-
1
-
-
84899650478
-
The inflammatory response in myocardial injury, repair, and remodelling
-
[1] Frangogiannis, N.G., The inflammatory response in myocardial injury, repair, and remodelling. Nat. Rev. Cardiol. 11 (2014), 255–265.
-
(2014)
Nat. Rev. Cardiol.
, vol.11
, pp. 255-265
-
-
Frangogiannis, N.G.1
-
2
-
-
84929378196
-
Immune cell and other noncardiomyocyte regulation of cardiac hypertrophy and remodeling
-
[2] Frieler, R.A., Mortensen, R.M., Immune cell and other noncardiomyocyte regulation of cardiac hypertrophy and remodeling. Circulation 131 (2015), 1019–1030.
-
(2015)
Circulation
, vol.131
, pp. 1019-1030
-
-
Frieler, R.A.1
Mortensen, R.M.2
-
3
-
-
84935008216
-
Molecular mechanisms of mitochondrial autophagy/mitophagy in the heart
-
[3] Saito, T., Sadoshima, J., Molecular mechanisms of mitochondrial autophagy/mitophagy in the heart. Circ. Res. 116 (2015), 1477–1490.
-
(2015)
Circ. Res.
, vol.116
, pp. 1477-1490
-
-
Saito, T.1
Sadoshima, J.2
-
4
-
-
34249714158
-
The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress
-
[4] Nakai, A., Yamaguchi, O., Takeda, T., Higuchi, Y., Hikoso, S., Taniike, M., et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat. Med. 13 (2007), 619–624.
-
(2007)
Nat. Med.
, vol.13
, pp. 619-624
-
-
Nakai, A.1
Yamaguchi, O.2
Takeda, T.3
Higuchi, Y.4
Hikoso, S.5
Taniike, M.6
-
5
-
-
84927582499
-
Therapeutic targeting of autophagy: potential and concerns in treating cardiovascular disease
-
[5] Orogo, A.M., Gustafsson, A.B., Therapeutic targeting of autophagy: potential and concerns in treating cardiovascular disease. Circ. Res. 116 (2015), 489–503.
-
(2015)
Circ. Res.
, vol.116
, pp. 489-503
-
-
Orogo, A.M.1
Gustafsson, A.B.2
-
6
-
-
84914703544
-
Impaired autophagy contributes to adverse cardiac remodeling in acute myocardial infarction
-
[6] Wu, X., He, L., Chen, F., He, X., Cai, Y., Zhang, G., et al. Impaired autophagy contributes to adverse cardiac remodeling in acute myocardial infarction. PLoS One, 9, 2014, e112891.
-
(2014)
PLoS One
, vol.9
, pp. e112891
-
-
Wu, X.1
He, L.2
Chen, F.3
He, X.4
Cai, Y.5
Zhang, G.6
-
7
-
-
0033540056
-
Ghrelin is a growth-hormone-releasing acylated peptide from stomach
-
[7] Kojima, M., Hosoda, H., Date, Y., Nakazato, M., Matsuo, H., Kangawa, K., Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402 (1999), 656–660.
-
(1999)
Nature
, vol.402
, pp. 656-660
-
-
Kojima, M.1
Hosoda, H.2
Date, Y.3
Nakazato, M.4
Matsuo, H.5
Kangawa, K.6
-
8
-
-
84953426279
-
Human ghrelin: a gastric hormone with cardiovascular properties
-
[8] Virdis, A., Lerman, L.O., Regoli, F., Ghiadoni, L., Lerman, A., Taddei, S., Human ghrelin: a gastric hormone with cardiovascular properties. Curr. Pharm. Des. 22:1 (2016), 52–58.
-
(2016)
Curr. Pharm. Des.
, vol.22
, Issue.1
, pp. 52-58
-
-
Virdis, A.1
Lerman, L.O.2
Regoli, F.3
Ghiadoni, L.4
Lerman, A.5
Taddei, S.6
-
9
-
-
84907335174
-
Ghrelin as a treatment for cardiovascular diseases
-
[9] Mao, Y., Tokudome, T., Kishimoto, I., Ghrelin as a treatment for cardiovascular diseases. Hypertension 64 (2014), 450–454.
-
(2014)
Hypertension
, vol.64
, pp. 450-454
-
-
Mao, Y.1
Tokudome, T.2
Kishimoto, I.3
-
10
-
-
0037164747
-
Ghrelin and des-acyl ghrelin inhibit cell death in cardiomyocytes and endothelial cells through ERK1/2 and PI 3-kinase/AKT
-
[10] Baldanzi, G., Filigheddu, N., Cutrupi, S., Catapano, F., Bonissoni, S., Fubini, A., et al. Ghrelin and des-acyl ghrelin inhibit cell death in cardiomyocytes and endothelial cells through ERK1/2 and PI 3-kinase/AKT. J. Cell Biol. 159 (2002), 1029–1037.
-
(2002)
J. Cell Biol.
, vol.159
, pp. 1029-1037
-
-
Baldanzi, G.1
Filigheddu, N.2
Cutrupi, S.3
Catapano, F.4
Bonissoni, S.5
Fubini, A.6
-
11
-
-
70449656984
-
Ghrelin inhibits post-infarct myocardial remodeling and improves cardiac function through anti-inflammation effect
-
[11] Huang, C.X., Yuan, M.J., Huang, H., Wu, G., Liu, Y., Yu, S.B., et al. Ghrelin inhibits post-infarct myocardial remodeling and improves cardiac function through anti-inflammation effect. Peptides 30 (2009), 2286–2291.
-
(2009)
Peptides
, vol.30
, pp. 2286-2291
-
-
Huang, C.X.1
Yuan, M.J.2
Huang, H.3
Wu, G.4
Liu, Y.5
Yu, S.B.6
-
12
-
-
84866488692
-
Myocardial angiogenesis after chronic ghrelin treatment in a rat myocardial infarction model
-
[12] Yuan, M.J., He, H., Hu, H.Y., Li, Q., Hong, J., Huang, C.X., Myocardial angiogenesis after chronic ghrelin treatment in a rat myocardial infarction model. Regul. Pept. 179 (2012), 39–42.
-
(2012)
Regul. Pept.
, vol.179
, pp. 39-42
-
-
Yuan, M.J.1
He, H.2
Hu, H.Y.3
Li, Q.4
Hong, J.5
Huang, C.X.6
-
13
-
-
84867572078
-
The ghrelin O-acyltransferase-ghrelin system reduces TNF-alpha-induced apoptosis and autophagy in human visceral adipocytes
-
[13] Rodriguez, A., Gomez-Ambrosi, J., Catalan, V., Rotellar, F., Valenti, V., Silva, C., et al. The ghrelin O-acyltransferase-ghrelin system reduces TNF-alpha-induced apoptosis and autophagy in human visceral adipocytes. Diabetologia 55 (2012), 3038–3050.
-
(2012)
Diabetologia
, vol.55
, pp. 3038-3050
-
-
Rodriguez, A.1
Gomez-Ambrosi, J.2
Catalan, V.3
Rotellar, F.4
Valenti, V.5
Silva, C.6
-
14
-
-
84924297804
-
Protective effects of desacyl ghrelin on diabetic cardiomyopathy
-
[14] Pei, X.M., Yung, B.Y., Yip, S.P., Chan, L.W., Wong, C.S., Ying, M., et al. Protective effects of desacyl ghrelin on diabetic cardiomyopathy. Acta Diabetol. 52 (2015), 293–306.
-
(2015)
Acta Diabetol.
, vol.52
, pp. 293-306
-
-
Pei, X.M.1
Yung, B.Y.2
Yip, S.P.3
Chan, L.W.4
Wong, C.S.5
Ying, M.6
-
15
-
-
84920273164
-
Exercise increases the binding of MEF2A to the Cpt1b promoter in mouse skeletal muscle
-
[15] Yuan, H., Niu, Y., Liu, X., Fu, L., Exercise increases the binding of MEF2A to the Cpt1b promoter in mouse skeletal muscle. Acta Physiol. (Oxf.) 212 (2014), 283–292.
-
(2014)
Acta Physiol. (Oxf.)
, vol.212
, pp. 283-292
-
-
Yuan, H.1
Niu, Y.2
Liu, X.3
Fu, L.4
-
16
-
-
34147168105
-
Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy
-
[16] Matsui, Y., Takagi, H., Qu, X., Abdellatif, M., Sakoda, H., Asano, T., et al. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ. Res. 100 (2007), 914–922.
-
(2007)
Circ. Res.
, vol.100
, pp. 914-922
-
-
Matsui, Y.1
Takagi, H.2
Qu, X.3
Abdellatif, M.4
Sakoda, H.5
Asano, T.6
-
17
-
-
0035908954
-
Chronic administration of ghrelin improves left ventricular dysfunction and attenuates development of cardiac cachexia in rats with heart failure
-
[17] Nagaya, N., Uematsu, M., Kojima, M., Ikeda, Y., Yoshihara, F., Shimizu, W., et al. Chronic administration of ghrelin improves left ventricular dysfunction and attenuates development of cardiac cachexia in rats with heart failure. Circulation 104 (2001), 1430–1435.
-
(2001)
Circulation
, vol.104
, pp. 1430-1435
-
-
Nagaya, N.1
Uematsu, M.2
Kojima, M.3
Ikeda, Y.4
Yoshihara, F.5
Shimizu, W.6
-
18
-
-
0242383502
-
Effect of ghrelin and synthetic growth hormone secretagogues in normal and ischemic rat heart
-
[18] Frascarelli, S., Ghelardoni, S., Ronca-Testoni, S., Zucchi, R., Effect of ghrelin and synthetic growth hormone secretagogues in normal and ischemic rat heart. Basic Res. Cardiol. 98 (2003), 401–405.
-
(2003)
Basic Res. Cardiol.
, vol.98
, pp. 401-405
-
-
Frascarelli, S.1
Ghelardoni, S.2
Ronca-Testoni, S.3
Zucchi, R.4
-
19
-
-
77149180432
-
Association of plasma acylated ghrelin with blood pressure and left ventricular mass in patients with metabolic syndrome
-
[19] Rodriguez, A., Gomez-Ambrosi, J., Catalan, V., Becerril, S., Sainz, N., Gil, M.J., et al. Association of plasma acylated ghrelin with blood pressure and left ventricular mass in patients with metabolic syndrome. J. Hypertens. 28 (2010), 560–567.
-
(2010)
J. Hypertens.
, vol.28
, pp. 560-567
-
-
Rodriguez, A.1
Gomez-Ambrosi, J.2
Catalan, V.3
Becerril, S.4
Sainz, N.5
Gil, M.J.6
-
20
-
-
84927584661
-
Molecular mechanisms of autophagy in the cardiovascular system
-
[20] Gatica, D., Chiong, M., Lavandero, S., Klionsky, D.J., Molecular mechanisms of autophagy in the cardiovascular system. Circ. Res. 116 (2015), 456–467.
-
(2015)
Circ. Res.
, vol.116
, pp. 456-467
-
-
Gatica, D.1
Chiong, M.2
Lavandero, S.3
Klionsky, D.J.4
-
21
-
-
84976619544
-
Autophagy during cardiac remodeling
-
pii: S0022-2828(15)30142-5 Dec 8.
-
[21] Nishida, K., Otsu, K., Autophagy during cardiac remodeling. J. Mol. Cell Cardiol., 2015 Dec 8. pii: S0022-2828(15)30142-5.
-
(2015)
J. Mol. Cell Cardiol.
-
-
Nishida, K.1
Otsu, K.2
-
22
-
-
79959967420
-
The role of autophagy emerging in postinfarction cardiac remodelling
-
[22] Kanamori, H., Takemura, G., Goto, K., Maruyama, R., Tsujimoto, A., Ogino, A., et al. The role of autophagy emerging in postinfarction cardiac remodelling. Cardiovasc Res. 91 (2011), 330–339.
-
(2011)
Cardiovasc Res.
, vol.91
, pp. 330-339
-
-
Kanamori, H.1
Takemura, G.2
Goto, K.3
Maruyama, R.4
Tsujimoto, A.5
Ogino, A.6
-
23
-
-
79958071314
-
Autophagy limits acute myocardial infarction induced by permanent coronary artery occlusion
-
[23] Kanamori, H., Takemura, G., Goto, K., Maruyama, R., Ono, K., Nagao, K., et al. Autophagy limits acute myocardial infarction induced by permanent coronary artery occlusion. Am. J. Physiol. Heart Circ. Physiol. 300 (2011), H2261–H2271.
-
(2011)
Am. J. Physiol. Heart Circ. Physiol.
, vol.300
, pp. H2261-H2271
-
-
Kanamori, H.1
Takemura, G.2
Goto, K.3
Maruyama, R.4
Ono, K.5
Nagao, K.6
-
24
-
-
84874523611
-
Resveratrol reverses remodeling in hearts with large, old myocardial infarctions through enhanced autophagy-activating AMP kinase pathway
-
[24] Kanamori, H., Takemura, G., Goto, K., Tsujimoto, A., Ogino, A., Takeyama, T., et al. Resveratrol reverses remodeling in hearts with large, old myocardial infarctions through enhanced autophagy-activating AMP kinase pathway. Am. J. Pathol. 182 (2013), 701–713.
-
(2013)
Am. J. Pathol.
, vol.182
, pp. 701-713
-
-
Kanamori, H.1
Takemura, G.2
Goto, K.3
Tsujimoto, A.4
Ogino, A.5
Takeyama, T.6
-
25
-
-
64149124827
-
Adriamycin-induced autophagic cardiomyocyte death plays a pathogenic role in a rat model of heart failure
-
[25] Lu, L., Wu, W., Yan, J., Li, X., Yu, H., Yu, X., Adriamycin-induced autophagic cardiomyocyte death plays a pathogenic role in a rat model of heart failure. Int. J. Cardiol. 134 (2009), 82–90.
-
(2009)
Int. J. Cardiol.
, vol.134
, pp. 82-90
-
-
Lu, L.1
Wu, W.2
Yan, J.3
Li, X.4
Yu, H.5
Yu, X.6
-
26
-
-
84872586081
-
Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy
-
[26] Kim, J., Kim, Y.C., Fang, C., Russell, R.C., Kim, J.H., Fan, W., et al. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 152 (2013), 290–303.
-
(2013)
Cell
, vol.152
, pp. 290-303
-
-
Kim, J.1
Kim, Y.C.2
Fang, C.3
Russell, R.C.4
Kim, J.H.5
Fan, W.6
-
27
-
-
79959385996
-
Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice
-
[27] Xie, Z., Lau, K., Eby, B., Lozano, P., He, C., Pennington, B., et al. Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes 60 (2011), 1770–1778.
-
(2011)
Diabetes
, vol.60
, pp. 1770-1778
-
-
Xie, Z.1
Lau, K.2
Eby, B.3
Lozano, P.4
He, C.5
Pennington, B.6
-
28
-
-
84905014655
-
AMPK inhibits cardiac hypertrophy by promoting autophagy via mTORC1
-
[28] Li, Y., Chen, C., Yao, F., Su, Q., Liu, D., Xue, R., et al. AMPK inhibits cardiac hypertrophy by promoting autophagy via mTORC1. Arch. Biochem. Biophys. 558 (2014), 79–86.
-
(2014)
Arch. Biochem. Biophys.
, vol.558
, pp. 79-86
-
-
Li, Y.1
Chen, C.2
Yao, F.3
Su, Q.4
Liu, D.5
Xue, R.6
-
29
-
-
84894109257
-
Mammalian target of rapamycin signaling in cardiac physiology and disease
-
[29] Sciarretta, S., Volpe, M., Sadoshima, J., Mammalian target of rapamycin signaling in cardiac physiology and disease. Circ. Res. 114 (2014), 549–564.
-
(2014)
Circ. Res.
, vol.114
, pp. 549-564
-
-
Sciarretta, S.1
Volpe, M.2
Sadoshima, J.3
-
30
-
-
84894143655
-
Mammalian target of rapamycin (mTOR) inhibition with rapamycin improves cardiac function in type 2 diabetic mice: potential role of attenuated oxidative stress and altered contractile protein expression
-
[30] Das, A., Durrant, D., Koka, S., Salloum, F.N., Xi, L., Kukreja, R.C., Mammalian target of rapamycin (mTOR) inhibition with rapamycin improves cardiac function in type 2 diabetic mice: potential role of attenuated oxidative stress and altered contractile protein expression. J. Biol. Chem. 289 (2014), 4145–4160.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 4145-4160
-
-
Das, A.1
Durrant, D.2
Koka, S.3
Salloum, F.N.4
Xi, L.5
Kukreja, R.C.6
-
31
-
-
84900564532
-
Overexpression of microRNA-99a attenuates heart remodelling and improves cardiac performance after myocardial infarction
-
[31] Li, Q., Xie, J., Li, R., Shi, J., Sun, J., Gu, R., et al. Overexpression of microRNA-99a attenuates heart remodelling and improves cardiac performance after myocardial infarction. J. Cell Mol. Med. 18 (2014), 919–928.
-
(2014)
J. Cell Mol. Med.
, vol.18
, pp. 919-928
-
-
Li, Q.1
Xie, J.2
Li, R.3
Shi, J.4
Sun, J.5
Gu, R.6
-
32
-
-
84897116012
-
Ghrelin inhibits doxorubicin cardiotoxicity by inhibiting excessive autophagy through AMPK and p38-MAPK
-
[32] Wang, X., Wang, X.L., Chen, H.L., Wu, D., Chen, J.X., Wang, X.X., et al. Ghrelin inhibits doxorubicin cardiotoxicity by inhibiting excessive autophagy through AMPK and p38-MAPK. Biochem. Pharmacol. 88 (2014), 334–350.
-
(2014)
Biochem. Pharmacol.
, vol.88
, pp. 334-350
-
-
Wang, X.1
Wang, X.L.2
Chen, H.L.3
Wu, D.4
Chen, J.X.5
Wang, X.X.6
-
33
-
-
84931281543
-
AAV-mediated in vivo functional selection of tissue-protective factors against ischaemia
-
[33] Ruozi, G., Bortolotti, F., Falcione, A., Dal Ferro, M., Ukovich, L., Macedo, A., et al. AAV-mediated in vivo functional selection of tissue-protective factors against ischaemia. Nat. Commun., 6, 2015, 7388.
-
(2015)
Nat. Commun.
, vol.6
, pp. 7388
-
-
Ruozi, G.1
Bortolotti, F.2
Falcione, A.3
Dal Ferro, M.4
Ukovich, L.5
Macedo, A.6
-
34
-
-
84885436163
-
AMPK activity is down-regulated in endothelial cells of GHS-R(-/-) mice
-
[34] Zhang, M., Fang, W.Y., Qu, X.K., Yuan, F., Wang, W.G., Fei, J., et al. AMPK activity is down-regulated in endothelial cells of GHS-R(-/-) mice. Int. J. Clin. Exp. Pathol. 6 (2013), 1770–1780.
-
(2013)
Int. J. Clin. Exp. Pathol.
, vol.6
, pp. 1770-1780
-
-
Zhang, M.1
Fang, W.Y.2
Qu, X.K.3
Yuan, F.4
Wang, W.G.5
Fei, J.6
-
35
-
-
42949146633
-
Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin
-
[35] Lopez, M., Lage, R., Saha, A.K., Perez-Tilve, D., Vazquez, M.J., Varela, L., et al. Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. Cell Metab. 7 (2008), 389–399.
-
(2008)
Cell Metab.
, vol.7
, pp. 389-399
-
-
Lopez, M.1
Lage, R.2
Saha, A.K.3
Perez-Tilve, D.4
Vazquez, M.J.5
Varela, L.6
-
36
-
-
84863393597
-
Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis
-
[36] He, C., Bassik, M.C., Moresi, V., Sun, K., Wei, Y., Zou, Z., et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 481 (2012), 511–515.
-
(2012)
Nature
, vol.481
, pp. 511-515
-
-
He, C.1
Bassik, M.C.2
Moresi, V.3
Sun, K.4
Wei, Y.5
Zou, Z.6
-
37
-
-
84875450015
-
Dissociation of Bcl-2-Beclin1 complex by activated AMPK enhances cardiac autophagy and protects against cardiomyocyte apoptosis in diabetes
-
[37] He, C., Zhu, H., Li, H., Zou, M.H., Xie, Z., Dissociation of Bcl-2-Beclin1 complex by activated AMPK enhances cardiac autophagy and protects against cardiomyocyte apoptosis in diabetes. Diabetes 62 (2013), 1270–1281.
-
(2013)
Diabetes
, vol.62
, pp. 1270-1281
-
-
He, C.1
Zhu, H.2
Li, H.3
Zou, M.H.4
Xie, Z.5
-
38
-
-
84887495190
-
Mst1 inhibits autophagy by promoting the interaction between Beclin1 and Bcl-2
-
[38] Maejima, Y., Kyoi, S., Zhai, P., Liu, T., Li, H., Ivessa, A., et al. Mst1 inhibits autophagy by promoting the interaction between Beclin1 and Bcl-2. Nat. Med. 19 (2013), 1478–1488.
-
(2013)
Nat. Med.
, vol.19
, pp. 1478-1488
-
-
Maejima, Y.1
Kyoi, S.2
Zhai, P.3
Liu, T.4
Li, H.5
Ivessa, A.6
-
39
-
-
84860705893
-
Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure
-
[39] Oka, T., Hikoso, S., Yamaguchi, O., Taneike, M., Takeda, T., Tamai, T., et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 485 (2012), 251–255.
-
(2012)
Nature
, vol.485
, pp. 251-255
-
-
Oka, T.1
Hikoso, S.2
Yamaguchi, O.3
Taneike, M.4
Takeda, T.5
Tamai, T.6
-
40
-
-
68949167649
-
A novel peptide ghrelin inhibits neural remodeling after myocardial infarction in rats
-
[40] Yuan, M.J., Huang, C.X., Tang, Y.H., Wang, X., Huang, H., Chen, Y.J., et al. A novel peptide ghrelin inhibits neural remodeling after myocardial infarction in rats. Eur. J. Pharmacol. 618 (2009), 52–57.
-
(2009)
Eur. J. Pharmacol.
, vol.618
, pp. 52-57
-
-
Yuan, M.J.1
Huang, C.X.2
Tang, Y.H.3
Wang, X.4
Huang, H.5
Chen, Y.J.6
|