-
1
-
-
0037673933
-
Control of osteoblast function and regulation of bone mass
-
Harada, S., and G. A. Rodan. 2003. Control of osteoblast function and regulation of bone mass. Nature 423: 349-355.
-
(2003)
Nature
, vol.423
, pp. 349-355
-
-
Harada, S.1
Rodan, G.A.2
-
2
-
-
84872465172
-
Osteoclast formation and differentiation: An overview
-
Soysa, N. S., N. Alles, K. Aoki, and K. Ohya. 2012. Osteoclast formation and differentiation: an overview. J. Med. Dent. Sci. 59: 65-74.
-
(2012)
J. Med. Dent. Sci.
, vol.59
, pp. 65-74
-
-
Soysa, N.S.1
Alles, N.2
Aoki, K.3
Ohya, K.4
-
3
-
-
77955497814
-
Cellular and molecular mechanisms of bone remodeling
-
Raggatt, L. J., and N. C. Partridge. 2010. Cellular and molecular mechanisms of bone remodeling. J. Biol. Chem. 285: 25103-25108.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 25103-25108
-
-
Raggatt, L.J.1
Partridge, N.C.2
-
4
-
-
0034284550
-
Therapeutic approaches to bone diseases
-
Rodan, G. A., and T. J. Martin. 2000. Therapeutic approaches to bone diseases. Science 289: 1508-1514.
-
(2000)
Science
, vol.289
, pp. 1508-1514
-
-
Rodan, G.A.1
Martin, T.J.2
-
5
-
-
0034121039
-
Involvement of receptor activator of nuclear factor kappaB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis
-
Takayanagi, H., H. Iizuka, T. Juji, T. Nakagawa, A. Yamamoto, T. Miyazaki, Y. Koshihara, H. Oda, K. Nakamura, and S. Tanaka. 2000. Involvement of receptor activator of nuclear factor kappaB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis. Arthritis Rheum. 43: 259-269.
-
(2000)
Arthritis Rheum.
, vol.43
, pp. 259-269
-
-
Takayanagi, H.1
Iizuka, H.2
Juji, T.3
Nakagawa, T.4
Yamamoto, A.5
Miyazaki, T.6
Koshihara, Y.7
Oda, H.8
Nakamura, K.9
Tanaka, S.10
-
6
-
-
34247581650
-
Signaling crosstalk between RANKL and interferons in osteoclast differentiation
-
Takayanagi, H., S. Kim, and T. Taniguchi. 2002. Signaling crosstalk between RANKL and interferons in osteoclast differentiation. Arthritis Res. 4(Suppl. 3): S227-S232.
-
(2002)
Arthritis Res.
, vol.4
, pp. S227-S232
-
-
Takayanagi, H.1
Kim, S.2
Taniguchi, T.3
-
7
-
-
0025332897
-
The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene
-
Yoshida, H., S. Hayashi, T. Kunisada, M. Ogawa, S. Nishikawa, H. Okamura, T. Sudo, L. D. Shultz, and S. Nishikawa. 1990. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345: 442-444.
-
(1990)
Nature
, vol.345
, pp. 442-444
-
-
Yoshida, H.1
Hayashi, S.2
Kunisada, T.3
Ogawa, M.4
Nishikawa, S.5
Okamura, H.6
Sudo, T.7
Shultz, L.D.8
Nishikawa, S.9
-
8
-
-
0025049142
-
Origin of osteoclasts: Mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells
-
Udagawa, N., N. Takahashi, T. Akatsu, H. Tanaka, T. Sasaki, T. Nishihara, T. Koga, T. J. Martin, and T. Suda. 1990. Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc. Natl. Acad. Sci. USA 87: 7260-7264.
-
(1990)
Proc. Natl. Acad. Sci. USA
, vol.87
, pp. 7260-7264
-
-
Udagawa, N.1
Takahashi, N.2
Akatsu, T.3
Tanaka, H.4
Sasaki, T.5
Nishihara, T.6
Koga, T.7
Martin, T.J.8
Suda, T.9
-
9
-
-
28544443670
-
Alphavbeta3 and macrophage colonystimulating factor: Partners in osteoclast biology
-
Ross, F. P., and S. L. Teitelbaum. 2005. alphavbeta3 and macrophage colonystimulating factor: partners in osteoclast biology. Immunol. Rev. 208: 88-105.
-
(2005)
Immunol. Rev.
, vol.208
, pp. 88-105
-
-
Ross, F.P.1
Teitelbaum, S.L.2
-
10
-
-
33846031926
-
The molecular understanding of osteoclast differentiation
-
Asagiri, M., and H. Takayanagi. 2007. The molecular understanding of osteoclast differentiation. Bone 40: 251-264.
-
(2007)
Bone
, vol.40
, pp. 251-264
-
-
Asagiri, M.1
Takayanagi, H.2
-
11
-
-
0036218666
-
RANK-L and RANK: T cells, bone loss, and mammalian evolution
-
Theill, L. E., W. J. Boyle, and J. M. Penninger. 2002. RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu. Rev. Immunol. 20: 795-823.
-
(2002)
Annu. Rev. Immunol.
, vol.20
, pp. 795-823
-
-
Theill, L.E.1
Boyle, W.J.2
Penninger, J.M.3
-
12
-
-
0037673945
-
Osteoclast differentiation and activation
-
Boyle, W. J., W. S. Simonet, and D. L. Lacey. 2003. Osteoclast differentiation and activation. Nature 423: 337-342.
-
(2003)
Nature
, vol.423
, pp. 337-342
-
-
Boyle, W.J.1
Simonet, W.S.2
Lacey, D.L.3
-
13
-
-
16844377831
-
Mechanistic insight into osteoclast differentiation in osteoimmunology
-
Takayanagi, H. 2005. Mechanistic insight into osteoclast differentiation in osteoimmunology. J. Mol. Med. (Berl.) 83: 170-179.
-
(2005)
J. Mol. Med. (Berl.)
, vol.83
, pp. 170-179
-
-
Takayanagi, H.1
-
14
-
-
28544442029
-
Interplay between interferon and other cytokine systems in bone metabolism
-
Takayanagi, H., K. Sato, A. Takaoka, and T. Taniguchi. 2005. Interplay between interferon and other cytokine systems in bone metabolism. Immunol. Rev. 208: 181-193.
-
(2005)
Immunol. Rev.
, vol.208
, pp. 181-193
-
-
Takayanagi, H.1
Sato, K.2
Takaoka, A.3
Taniguchi, T.4
-
15
-
-
0028173214
-
C-Fos: A key regulator of osteoclastmacrophage lineage determination and bone remodeling
-
Grigoriadis, A. E., Z. Q. Wang, M. G. Cecchini, W. Hofstetter, R. Felix, H. A. Fleisch, and E. F. Wagner. 1994. c-Fos: a key regulator of osteoclastmacrophage lineage determination and bone remodeling. Science 266: 443-448.
-
(1994)
Science
, vol.266
, pp. 443-448
-
-
Grigoriadis, A.E.1
Wang, Z.Q.2
Cecchini, M.G.3
Hofstetter, W.4
Felix, R.5
Fleisch, H.A.6
Wagner, E.F.7
-
16
-
-
18744366041
-
Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts
-
Takayanagi, H., S. Kim, T. Koga, H. Nishina, M. Isshiki, H. Yoshida, A. Saiura, M. Isobe, T. Yokochi, J. Inoue, et al. 2002. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 3: 889-901.
-
(2002)
Dev. Cell
, vol.3
, pp. 889-901
-
-
Takayanagi, H.1
Kim, S.2
Koga, T.3
Nishina, H.4
Isshiki, M.5
Yoshida, H.6
Saiura, A.7
Isobe, M.8
Yokochi, T.9
Inoue, J.10
-
17
-
-
28544434439
-
Fos/AP-1 proteins in bone and the immune system
-
Wagner, E. F., and R. Eferl. 2005. Fos/AP-1 proteins in bone and the immune system. Immunol. Rev. 208: 126-140.
-
(2005)
Immunol. Rev.
, vol.208
, pp. 126-140
-
-
Wagner, E.F.1
Eferl, R.2
-
18
-
-
11144354330
-
Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis
-
Koga, T., M. Inui, K. Inoue, S. Kim, A. Suematsu, E. Kobayashi, T. Iwata, H. Ohnishi, T. Matozaki, T. Kodama, et al. 2004. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428: 758-763.
-
(2004)
Nature
, vol.428
, pp. 758-763
-
-
Koga, T.1
Inui, M.2
Inoue, K.3
Kim, S.4
Suematsu, A.5
Kobayashi, E.6
Iwata, T.7
Ohnishi, H.8
Matozaki, T.9
Kodama, T.10
-
19
-
-
37249090188
-
The role of NFAT in osteoclast formation
-
Takayanagi, H. 2007. The role of NFAT in osteoclast formation. Ann. N. Y. Acad. Sci. 1116: 227-237.
-
(2007)
Ann. N. Y. Acad. Sci.
, vol.1116
, pp. 227-237
-
-
Takayanagi, H.1
-
20
-
-
0037129205
-
RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta
-
Takayanagi, H., S. Kim, K. Matsuo, H. Suzuki, T. Suzuki, K. Sato, T. Yokochi, H. Oda, K. Nakamura, N. Ida, et al. 2002. RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta. Nature 416: 744-749.
-
(2002)
Nature
, vol.416
, pp. 744-749
-
-
Takayanagi, H.1
Kim, S.2
Matsuo, K.3
Suzuki, H.4
Suzuki, T.5
Sato, K.6
Yokochi, T.7
Oda, H.8
Nakamura, K.9
Ida, N.10
-
21
-
-
78651488457
-
Interferon-stimulated gene 15 and the protein ISGylation system
-
Zhang, D., and D. E. Zhang. 2011. Interferon-stimulated gene 15 and the protein ISGylation system. J. Interferon Cytokine Res. 31: 119-130.
-
(2011)
J. Interferon Cytokine Res.
, vol.31
, pp. 119-130
-
-
Zhang, D.1
Zhang, D.E.2
-
22
-
-
84888016188
-
The antiviral activities of ISG15
-
Morales, D. J., and D. J. Lenschow. 2013. The antiviral activities of ISG15. J. Mol. Biol. 425: 4995-5008.
-
(2013)
J. Mol. Biol.
, vol.425
, pp. 4995-5008
-
-
Morales, D.J.1
Lenschow, D.J.2
-
23
-
-
84875854073
-
Interferon-induced ISG15 pathway: An ongoing virus-host battle
-
Zhao, C., M. N. Collins, T. Y. Hsiang, and R. M. Krug. 2013. Interferon-induced ISG15 pathway: an ongoing virus-host battle. Trends Microbiol. 21: 181-186.
-
(2013)
Trends Microbiol.
, vol.21
, pp. 181-186
-
-
Zhao, C.1
Collins, M.N.2
Hsiang, T.Y.3
Krug, R.M.4
-
24
-
-
0037155882
-
UBP43 (USP18) specifically removes ISG15 from conjugated proteins
-
Malakhov, M. P., O. A. Malakhova, K. I. Kim, K. J. Ritchie, and D. E. Zhang. 2002. UBP43 (USP18) specifically removes ISG15 from conjugated proteins. J. Biol. Chem. 277: 9976-9981.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 9976-9981
-
-
Malakhov, M.P.1
Malakhova, O.A.2
Kim, K.I.3
Ritchie, K.J.4
Zhang, D.E.5
-
25
-
-
0037443090
-
Protein ISGylation modulates the JAK-STAT signaling pathway
-
Malakhova, O. A., M. Yan, M. P. Malakhov, Y. Yuan, K. J. Ritchie, K. I. Kim, L. F. Peterson, K. Shuai, and D. E. Zhang. 2003. Protein ISGylation modulates the JAK-STAT signaling pathway. Genes Dev. 17: 455-460.
-
(2003)
Genes Dev.
, vol.17
, pp. 455-460
-
-
Malakhova, O.A.1
Yan, M.2
Malakhov, M.P.3
Yuan, Y.4
Ritchie, K.J.5
Kim, K.I.6
Peterson, L.F.7
Shuai, K.8
Zhang, D.E.9
-
26
-
-
11144294823
-
Role of ISG15 protease UBP43 (USP18) in innate immunity to viral infection
-
Ritchie, K. J., C. S. Hahn, K. I. Kim, M. Yan, D. Rosario, L. Li, J. C. de la Torre, and D. E. Zhang. 2004. Role of ISG15 protease UBP43 (USP18) in innate immunity to viral infection. Nat. Med. 10: 1374-1378.
-
(2004)
Nat. Med.
, vol.10
, pp. 1374-1378
-
-
Ritchie, K.J.1
Hahn, C.S.2
Kim, K.I.3
Yan, M.4
Rosario, D.5
Li, L.6
De La Torre, J.C.7
Zhang, D.E.8
-
27
-
-
23244464285
-
Enhanced antibacterial potential in UBP43-deficient mice against Salmonella typhimurium infection by up-regulating type i IFN signaling
-
Kim, K. I., O. A. Malakhova, K. Hoebe, M. Yan, B. Beutler, and D. E. Zhang. 2005. Enhanced antibacterial potential in UBP43-deficient mice against Salmonella typhimurium infection by up-regulating type I IFN signaling. J. Immunol. 175: 847-854.
-
(2005)
J. Immunol.
, vol.175
, pp. 847-854
-
-
Kim, K.I.1
Malakhova, O.A.2
Hoebe, K.3
Yan, M.4
Beutler, B.5
Zhang, D.E.6
-
28
-
-
0036714980
-
Dysregulation of protein modification by ISG15 results in brain cell injury
-
Ritchie, K. J., M. P. Malakhov, C. J. Hetherington, L. Zhou, M. T. Little, O. A. Malakhova, J. C. Sipe, S. H. Orkin, and D. E. Zhang. 2002. Dysregulation of protein modification by ISG15 results in brain cell injury. Genes Dev. 16: 2207-2212.
-
(2002)
Genes Dev.
, vol.16
, pp. 2207-2212
-
-
Ritchie, K.J.1
Malakhov, M.P.2
Hetherington, C.J.3
Zhou, L.4
Little, M.T.5
Malakhova, O.A.6
Sipe, J.C.7
Orkin, S.H.8
Zhang, D.E.9
-
29
-
-
84862869409
-
The mitochondrial pathway and reactive oxygen species are critical contributors to interferon-A/b-mediated apoptosis in Ubp43-deficient hematopoietic cells
-
Yim, H. Y., Y. Yang, J. S. Lim, M. S. Lee, D. E. Zhang, and K. I. Kim. 2012. The mitochondrial pathway and reactive oxygen species are critical contributors to interferon-a/b-mediated apoptosis in Ubp43-deficient hematopoietic cells. Biochem. Biophys. Res. Commun. 423: 436-440.
-
(2012)
Biochem. Biophys. Res. Commun.
, vol.423
, pp. 436-440
-
-
Yim, H.Y.1
Yang, Y.2
Lim, J.S.3
Lee, M.S.4
Zhang, D.E.5
Kim, K.I.6
-
30
-
-
33745761009
-
UBP43 is a novel regulator of interferon signaling independent of its ISG15 isopeptidase activity
-
Malakhova, O. A., K. I. Kim, J. K. Luo, W. Zou, K. G. Kumar, S. Y. Fuchs, K. Shuai, and D. E. Zhang. 2006. UBP43 is a novel regulator of interferon signaling independent of its ISG15 isopeptidase activity. EMBO J. 25: 2358-2367.
-
(2006)
EMBO J.
, vol.25
, pp. 2358-2367
-
-
Malakhova, O.A.1
Kim, K.I.2
Luo, J.K.3
Zou, W.4
Kumar, K.G.5
Fuchs, S.Y.6
Shuai, K.7
Zhang, D.E.8
-
31
-
-
84922326351
-
Selective inactivation of USP18 isopeptidase activity in vivo enhances ISG15 conjugation and viral resistance
-
Ketscher, L., R. Hannß, D. J. Morales, A. Basters, S. Guerra, T. Goldmann, A. Hausmann, M. Prinz, R. Naumann, A. Pekosz, et al. 2015. Selective inactivation of USP18 isopeptidase activity in vivo enhances ISG15 conjugation and viral resistance. Proc. Natl. Acad. Sci. USA 112: 1577-1582.
-
(2015)
Proc. Natl. Acad. Sci. USA
, vol.112
, pp. 1577-1582
-
-
Ketscher, L.1
Hannß, R.2
Morales, D.J.3
Basters, A.4
Guerra, S.5
Goldmann, T.6
Hausmann, A.7
Prinz, M.8
Naumann, R.9
Pekosz, A.10
-
32
-
-
64049087213
-
PIAS3 negatively regulates RANKL-mediated osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblasts
-
Hikata, T., H. Takaishi, J. Takito, A. Hakozaki, M. Furukawa, S. Uchikawa, T. Kimura, Y. Okada, M. Matsumoto, A. Yoshimura, et al. 2009. PIAS3 negatively regulates RANKL-mediated osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblasts. Blood 113: 2202-2212.
-
(2009)
Blood
, vol.113
, pp. 2202-2212
-
-
Hikata, T.1
Takaishi, H.2
Takito, J.3
Hakozaki, A.4
Furukawa, M.5
Uchikawa, S.6
Kimura, T.7
Okada, Y.8
Matsumoto, M.9
Yoshimura, A.10
-
33
-
-
33745190069
-
SOCS-3 negatively regulates innate and adaptive immune mechanisms in acute IL-1-dependent inflammatory arthritis
-
Wong, P. K., P. J. Egan, B. A. Croker, K. O'Donnell, N. A. Sims, S. Drake, H. Kiu, E. J. McManus, W. S. Alexander, A. W. Roberts, and I. P. Wicks. 2006. SOCS-3 negatively regulates innate and adaptive immune mechanisms in acute IL-1-dependent inflammatory arthritis. J. Clin. Invest. 116: 1571-1581.
-
(2006)
J. Clin. Invest.
, vol.116
, pp. 1571-1581
-
-
Wong, P.K.1
Egan, P.J.2
Croker, B.A.3
O'Donnell, K.4
Sims, N.A.5
Drake, S.6
Kiu, H.7
McManus, E.J.8
Alexander, W.S.9
Roberts, A.W.10
Wicks, I.P.11
-
34
-
-
58749106092
-
The level of hepatitis B virus replication is not affected by protein ISG15 modification but is reduced by inhibition of UBP43 (USP18) expression
-
Kim, J. H., J. K. Luo, and D. E. Zhang. 2008. The level of hepatitis B virus replication is not affected by protein ISG15 modification but is reduced by inhibition of UBP43 (USP18) expression. J. Immunol. 181: 6467-6472.
-
(2008)
J. Immunol.
, vol.181
, pp. 6467-6472
-
-
Kim, J.H.1
Luo, J.K.2
Zhang, D.E.3
-
35
-
-
84873546947
-
Osteoimmunology and the influence of pro-inflammatory cytokines on osteoclasts
-
Zupan, J., M. Jeras, and J. Marc. 2013. Osteoimmunology and the influence of pro-inflammatory cytokines on osteoclasts. Biochem. Med. (Zagreb) 23: 43-63.
-
(2013)
Biochem. Med. (Zagreb)
, vol.23
, pp. 43-63
-
-
Zupan, J.1
Jeras, M.2
Marc, J.3
-
36
-
-
33947129106
-
Microarray analysis reveals that Type i interferon strongly increases the expression of immune-response related genes in Ubp43 (Usp18) deficient macrophages
-
Zou, W., J. H. Kim, A. Handidu, X. Li, K. I. Kim, M. Yan, J. Li, and D. E. Zhang. 2007. Microarray analysis reveals that Type I interferon strongly increases the expression of immune-response related genes in Ubp43 (Usp18) deficient macrophages. Biochem. Biophys. Res. Commun. 356: 193-199.
-
(2007)
Biochem. Biophys. Res. Commun.
, vol.356
, pp. 193-199
-
-
Zou, W.1
Kim, J.H.2
Handidu, A.3
Li, X.4
Kim, K.I.5
Yan, M.6
Li, J.7
Zhang, D.E.8
-
37
-
-
0346216133
-
Human osteoclasts express different CXC chemokines depending on cell culture substrate: Molecular and immunocytochemical evidence of high levels of CXCL10 and CXCL12
-
Grassi, F., A. Piacentini, S. Cristino, S. Toneguzzi, C. Cavallo, A. Facchini, and G. Lisignoli. 2003. Human osteoclasts express different CXC chemokines depending on cell culture substrate: molecular and immunocytochemical evidence of high levels of CXCL10 and CXCL12. Histochem. Cell Biol. 120: 391-400.
-
(2003)
Histochem. Cell Biol.
, vol.120
, pp. 391-400
-
-
Grassi, F.1
Piacentini, A.2
Cristino, S.3
Toneguzzi, S.4
Cavallo, C.5
Facchini, A.6
Lisignoli, G.7
-
38
-
-
43949129105
-
Reciprocal cross-talk between RANKL and interferon-gamma-inducible protein 10 is responsible for bone-erosive experimental arthritis
-
Kwak, H. B., H. Ha, H. N. Kim, J. H. Lee, H. S. Kim, S. Lee, H. M. Kim, J. Y. Kim, H. H. Kim, Y. W. Song, and Z. H. Lee. 2008. Reciprocal cross-talk between RANKL and interferon-gamma-inducible protein 10 is responsible for bone-erosive experimental arthritis. Arthritis Rheum. 58: 1332-1342.
-
(2008)
Arthritis Rheum.
, vol.58
, pp. 1332-1342
-
-
Kwak, H.B.1
Ha, H.2
Kim, H.N.3
Lee, J.H.4
Kim, H.S.5
Lee, S.6
Kim, H.M.7
Kim, J.Y.8
Kim, H.H.9
Song, Y.W.10
Lee, Z.H.11
-
39
-
-
63649119246
-
An in vivo genome wide gene expression study of circulating monocytes suggested GBP1, STAT1 and CXCL10 as novel risk genes for the differentiation of peak bone mass
-
Lei, S. F., S. Wu, L. M. Li, F. Y. Deng, S. M. Xiao, C. Jiang, Y. Chen, H. Jiang, F. Yang, L. J. Tan, et al. 2009. An in vivo genome wide gene expression study of circulating monocytes suggested GBP1, STAT1 and CXCL10 as novel risk genes for the differentiation of peak bone mass. Bone 44: 1010-1014.
-
(2009)
Bone
, vol.44
, pp. 1010-1014
-
-
Lei, S.F.1
Wu, S.2
Li, L.M.3
Deng, F.Y.4
Xiao, S.M.5
Jiang, C.6
Chen, Y.7
Jiang, H.8
Yang, F.9
Tan, L.J.10
|