메뉴 건너뛰기




Volumn 1, Issue 1-2, 2012, Pages 3-17

Data simulation and regulatory network reconstruction from time-series microarray data using stepwise multiple linear regression

Author keywords

[No Author keywords available]

Indexed keywords

MESSENGER RNA;

EID: 84973888485     PISSN: None     EISSN: 21926670     Source Type: Journal    
DOI: 10.1007/s13721-012-0008-4     Document Type: Article
Times cited : (13)

References (53)
  • 1
    • 0034954376 scopus 로고    scopus 로고
    • Aligning gene expression time series with time warping algorithms
    • Aach J, Church GM (2001) Aligning gene expression time series with time warping algorithms. Bioinformatics 17(6): 495-508.
    • (2001) Bioinformatics , vol.17 , Issue.6 , pp. 495-508
    • Aach, J.1    Church, G.M.2
  • 2
    • 33845242234 scopus 로고    scopus 로고
    • Asymptotical lower limits on required number of examples for learning Boolean networks computer and information sciences
    • In: Levi A, Savas E, Yenigün H, Balcisoy S, Saygin Y (eds), Springer, Berlin
    • Abul O, Alhajj R, Polat F (2006) Asymptotical lower limits on required number of examples for learning Boolean networks computer and information sciences. In: Levi A, Savas E, Yenigün H, Balcisoy S, Saygin Y (eds) ISCIS 2006, Springer, Berlin, vol 4263, pp 154-164.
    • (2006) ISCIS 2006 , vol.4263 , pp. 154-164
    • Abul, O.1    Alhajj, R.2    Polat, F.3
  • 4
    • 55249119797 scopus 로고    scopus 로고
    • Heuristic approach to sparse approximation of gene regulatory networks
    • Andrecut M, Huang S, Kauffman SA (2008) Heuristic approach to sparse approximation of gene regulatory networks. J Comput Biol 15(9): 1173-1186.
    • (2008) J Comput Biol , vol.15 , Issue.9 , pp. 1173-1186
    • Andrecut, M.1    Huang, S.2    Kauffman, S.A.3
  • 5
    • 33645307955 scopus 로고    scopus 로고
    • Inference of gene regulatory networks and compound mode of action from time course gene expression profiles
    • Bansal M, Della Gatta G, di Bernardo D (2006) Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics 22(7): 815-822.
    • (2006) Bioinformatics , vol.22 , Issue.7 , pp. 815-822
    • Bansal, M.1    della Gatta, G.2    di Bernardo, D.3
  • 7
    • 0042838381 scopus 로고    scopus 로고
    • Comparing the continuous representation of time-series expression profiles to identify differentially expressed genes
    • Bar-Joseph Z, Gerber G, Simon I, Gifford DK, Jaakkola TS (2003b) Comparing the continuous representation of time-series expression profiles to identify differentially expressed genes. Proc Natl Acad Sci 100(18): 10146-10151.
    • (2003) Proc Natl Acad Sci , vol.100 , Issue.18 , pp. 10146-10151
    • Bar-Joseph, Z.1    Gerber, G.2    Simon, I.3    Gifford, D.K.4    Jaakkola, T.S.5
  • 9
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: a practical and powerful approach to multiple testing
    • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc: Ser B (Methodol) 57(1): 289-300.
    • (1995) J R Stat Soc: Ser B (Methodol) , vol.57 , Issue.1 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 11
    • 0032611513 scopus 로고    scopus 로고
    • Modeling gene expression with differential equations
    • Chen T, He HL, Church GM (1999) Modeling gene expression with differential equations. Pac Symp Biocomput 1999: 29-40.
    • (1999) Pac Symp Biocomput , vol.1999 , pp. 29-40
    • Chen, T.1    He, H.L.2    Church, G.M.3
  • 16
    • 74549174585 scopus 로고    scopus 로고
    • DNA microarrays are predictive of cancer prognosis: a re-evaluation
    • Fan X, Shi L, Fang H, Cheng Y, Perkins R, Tong W (2010) DNA microarrays are predictive of cancer prognosis: a re-evaluation. Clin Cancer Res 16(2): 629-636.
    • (2010) Clin Cancer Res , vol.16 , Issue.2 , pp. 629-636
    • Fan, X.1    Shi, L.2    Fang, H.3    Cheng, Y.4    Perkins, R.5    Tong, W.6
  • 17
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • Friedman N, Linial M, Nachman I, Pe'er D (2000) Using Bayesian networks to analyze expression data. J Comput Biol 7(3-4): 601-620.
    • (2000) J Comput Biol , vol.7 , Issue.3-4 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'er, D.4
  • 18
    • 14844286390 scopus 로고    scopus 로고
    • Reverse-engineering transcription control networks
    • Gardner TS, Faith JJ (2005) Reverse-engineering transcription control networks. Phys Life Rev 2(1): 65-88.
    • (2005) Phys Life Rev , vol.2 , Issue.1 , pp. 65-88
    • Gardner, T.S.1    Faith, J.J.2
  • 19
    • 0038048325 scopus 로고    scopus 로고
    • Inferring genetic networks and identifying compound mode of action via expression profiling
    • Gardner TS, di Bernardo D, Lorenz D, Collins JJ (2003) Inferring genetic networks and identifying compound mode of action via expression profiling. Science 301(5629): 102-105.
    • (2003) Science , vol.301 , Issue.5629 , pp. 102-105
    • Gardner, T.S.1    di Bernardo, D.2    Lorenz, D.3    Collins, J.J.4
  • 20
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: class discovery and class prediction by gene expression
    • Golub TR, Slonim DK (1999) Molecular classification of cancer: class discovery and class prediction by gene expression. Science 286(5439): 531.
    • (1999) Science , vol.286 , Issue.5439 , pp. 531
    • Golub, T.R.1    Slonim, D.K.2
  • 21
    • 0036578654 scopus 로고    scopus 로고
    • Topological and causal structure of the yeast transcriptional regulatory network
    • Guelzim N, Bottani S, Bourgine P, Kepes F (2002) Topological and causal structure of the yeast transcriptional regulatory network. Nat Genet 31(1): 60-63.
    • (2002) Nat Genet , vol.31 , Issue.1 , pp. 60-63
    • Guelzim, N.1    Bottani, S.2    Bourgine, P.3    Kepes, F.4
  • 23
    • 0035221560 scopus 로고    scopus 로고
    • Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks
    • Hartemink AJ, Gifford DK, Jaakkola TS, Young RA (2001) Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. Pac Symp Biocomput 2001: 422-433.
    • (2001) Pac Symp Biocomput , vol.2001 , pp. 422-433
    • Hartemink, A.J.1    Gifford, D.K.2    Jaakkola, T.S.3    Young, R.A.4
  • 24
    • 61349180117 scopus 로고    scopus 로고
    • Gene regulatory network inference: data integration in dynamic models-a review
    • Hecker M, Lambeck S, Toepfer S, van Someren E, Guthke R (2009) Gene regulatory network inference: data integration in dynamic models-a review. Biosystems 96(1): 86-103.
    • (2009) Biosystems , vol.96 , Issue.1 , pp. 86-103
    • Hecker, M.1    Lambeck, S.2    Toepfer, S.3    van Someren, E.4    Guthke, R.5
  • 25
    • 84942484786 scopus 로고
    • Ridge regression: biased estimation for nonorthogonal problems
    • Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1): 55-67.
    • (1970) Technometrics , vol.12 , Issue.1 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 26
    • 33747344944 scopus 로고    scopus 로고
    • Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data
    • Jeffery IB, Higgins DG, Culhane AC (2006) Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data. BMC Bioinformatics 7: 359.
    • (2006) BMC Bioinformatics , vol.7 , pp. 359
    • Jeffery, I.B.1    Higgins, D.G.2    Culhane, A.C.3
  • 27
    • 0033982936 scopus 로고    scopus 로고
    • KEGG: Kyoto encyclopedia of genes and genomes
    • Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1): 27-30.
    • (2000) Nucleic Acids Res , vol.28 , Issue.1 , pp. 27-30
    • Kanehisa, M.1    Goto, S.2
  • 28
    • 0014489272 scopus 로고
    • Metabolic stability and epigenesis in randomly constructed genetic nets
    • Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22(3): 437-467.
    • (1969) J Theor Biol , vol.22 , Issue.3 , pp. 437-467
    • Kauffman, S.A.1
  • 29
    • 33747888038 scopus 로고    scopus 로고
    • Mean-field model of genetic regulatory networks
    • Andrecut MA, Kauffman SA (2006) Mean-field model of genetic regulatory networks. New J Phys 8(148).
    • (2006) New J Phys , vol.8 , Issue.148
    • Andrecut, M.A.1    Kauffman, S.A.2
  • 30
    • 0842309206 scopus 로고    scopus 로고
    • Inferring gene networks from time series microarray data using dynamic Bayesian networks
    • Kim SY, Imoto S, Miyano S (2003) Inferring gene networks from time series microarray data using dynamic Bayesian networks. Brief Bioinformatics 4(3): 228-235.
    • (2003) Brief Bioinformatics , vol.4 , Issue.3 , pp. 228-235
    • Kim, S.Y.1    Imoto, S.2    Miyano, S.3
  • 31
    • 3042738945 scopus 로고    scopus 로고
    • Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data
    • Kim S, Imoto S, Miyano S (2004) Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Biosystems 75(1-3): 57-65.
    • (2004) Biosystems , vol.75 , Issue.1-3 , pp. 57-65
    • Kim, S.1    Imoto, S.2    Miyano, S.3
  • 32
    • 85162673553 scopus 로고
    • The kernel algorithm for PLS
    • Lindgren F, Geladi P, Wold S (1993) The kernel algorithm for PLS. J Chemom 7(1): 45-59.
    • (1993) J Chemom , vol.7 , Issue.1 , pp. 45-59
    • Lindgren, F.1    Geladi, P.2    Wold, S.3
  • 33
    • 4644326931 scopus 로고    scopus 로고
    • Genomic analysis of regulatory network dynamics reveals large topological changes
    • Luscombe NM, Madan Babu M, Yu H, Snyder M, Teichmann SA, Gerstein M (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431(7006): 308-312.
    • (2004) Nature , vol.431 , Issue.7006 , pp. 308-312
    • Luscombe, N.M.1    Madan Babu, M.2    Yu, H.3    Snyder, M.4    Teichmann, S.A.5    Gerstein, M.6
  • 36
    • 84952505343 scopus 로고
    • Ridge regression in practice
    • Marquardt DW, Snee RD (1975) Ridge regression in practice. Am Stat 29(1): 3-20.
    • (1975) Am Stat , vol.29 , Issue.1 , pp. 3-20
    • Marquardt, D.W.1    Snee, R.D.2
  • 37
    • 0037590376 scopus 로고    scopus 로고
    • The limit fold change model: a practical approach for selecting differentially expressed genes from microarray data
    • Mutch DM, Berger A, Mansourian R, Rytz A, Roberts MA (2002) The limit fold change model: a practical approach for selecting differentially expressed genes from microarray data. BMC Bioinformatics 3: 17.
    • (2002) BMC Bioinformatics , vol.3 , pp. 17
    • Mutch, D.M.1    Berger, A.2    Mansourian, R.3    Rytz, A.4    Roberts, M.A.5
  • 38
    • 14844307159 scopus 로고    scopus 로고
    • Inferring quantitative models of regulatory networks from expression data
    • Nachman I, Regev A, Friedman N (2004) Inferring quantitative models of regulatory networks from expression data. Bioinformatics 20(Suppl 1): i248-i256.
    • (2004) Bioinformatics , vol.20 , Issue.SUPPL. 1
    • Nachman, I.1    Regev, A.2    Friedman, N.3
  • 39
    • 34848903220 scopus 로고    scopus 로고
    • From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data
    • Opgen-Rhein R, Strimmer K (2007) From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Syst Biol 1(1): 37.
    • (2007) BMC Syst Biol , vol.1 , Issue.1 , pp. 37
    • Opgen-Rhein, R.1    Strimmer, K.2
  • 40
    • 0036898577 scopus 로고    scopus 로고
    • Microarray data normalization and transformation
    • Quackenbush J (2002) Microarray data normalization and transformation. Nat Genet 32(Suppl): 496-501.
    • (2002) Nat Genet , vol.32 , Issue.SUPPL. , pp. 496-501
    • Quackenbush, J.1
  • 42
    • 0034863951 scopus 로고    scopus 로고
    • Inferring a system of differential equations for a gene regulatory network by using genetic programming
    • Sakamoto E, Iba H (2001) Inferring a system of differential equations for a gene regulatory network by using genetic programming. In: Proceedings of the 2001 congress on evolutionary computation, 2001, vol 721, pp 720-726.
    • (2001) Proceedings of the 2001 congress on evolutionary computation, 2001 , vol.721 , pp. 720-726
    • Sakamoto, E.1    Iba, H.2
  • 43
    • 0037941585 scopus 로고    scopus 로고
    • Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data
    • Segal E, Shapira M, Regev A, Pe'er D, Botstein D, Koller D, Friedman N (2003) Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 34(2): 166-176.
    • (2003) Nat Genet , vol.34 , Issue.2 , pp. 166-176
    • Segal, E.1    Shapira, M.2    Regev, A.3    Pe'er, D.4    Botstein, D.5    Koller, D.6    Friedman, N.7
  • 45
    • 0141993704 scopus 로고    scopus 로고
    • A gene-coexpression network for global discovery of conserved genetic modules
    • Stuart JM, Segal E, Koller D, Kim SK (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302(5643): 249-255.
    • (2003) Science , vol.302 , Issue.5643 , pp. 249-255
    • Stuart, J.M.1    Segal, E.2    Koller, D.3    Kim, S.K.4
  • 46
    • 0032077377 scopus 로고    scopus 로고
    • From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli
    • Thieffry D, Huerta AM, Pérez-Rueda E, Collado-Vides J (1998) From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. BioEssays 20(5): 433-440.
    • (1998) BioEssays , vol.20 , Issue.5 , pp. 433-440
    • Thieffry, D.1    Huerta, A.M.2    Pérez-Rueda, E.3    Collado-Vides, J.4
  • 47
    • 0035942271 scopus 로고    scopus 로고
    • Significance analysis of microarrays applied to the ionizing radiation response
    • Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98(9): 5116-5121.
    • (2001) Proc Natl Acad Sci USA , vol.98 , Issue.9 , pp. 5116-5121
    • Tusher, V.G.1    Tibshirani, R.2    Chu, G.3
  • 50
  • 51
    • 24344476314 scopus 로고    scopus 로고
    • Learning more from microarrays: insights from modules and networks
    • Wong DJ, Chang HY (2005) Learning more from microarrays: insights from modules and networks. J Investig Dermatol 125(2): 175-182.
    • (2005) J Investig Dermatol , vol.125 , Issue.2 , pp. 175-182
    • Wong, D.J.1    Chang, H.Y.2
  • 52
    • 84862749354 scopus 로고    scopus 로고
    • Gene regulatory network reconstruction based on gene expression and transcription factor activities
    • Yao F, Jarboe LR, Dickerson JA (2010) Gene regulatory network reconstruction based on gene expression and transcription factor activities. In: BIOCOMP: 2010, pp 113-119.
    • (2010) BIOCOMP: 2010 , pp. 113-119
    • Yao, F.1    Jarboe, L.R.2    Dickerson, J.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.