메뉴 건너뛰기




Volumn 2, Issue January, 2014, Pages 1125-1133

Learning from weakly supervised data by the expectation loss SVM (e-SVM) algorithm

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; COMPUTER VISION; IMAGE SEGMENTATION; INFORMATION SCIENCE; OBJECT DETECTION; OBJECT RECOGNITION; SEMANTICS;

EID: 84937851238     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (26)

References (28)
  • 1
    • 84866657764 scopus 로고    scopus 로고
    • SLIC superpixels compared to state-of-the-art superpixel methods
    • R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk. SLIC superpixels compared to state-of-the-art superpixel methods. TPAMI, 34(11): 2274-2282, 2012.
    • (2012) TPAMI , vol.34 , Issue.11 , pp. 2274-2282
    • Achanta, R.1    Shaji, A.2    Smith, K.3    Lucchi, A.4    Fua, P.5    Susstrunk, S.6
  • 4
    • 84861335581 scopus 로고    scopus 로고
    • Cpmc: Automatic object segmentation using constrained parametric min-cuts
    • J. Carreira and C. Sminchisescu. Cpmc: Automatic object segmentation using constrained parametric min-cuts. TPAMI, 34(7): 1312-1328, 2012.
    • (2012) TPAMI , vol.34 , Issue.7 , pp. 1312-1328
    • Carreira, J.1    Sminchisescu, C.2
  • 5
  • 7
    • 0030649484 scopus 로고    scopus 로고
    • Solving the multiple instance problem with axis-parallel rectangles
    • Jan.
    • T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez. Solving the multiple instance problem with axis-parallel rectangles. Artif. Intell., 89(1-2): 31-71, Jan. 1997.
    • (1997) Artif. Intell. , vol.89 , Issue.1-2 , pp. 31-71
    • Dietterich, T.G.1    Lathrop, R.H.2    Lozano-Pérez, T.3
  • 10
    • 50949133669 scopus 로고    scopus 로고
    • LIBLINEAR: A library for large linear classification
    • R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for large linear classification. JMLR, 9: 1871-1874, 2008.
    • (2008) JMLR , vol.9 , pp. 1871-1874
    • Fan, R.-E.1    Chang, K.-W.2    Hsieh, C.-J.3    Wang, X.-R.4    Lin, C.-J.5
  • 11
    • 77955422240 scopus 로고    scopus 로고
    • Object detection with discriminatively trained part-based models
    • P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part-based models. TPAMI, 32(9): 1627-1645, 2010.
    • (2010) TPAMI , vol.32 , Issue.9 , pp. 1627-1645
    • Felzenszwalb, P.F.1    Girshick, R.B.2    McAllester, D.3    Ramanan, D.4
  • 12
    • 9644254228 scopus 로고    scopus 로고
    • Efficient graph-based image segmentation
    • Sept.
    • P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-based image segmentation. IJCV, 59(2): 167-181, Sept. 2004.
    • (2004) IJCV , vol.59 , Issue.2 , pp. 167-181
    • Felzenszwalb, P.F.1    Huttenlocher, D.P.2
  • 13
    • 84887363550 scopus 로고    scopus 로고
    • Bottom-up segmentation for top-down detection
    • S. Fidler, R. Mottaghi, A. L. Yuille, and R. Urtasun. Bottom-up segmentation for top-down detection. In CVPR, pages 3294-3301, 2013.
    • (2013) CVPR , pp. 3294-3301
    • Fidler, S.1    Mottaghi, R.2    Yuille, A.L.3    Urtasun, R.4
  • 14
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 16
    • 1842637192 scopus 로고    scopus 로고
    • Cumulated gain-based evaluation of ir techniques
    • K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of ir techniques. TOIS, 20(4): 422-446, 2002.
    • (2002) TOIS , vol.20 , Issue.4 , pp. 422-446
    • Järvelin, K.1    Kekäläinen, J.2
  • 17
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, pages 1106-1114, 2012.
    • (2012) NIPS , pp. 1106-1114
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 18
    • 84896724050 scopus 로고    scopus 로고
    • Learning using privileged information: Svm+ and weighted svm
    • M. Lapin, M. Hein, and B. Schiele. Learning using privileged information: Svm+ and weighted svm. Neural Networks, 53: 95-108, 2014.
    • (2014) Neural Networks , vol.53 , pp. 95-108
    • Lapin, M.1    Hein, M.2    Schiele, B.3
  • 19
    • 77955990360 scopus 로고    scopus 로고
    • Object recognition as ranking holistic figure-ground hypotheses
    • F. Li, J. Carreira, and C. Sminchisescu. Object recognition as ranking holistic figure-ground hypotheses. In CVPR, pages 1712-1719, 2010.
    • (2010) CVPR , pp. 1712-1719
    • Li, F.1    Carreira, J.2    Sminchisescu, C.3
  • 20
    • 84887360062 scopus 로고    scopus 로고
    • Weakly-supervised dual clustering for image semantic segmentation
    • 2013 IEEE Conference on IEEE
    • Y. Liu, J. Liu, Z. Li, J. Tang, and H. Lu. Weakly-supervised dual clustering for image semantic segmentation. In Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, pages 2075-2082. IEEE, 2013.
    • (2013) Computer Vision and Pattern Recognition (CVPR) , pp. 2075-2082
    • Liu, Y.1    Liu, J.2    Li, Z.3    Tang, J.4    Lu, H.5
  • 21
    • 84857420364 scopus 로고    scopus 로고
    • Multi-instance methods for partially supervised image segmentation
    • A. Müller and S. Behnke. Multi-instance methods for partially supervised image segmentation. In PSL, pages 110-119, 2012.
    • (2012) PSL , pp. 110-119
    • Müller, A.1    Behnke, S.2
  • 22
    • 84866653395 scopus 로고    scopus 로고
    • Rgb-(d) scene labeling: Features and algorithms
    • June
    • X. Ren, L. Bo, and D. Fox. Rgb-(d) scene labeling: Features and algorithms. In CVPR, June 2012.
    • (2012) CVPR
    • Ren, X.1    Bo, L.2    Fox, D.3
  • 23
    • 51949114829 scopus 로고    scopus 로고
    • Semantic texton forests for image categorization and segmentation
    • J. Shotton, M. Johnson, and R. Cipolla. Semantic texton forests for image categorization and segmentation. In CVPR, pages 1-8, 2008.
    • (2008) CVPR , pp. 1-8
    • Shotton, J.1    Johnson, M.2    Cipolla, R.3
  • 24
    • 0036825528 scopus 로고    scopus 로고
    • Weighted least squares support vector machines: Robustness and sparse approximation
    • J. Suykens, J. D. Brabanter, L. Lukas, and J. Vandewalle. Weighted least squares support vector machines: robustness and sparse approximation. NEUROCOMPUTING, 48: 85-105, 2002.
    • (2002) NEUROCOMPUTING , vol.48 , pp. 85-105
    • Suykens, J.1    Brabanter, J.D.2    Lukas, L.3    Vandewalle, J.4
  • 25
    • 84881160857 scopus 로고    scopus 로고
    • Selective search for object recognition
    • J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders. Selective search for object recognition. IJCV, 104(2): 154-171, 2013.
    • (2013) IJCV , vol.104 , Issue.2 , pp. 154-171
    • Uijlings, J.1    Van De Sande, K.2    Gevers, T.3    Smeulders, A.4
  • 26
    • 84856194352 scopus 로고    scopus 로고
    • Efficient additive kernels via explicit feature maps
    • A. Vedaldi and A. Zisserman. Efficient additive kernels via explicit feature maps. TPAMI, 34(3): 480-492, 2012.
    • (2012) TPAMI , vol.34 , Issue.3 , pp. 480-492
    • Vedaldi, A.1    Zisserman, A.2
  • 27
    • 84856684049 scopus 로고    scopus 로고
    • Weakly supervised semantic segmentation with a multi image model
    • A. Vezhnevets, V. Ferrari, and J. Buhmann. Weakly supervised semantic segmentation with a multi image model. In ICCV, 2011.
    • (2011) ICCV
    • Vezhnevets, A.1    Ferrari, V.2    Buhmann, J.3
  • 28
    • 33745935185 scopus 로고    scopus 로고
    • Weighted support vector machine for data classification
    • X. Yang, Q. Song, and A. Cao. Weighted support vector machine for data classification. In IJCNN, 2005.
    • (2005) IJCNN
    • Yang, X.1    Song, Q.2    Cao, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.