid decreases hepatic lipogenesis through adenosine monophosphate-activated protein kinase (AMPK)-dependent and AMPK-independent pathways. Hepatology 2008;48:1477-86.
-
(2008)
Hepatology
, vol.48
, pp. 1477-1486
-
-
Park, K.G.1
Min, A.K.2
Koh, E.H.3
Kim, H.S.4
Kim, M.O.5
Park, H.S.6
Kim, Y.D.7
Yoon, T.S.8
Jang, B.K.9
Hwang, J.S.10
Kim, J.B.11
Choi, H.S.12
Park, J.Y.13
Lee, I.K.14
Lee, K.U.15
-
63
-
-
78149282847
-
Alpha-lipoic acid prevents neointimal hyperplasia via induction of p38 mitogen-activated protein kinase/Nur77-mediated apoptosis of vascular smooth muscle cells and accelerates postinjury reendothelialization
-
Kim HJ, Kim JY, Lee SJ, Oh CJ, Choi YK, Lee HJ, Do JY, Kim SY, Kwon TK, Choi HS, Lee MO, Park IS, Park KG, Lee KU, Lee IK. Alpha-lipoic acid prevents neointimal hyperplasia via induction of p38 mitogen-activated protein kinase/Nur77-mediated apoptosis of vascular smooth muscle cells and accelerates postinjury reendothelialization. Arterioscler Thromb Vasc Biol 2010;30:2164-72.
-
(2010)
Arterioscler Thromb Vasc Biol
, vol.30
, pp. 2164-2172
-
-
Kim, H.J.1
Kim, J.Y.2
Lee, S.J.3
Oh, C.J.4
Choi, Y.K.5
Lee, H.J.6
Do, J.Y.7
Kim, S.Y.8
Kwon, T.K.9
Choi, H.S.10
Lee, M.O.11
Park, I.S.12
Park, K.G.13
Lee, K.U.14
Lee, I.K.15
|