-
1
-
-
84908488240
-
-
Autoencoders and Sparsity. [Online; accessed 10-August
-
UFLDL Tutorial. http://ufldl.stanford.edu/wiki/index.php/Autoencoders and Sparsity. [Online; accessed 10-August-2014].
-
(2014)
UFLDL Tutorial
-
-
-
2
-
-
68049121093
-
Anomaly detection: A survey
-
July
-
V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM Computing Surveys, 41(3):1-58, July 2009.
-
(2009)
ACM Computing Surveys
, vol.41
, Issue.3
, pp. 1-58
-
-
Chandola, V.1
Banerjee, A.2
Kumar, V.3
-
3
-
-
84864859588
-
Outlier detection using replicator neural networks
-
S. Hawkins, H. He, G. Williams, and R. Baxter. Outlier detection using replicator neural networks. In Proceedings of the Fifth International Conference and Data Warehousing and Knowledge Discovery, pages 170-180, 2002.
-
(2002)
Proceedings of the Fifth International Conference and Data Warehousing and Knowledge Discovery
, pp. 170-180
-
-
Hawkins, S.1
He, H.2
Williams, G.3
Baxter, R.4
-
4
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, 2006.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
5
-
-
33750522220
-
Kernel pca for novelty detection
-
H. Hoffmann. Kernel pca for novelty detection. Pattern Recognition, 40(3):863-874, 2007.
-
(2007)
Pattern Recognition
, vol.40
, Issue.3
, pp. 863-874
-
-
Hoffmann, H.1
-
7
-
-
0001201703
-
A novelty detection approach to classification
-
N. Japkowicz, C. Myers, and M. Gluck. A novelty detection approach to classification. In Proceedings of the 14th International Joint Conference on Artificial Intelligence, volume 1, pages 518-523, 1995.
-
(1995)
Proceedings of the 14th International Joint Conference on Artificial Intelligence
, vol.1
, pp. 518-523
-
-
Japkowicz, N.1
Myers, C.2
Gluck, M.3
-
8
-
-
0026113980
-
Nonlinear principal component analysis using autoassociative neural networks
-
M. A. Kramer. Nonlinear principal component analysis using autoassociative neural networks. AIChE J., 37(2):233-243, 1991.
-
(1991)
AIChE J.
, vol.37
, Issue.2
, pp. 233-243
-
-
Kramer, M.A.1
-
9
-
-
35048861836
-
Electric power system anomaly detection using neural networks
-
M. Martinelli, E. Tronci, G. Dipoppa, and C. Balducelli. Electric power system anomaly detection using neural networks. In Knowledge-Based Intelligent Information and Engineering Systems, volume 3213 of Lecture Notes in Computer Science, pages 1242-1248. 2004.
-
(2004)
Knowledge-Based Intelligent Information and Engineering Systems, Volume 3213 of Lecture Notes in Computer Science
, pp. 1242-1248
-
-
Martinelli, M.1
Tronci, E.2
Dipoppa, G.3
Balducelli, C.4
-
11
-
-
0031378156
-
A novelty detection approach to diagnose damage in a cracked beam
-
C. Surace, K. Worden, and G. Tomlinson. A novelty detection approach to diagnose damage in a cracked beam. In Proceedings of SPIE, pages 947-953, 1997.
-
(1997)
Proceedings of SPIE
, pp. 947-953
-
-
Surace, C.1
Worden, K.2
Tomlinson, G.3
-
12
-
-
0036079885
-
Implicit learning in autoencoder novelty assessment
-
B. Thompson, R. Marks, J. Choi, M. El-Sharkawi, M.-Y. Huang, and C. Bunje. Implicit learning in autoencoder novelty assessment. In Proceedings of the 2002 International Joint Conference on Neural Networks, volume 3, pages 2878-2883, 2002.
-
(2002)
Proceedings of the 2002 International Joint Conference on Neural Networks
, vol.3
, pp. 2878-2883
-
-
Thompson, B.1
Marks, R.2
Choi, J.3
El-Sharkawi, M.4
Huang, M.-Y.5
Bunje, C.6
-
13
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust features with denoising autoencoders. In Proceedings of the 25th International Conference on Machine Learning, pages 1096-1103, 2008.
-
(2008)
Proceedings of the 25th International Conference on Machine Learning
, pp. 1096-1103
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.-A.4
-
14
-
-
79551480483
-
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
-
Dec.
-
P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. Journal of Machine Learning Research, 11:3371-3408, Dec. 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.-A.5
-
15
-
-
27144452309
-
A comparative study of rnn for outlier detection in data mining
-
G. Williams, R. Baxter, H. He, S. Hawkins, and L. Gu. A comparative study of rnn for outlier detection in data mining. In Proceedings of the International Conference on Data Mining, page 709, 2002.
-
(2002)
Proceedings of the International Conference on Data Mining
, pp. 709
-
-
Williams, G.1
Baxter, R.2
He, H.3
Hawkins, S.4
Gu, L.5
-
16
-
-
78649305969
-
Spacecraft telemetry data monitoring by dimensionality reduction techniques
-
Aug.
-
T. Yairi, M. Inui, A. Yoshiki, Y. Kawahara, and N. Takata. Spacecraft telemetry data monitoring by dimensionality reduction techniques. In Proceedings of SICE Annual Conference, pages 1230-1234, Aug 2010.
-
(2010)
Proceedings of SICE Annual Conference
, pp. 1230-1234
-
-
Yairi, T.1
Inui, M.2
Yoshiki, A.3
Kawahara, Y.4
Takata, N.5
|