메뉴 건너뛰기




Volumn 02-December-2014, Issue , 2014, Pages 4-11

Anomaly detection using autoencoders with nonlinear dimensionality reduction

Author keywords

Anomaly detection; Auto assosiative neural network; Autoencoder; Denoising autoencoder; Dimensionality reduction; Fault detection; Nonlinear; Novelty detection; Spacecrafts

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPLEX NETWORKS; DATA HANDLING; DATA REDUCTION; FAULT DETECTION; INFORMATION ANALYSIS; NONLINEAR ANALYSIS; SENSORY ANALYSIS; SIGNAL DETECTION; SPACECRAFT;

EID: 84985930709     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2689746.2689747     Document Type: Conference Paper
Times cited : (931)

References (17)
  • 1
    • 84908488240 scopus 로고    scopus 로고
    • Autoencoders and Sparsity. [Online; accessed 10-August
    • UFLDL Tutorial. http://ufldl.stanford.edu/wiki/index.php/Autoencoders and Sparsity. [Online; accessed 10-August-2014].
    • (2014) UFLDL Tutorial
  • 4
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 5
    • 33750522220 scopus 로고    scopus 로고
    • Kernel pca for novelty detection
    • H. Hoffmann. Kernel pca for novelty detection. Pattern Recognition, 40(3):863-874, 2007.
    • (2007) Pattern Recognition , vol.40 , Issue.3 , pp. 863-874
    • Hoffmann, H.1
  • 8
    • 0026113980 scopus 로고
    • Nonlinear principal component analysis using autoassociative neural networks
    • M. A. Kramer. Nonlinear principal component analysis using autoassociative neural networks. AIChE J., 37(2):233-243, 1991.
    • (1991) AIChE J. , vol.37 , Issue.2 , pp. 233-243
    • Kramer, M.A.1
  • 11
    • 0031378156 scopus 로고    scopus 로고
    • A novelty detection approach to diagnose damage in a cracked beam
    • C. Surace, K. Worden, and G. Tomlinson. A novelty detection approach to diagnose damage in a cracked beam. In Proceedings of SPIE, pages 947-953, 1997.
    • (1997) Proceedings of SPIE , pp. 947-953
    • Surace, C.1    Worden, K.2    Tomlinson, G.3
  • 14
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Dec.
    • P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. Journal of Machine Learning Research, 11:3371-3408, Dec. 2010.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.