-
2
-
-
0024220237
-
Auto-association by multilayer perceptrons and singular value decomposition
-
1, 7
-
H. Bourlard and Y. Kamp. Auto-association by multilayer perceptrons and singular value decomposition. Biological cybernetics, 59(4-5):291-294, 1988. 1, 7
-
(1988)
Biological Cybernetics
, vol.59
, Issue.4-5
, pp. 291-294
-
-
Bourlard, H.1
Kamp, Y.2
-
3
-
-
0039253819
-
Lof: Identifying density-based local outliers
-
1, 2, 7
-
M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof: identifying density-based local outliers. In International Conference on Management of Data, 2000. 1, 2, 7
-
(2000)
International Conference on Management of Data
-
-
Breunig, M.M.1
Kriegel, H.-P.2
Ng, R.T.3
Sander, J.4
-
5
-
-
84898803720
-
Neil: Extracting visual knowledge from web data
-
1
-
X. Chen, A. Shrivastava, and A. Gupta. Neil: Extracting visual knowledge from web data. In ICCV, 2013. 1
-
(2013)
ICCV
-
-
Chen, X.1
Shrivastava, A.2
Gupta, A.3
-
6
-
-
0009900351
-
Anomaly detection over noisy data using learned probability distributions
-
1, 2
-
E. Eskin. Anomaly detection over noisy data using learned probability distributions. In ICML, 2000. 1, 2
-
(2000)
ICML
-
-
Eskin, E.1
-
7
-
-
84968873510
-
A geometric framework for unsupervised anomaly detection
-
1, 2 Springer
-
E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo. A geometric framework for unsupervised anomaly detection. In Applications of data mining in computer security. Springer, 2002. 1, 2
-
(2002)
Applications of Data Mining in Computer Security
-
-
Eskin, E.1
Arnold, A.2
Prerau, M.3
Portnoy, L.4
Stolfo, S.5
-
8
-
-
84932617705
-
Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
-
6
-
L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories. In CVPR, 2004. 6
-
(2004)
CVPR
-
-
Fei-Fei, L.1
Fergus, R.2
Perona, P.3
-
9
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
6, 8
-
G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 2006. 6, 8
-
(2006)
Science
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
12
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
3, 7
-
A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012. 3, 7
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.3
-
14
-
-
84911442644
-
Unsupervised one-class learning for automatic outlier removal
-
1, 2, 6, 7, 8
-
W. Liu, G. Hua, and J. R. Smith. Unsupervised one-class learning for automatic outlier removal. In CVPR, 2014. 1, 2, 6, 7, 8
-
(2014)
CVPR
-
-
Liu, W.1
Hua, G.2
Smith, J.R.3
-
16
-
-
33847410597
-
One-class document classification via neural networks
-
1, 2
-
L. Manevitz and M. Yousef. One-class document classification via neural networks. Neurocomputing, 2007. 1, 2
-
(2007)
Neurocomputing
-
-
Manevitz, L.1
Yousef, M.2
-
17
-
-
0039845384
-
Efficient algorithms for mining outliers from large data sets
-
1, 2
-
S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining outliers from large data sets. In ACM SIGMOD Record, 2000. 1, 2
-
(2000)
ACM SIGMOD Record
-
-
Ramaswamy, S.1
Rastogi, R.2
Shim, K.3
-
19
-
-
84909978410
-
-
3, 6 arXiv:1409. 0575
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge. ArXiv:1409. 0575, 2014. 3, 6
-
(2014)
Imagenet Large Scale Visual Recognition Challenge
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
-
21
-
-
0000487102
-
Estimating the support of a highdimensional distribution
-
2, 7
-
B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimating the support of a highdimensional distribution. Neural computation, 2001. 2, 7
-
(2001)
Neural Computation
-
-
Schölkopf, B.1
Platt, J.C.2
Shawe-Taylor, J.3
Smola, A.J.4
Williamson, R.C.5
-
24
-
-
77955996870
-
Locality-constrained linear coding for image classification
-
7
-
J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained linear coding for image classification. In CVPR, pages 3360-3367, 2010. 7
-
(2010)
CVPR
, pp. 3360-3367
-
-
Wang, J.1
Yang, J.2
Yu, K.3
Lv, F.4
Huang, T.5
Gong, Y.6
-
25
-
-
84951972106
-
Well begun is half done: Generating high-quality seeds for automatic image dataset construction from web
-
1, 6, 7
-
Y. Xia, X. Cao, F. Wen, and J. Sun. Well begun is half done: generating high-quality seeds for automatic image dataset construction from web. In ECCV, 2014. 1, 6, 7
-
(2014)
ECCV
-
-
Xia, Y.1
Cao, X.2
Wen, F.3
Sun, J.4
-
26
-
-
84871742039
-
Outlier-robust PCA: The high-dimensional case
-
1, 2
-
H. Xu, C. Caramanis, and S. Mannor. Outlier-robust PCA: The high-dimensional case. Information Theory, IEEE Transactions on, 2013. 1, 2
-
(2013)
Information Theory, IEEE Transactions on
-
-
Xu, H.1
Caramanis, C.2
Mannor, S.3
-
27
-
-
0034592923
-
On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms
-
1, 2
-
K. Yamanishi, J.-I. Takeuchi, G. J. Williams, and P. Milne. On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms. In Knowledge Discovery and Data Mining, 2000. 1, 2
-
(2000)
Knowledge Discovery and Data Mining
-
-
Yamanishi, K.1
Takeuchi, J.-I.2
Williams, G.J.3
Milne, P.4
|