-
1
-
-
84920426884
-
Autophagy and neurodegeneration
-
Frake, R. A., Ricketts, T., Menzies, F. M. & Rubinsztein, D. C. Autophagy and neurodegeneration. J. Clin. Invest. 125, 65-74 (2015).
-
(2015)
J. Clin. Invest.
, vol.125
, pp. 65-74
-
-
Frake, R.A.1
Ricketts, T.2
Menzies, F.M.3
Rubinsztein, D.C.4
-
2
-
-
79960961365
-
Clarifying lysosomal storage diseases
-
Schultz, M. L., Tecedor, L., Chang, M. & Davidson, B. L. Clarifying lysosomal storage diseases. Trends Neurosci. 34, 401-410 (2011).
-
(2011)
Trends Neurosci.
, vol.34
, pp. 401-410
-
-
Schultz, M.L.1
Tecedor, L.2
Chang, M.3
Davidson, B.L.4
-
3
-
-
84877351078
-
TFEB-mediated autophagy rescues midbrain dopamine neurons from alpha-synuclein toxicity
-
Decressac, M. et al. TFEB-mediated autophagy rescues midbrain dopamine neurons from alpha-synuclein toxicity. Proc. Natl Acad. Sci. USA 110, E1817-E1826 (2013).
-
(2013)
Proc. Natl Acad. Sci. USA
, vol.110
, pp. E1817-E1826
-
-
Decressac, M.1
-
4
-
-
77956855813
-
Pathogenic lysosomal depletion in Parkinson's disease
-
Dehay, B. et al. Pathogenic lysosomal depletion in Parkinson's disease. J. Neurosci. 30, 12535-12544 (2010).
-
(2010)
J. Neurosci.
, vol.30
, pp. 12535-12544
-
-
Dehay, B.1
-
5
-
-
84862189804
-
Loss of P-type ATPase ATP13A2/PARK9 function induces general lysosomal deficiency and leads to Parkinson disease neurodegeneration
-
Dehay, B. et al. Loss of P-type ATPase ATP13A2/PARK9 function induces general lysosomal deficiency and leads to Parkinson disease neurodegeneration. Proc. Natl Acad. Sci. USA 109, 9611-9616 (2012).
-
(2012)
Proc. Natl Acad. Sci. USA
, vol.109
, pp. 9611-9616
-
-
Dehay, B.1
-
6
-
-
79960836347
-
Pathogenic effects of novel mutations in the P-type ATPase ATP13A2 (PARK9) causing Kufor-Rakeb syndrome, a form of early-onset parkinsonism
-
Park, J. S. et al. Pathogenic effects of novel mutations in the P-type ATPase ATP13A2 (PARK9) causing Kufor-Rakeb syndrome, a form of early-onset parkinsonism. Hum. Mutat. 32, 956-964 (2011).
-
(2011)
Hum. Mutat.
, vol.32
, pp. 956-964
-
-
Park, J.S.1
-
7
-
-
33749133430
-
Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase
-
Ramirez, A. et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat. Genet. 38, 1184-1191 (2006).
-
(2006)
Nat. Genet.
, vol.38
, pp. 1184-1191
-
-
Ramirez, A.1
-
8
-
-
84858403126
-
Deficiency of ATP13A2 leads to lysosomal dysfunction, alpha-synuclein accumulation, and neurotoxicity
-
Usenovic, M., Tresse, E., Mazzulli, J. R., Taylor, J. P. & Krainc, D. Deficiency of ATP13A2 leads to lysosomal dysfunction, alpha-synuclein accumulation, and neurotoxicity. J. Neurosci. 32, 4240-4246 (2012).
-
(2012)
J. Neurosci.
, vol.32
, pp. 4240-4246
-
-
Usenovic, M.1
Tresse, E.2
Mazzulli, J.R.3
Taylor, J.P.4
Krainc, D.5
-
9
-
-
61349147706
-
Alpha-synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity
-
Gitler, A. D. et al. Alpha-synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nat. Genet. 41, 308-315 (2009).
-
(2009)
Nat. Genet.
, vol.41
, pp. 308-315
-
-
Gitler, A.D.1
-
10
-
-
84859339977
-
Comprehensive research synopsis and systematic meta-analyses in Parkinson's disease genetics: The PDGene database
-
Lill, C. M. et al. Comprehensive research synopsis and systematic meta-analyses in Parkinson's disease genetics: the PDGene database. PLoS Genet. 8, e1002548 (2012).
-
(2012)
PLoS Genet.
, vol.8
, pp. e1002548
-
-
Lill, C.M.1
-
11
-
-
79951811351
-
Imputation of sequence variants for identification of genetic risks for Parkinson's disease: A meta-analysis of genome-wide association studies
-
Nalls, M. A. et al. Imputation of sequence variants for identification of genetic risks for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet 377, 641-649 (2011).
-
(2011)
Lancet
, vol.377
, pp. 641-649
-
-
Nalls, M.A.1
-
12
-
-
84865196862
-
Large-scale replication and heterogeneity in Parkinson disease genetic loci
-
Sharma, M. et al. Large-scale replication and heterogeneity in Parkinson disease genetic loci. Neurology 79, 659-667 (2012).
-
(2012)
Neurology
, vol.79
, pp. 659-667
-
-
Sharma, M.1
-
13
-
-
84939599004
-
Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease
-
Nalls, M. A. et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease. Nat. Genet. 46, 989-993 (2014).
-
(2014)
Nat. Genet.
, vol.46
, pp. 989-993
-
-
Nalls, M.A.1
-
14
-
-
34247334943
-
Synaptotagmin XI as a candidate gene for susceptibility to schizophrenia
-
Inoue, S. et al. Synaptotagmin XI as a candidate gene for susceptibility to schizophrenia. Am. J. Med. Genet. B Neuropsychiatr. Genet. 144B, 332-340 (2007).
-
(2007)
Am. J. Med. Genet. B Neuropsychiatr. Genet.
, vol.144 B
, pp. 332-340
-
-
Inoue, S.1
-
15
-
-
84865064424
-
Identification of novel ATP13A2 interactors and their role in alpha-synuclein misfolding and toxicity
-
Usenovic, M. et al. Identification of novel ATP13A2 interactors and their role in alpha-synuclein misfolding and toxicity. Hum. Mol. Genet. 21, 3785-3794 (2012).
-
(2012)
Hum. Mol. Genet.
, vol.21
, pp. 3785-3794
-
-
Usenovic, M.1
-
16
-
-
84874769362
-
Calcium control of neurotransmitter release
-
Sudhof, T. C. Calcium control of neurotransmitter release. Cold Spring Harb. Perspect. Biol. 4, a011353 (2012).
-
(2012)
Cold Spring Harb. Perspect. Biol.
, vol.4
, pp. a011353
-
-
Sudhof, T.C.1
-
17
-
-
84873533456
-
Synaptotagmin XI regulates phagocytosis and cytokine secretion in macrophages
-
Arango Duque, G., Fukuda, M. & Descoteaux, A. Synaptotagmin XI regulates phagocytosis and cytokine secretion in macrophages. J. Immunol. 190, 1737-1745 (2013).
-
(2013)
J. Immunol.
, vol.190
, pp. 1737-1745
-
-
Arango Duque, G.1
Fukuda, M.2
Descoteaux, A.3
-
18
-
-
67749122634
-
A gene network regulating lysosomal biogenesis and function
-
Sardiello, M. et al. A gene network regulating lysosomal biogenesis and function. Science 325, 473-477 (2009).
-
(2009)
Science
, vol.325
, pp. 473-477
-
-
Sardiello, M.1
-
19
-
-
80052716148
-
Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways
-
Palmieri, M. et al. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum. Mol. Genet. 20, 3852-3866 (2011).
-
(2011)
Hum. Mol. Genet.
, vol.20
, pp. 3852-3866
-
-
Palmieri, M.1
-
20
-
-
84857997408
-
A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
-
Settembre, C. et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31, 1095-1108 (2012).
-
(2012)
EMBO J.
, vol.31
, pp. 1095-1108
-
-
Settembre, C.1
-
21
-
-
84874352229
-
Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes
-
Martina, J. A. & Puertollano, R. Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes. J. Cell. Biol. 200, 475-491 (2013).
-
(2013)
J. Cell. Biol.
, vol.200
, pp. 475-491
-
-
Martina, J.A.1
Puertollano, R.2
-
22
-
-
65549145048
-
An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1
-
Thoreen, C. C. et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J. Biol. Chem. 284, 8023-8032 (2009).
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 8023-8032
-
-
Thoreen, C.C.1
-
23
-
-
77951768486
-
Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
-
Sancak, Y. et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290-303 (2010).
-
(2010)
Cell
, vol.141
, pp. 290-303
-
-
Sancak, Y.1
-
24
-
-
84862295360
-
Guidelines for the use and interpretation of assays for monitoring autophagy
-
Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8, 445-544 (2012).
-
(2012)
Autophagy
, vol.8
, pp. 445-544
-
-
Klionsky, D.J.1
-
25
-
-
42249115210
-
Pam (protein associated with Myc) functions as an E3 ubiquitin ligase and regulates TSC/mTOR signaling
-
Han, S. et al. Pam (protein associated with Myc) functions as an E3 ubiquitin ligase and regulates TSC/mTOR signaling. Cell Signal. 20, 1084-1091 (2008).
-
(2008)
Cell Signal.
, vol.20
, pp. 1084-1091
-
-
Han, S.1
-
26
-
-
0036713778
-
TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signaling
-
Inoki, K., Li, Y., Zhu, T., Wu, J. & Guan, K. L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 4, 648-657 (2002).
-
(2002)
Nat. Cell Biol.
, vol.4
, pp. 648-657
-
-
Inoki, K.1
Li, Y.2
Zhu, T.3
Wu, J.4
Guan, K.L.5
-
27
-
-
0034329418
-
LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing
-
Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720-5728 (2000).
-
(2000)
EMBO J.
, vol.19
, pp. 5720-5728
-
-
Kabeya, Y.1
-
28
-
-
34548077575
-
Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3
-
Kimura, S., Noda, T. & Yoshimori, T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3, 452-460 (2007).
-
(2007)
Autophagy
, vol.3
, pp. 452-460
-
-
Kimura, S.1
Noda, T.2
Yoshimori, T.3
-
29
-
-
0036929283
-
Processing and activation of lysosomal proteinases
-
Ishidoh, K. & Kominami, E. Processing and activation of lysosomal proteinases. Biol. Chem. 383, 1827-1831 (2002).
-
(2002)
Biol. Chem.
, vol.383
, pp. 1827-1831
-
-
Ishidoh, K.1
Kominami, E.2
-
30
-
-
0035801514
-
Lysosomal cysteine proteases: Facts and opportunities
-
Turk, V., Turk, B. & Turk, D. Lysosomal cysteine proteases: facts and opportunities. EMBO J. 20, 4629-4633 (2001).
-
(2001)
EMBO J.
, vol.20
, pp. 4629-4633
-
-
Turk, V.1
Turk, B.2
Turk, D.3
-
31
-
-
0041589248
-
Alpha-Synuclein is degraded by both autophagy and the proteasome
-
Webb, J. L., Ravikumar, B., Atkins, J., Skepper, J. N. & Rubinsztein, D. C. Alpha-Synuclein is degraded by both autophagy and the proteasome. J. Biol. Chem. 278, 25009-25013 (2003).
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 25009-25013
-
-
Webb, J.L.1
Ravikumar, B.2
Atkins, J.3
Skepper, J.N.4
Rubinsztein, D.C.5
-
32
-
-
80955177196
-
TFEB links autophagy to lysosomal biogenesis
-
Settembre, C. et al. TFEB links autophagy to lysosomal biogenesis. Science 332, 1429-1433 (2011).
-
(2011)
Science
, vol.332
, pp. 1429-1433
-
-
Settembre, C.1
-
33
-
-
84899903061
-
Parkinson's disease-associated human ATP13A2 (PARK9) deficiency causes zinc dyshomeostasis and mitochondrial dysfunction
-
Park, J. S., Koentjoro, B., Veivers, D., Mackay-Sim, A. & Sue, C. M. Parkinson's disease-associated human ATP13A2 (PARK9) deficiency causes zinc dyshomeostasis and mitochondrial dysfunction. Hum. Mol. Genet. 23, 2802-2815 (2014).
-
(2014)
Hum. Mol. Genet.
, vol.23
, pp. 2802-2815
-
-
Park, J.S.1
Koentjoro, B.2
Veivers, D.3
Mackay-Sim, A.4
Sue, C.M.5
-
34
-
-
84899971096
-
Zn(2)(+) dyshomeostasis caused by loss of ATP13A2/PARK9 leads to lysosomal dysfunction and alpha-synuclein accumulation
-
Tsunemi, T. & Krainc, D. Zn(2)(+) dyshomeostasis caused by loss of ATP13A2/PARK9 leads to lysosomal dysfunction and alpha-synuclein accumulation. Hum. Mol. Genet. 23, 2791-2801 (2014).
-
(2014)
Hum. Mol. Genet.
, vol.23
, pp. 2791-2801
-
-
Tsunemi, T.1
Krainc, D.2
-
35
-
-
0141995596
-
The autosomal recessive juvenile Parkinson disease gene product, parkin, interacts with and ubiquitinates synaptotagmin XI
-
Huynh, D. P., Scoles, D. R., Nguyen, D. & Pulst, S. M. The autosomal recessive juvenile Parkinson disease gene product, parkin, interacts with and ubiquitinates synaptotagmin XI. Hum. Mol. Genet. 12, 2587-2597 (2003).
-
(2003)
Hum. Mol. Genet.
, vol.12
, pp. 2587-2597
-
-
Huynh, D.P.1
Scoles, D.R.2
Nguyen, D.3
Pulst, S.M.4
-
36
-
-
10744224951
-
Novel monoclonal antibodies demonstrate biochemical variation of brain parkin with age
-
Pawlyk, A. C. et al. Novel monoclonal antibodies demonstrate biochemical variation of brain parkin with age. J. Biol. Chem. 278, 48120-48128 (2003).
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 48120-48128
-
-
Pawlyk, A.C.1
-
37
-
-
84883492814
-
Parkin- and PINK1-dependent mitophagy in neurons: Will the real pathway please stand up?
-
Grenier, K., McLelland, G. L. & Fon, E. A. Parkin- and PINK1-dependent mitophagy in neurons: will the real pathway please stand up? Front. Neurol. 4, 100 (2013).
-
(2013)
Front. Neurol.
, vol.4
, pp. 100
-
-
Grenier, K.1
McLelland, G.L.2
Fon, E.A.3
-
38
-
-
84856578855
-
ATP13A2 regulates mitochondrial bioenergetics through macroautophagy
-
Gusdon, A. M., Zhu, J., Van Houten, B. & Chu, C. T. ATP13A2 regulates mitochondrial bioenergetics through macroautophagy. Neurobiol. Dis. 45, 962-972 (2012).
-
(2012)
Neurobiol. Dis.
, vol.45
, pp. 962-972
-
-
Gusdon, A.M.1
Zhu, J.2
Van Houten, B.3
Chu, C.T.4
-
39
-
-
84874712704
-
Gene transfer of master autophagy regulator TFEB results in clearance of toxic protein and correction of hepatic disease in alpha-1-antitrypsin deficiency
-
Pastore, N. et al. Gene transfer of master autophagy regulator TFEB results in clearance of toxic protein and correction of hepatic disease in alpha-1-antitrypsin deficiency. EMBO Mol. Med. 5, 397-412 (2013).
-
(2013)
EMBO Mol. Med.
, vol.5
, pp. 397-412
-
-
Pastore, N.1
-
40
-
-
84877601173
-
Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease
-
Spampanato, C. et al. Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease. EMBO Mol. Med. 5, 691-706 (2013).
-
(2013)
EMBO Mol. Med.
, vol.5
, pp. 691-706
-
-
Spampanato, C.1
-
41
-
-
77955483125
-
Activation of a metabolic gene regulatory network downstream of mTOR complex 1
-
Duvel, K. et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 39, 171-183 (2010).
-
(2010)
Mol. Cell
, vol.39
, pp. 171-183
-
-
Duvel, K.1
-
42
-
-
84934438165
-
A conserved mechanism of TOR-dependent RCK-mediated mRNA degradation regulates autophagy
-
Hu, G. et al. A conserved mechanism of TOR-dependent RCK-mediated mRNA degradation regulates autophagy. Nat. Cell Biol. 17, 930-942 (2015).
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 930-942
-
-
Hu, G.1
-
43
-
-
53549084325
-
Does bafilomycin A1 block the fusion of autophagosomes with lysosomes?
-
Klionsky, D. J., Elazar, Z., Seglen, P. O. & Rubinsztein, D. C. Does bafilomycin A1 block the fusion of autophagosomes with lysosomes? Autophagy 4, 849-850 (2008).
-
(2008)
Autophagy
, vol.4
, pp. 849-850
-
-
Klionsky, D.J.1
Elazar, Z.2
Seglen, P.O.3
Rubinsztein, D.C.4
-
44
-
-
84903158167
-
Regulation of mTORC1 by amino acids
-
Bar-Peled, L. & Sabatini, D. M. Regulation of mTORC1 by amino acids. Trends Cell Biol. 24, 400-406 (2014).
-
(2014)
Trends Cell Biol.
, vol.24
, pp. 400-406
-
-
Bar-Peled, L.1
Sabatini, D.M.2
-
45
-
-
84970929755
-
Lysosomal pH plays a key role in regulation of mTOR activity in osteoclasts
-
Hu, Y. et al. Lysosomal pH plays a key role in regulation of mTOR activity in osteoclasts. J. Cell Biochem. 117, 413-425 (2016).
-
(2016)
J. Cell Biochem.
, vol.117
, pp. 413-425
-
-
Hu, Y.1
-
46
-
-
84953876655
-
Pharmacological inhibition of lysosomes activates the MTORC1 signaling pathway in chondrocytes in an autophagy-independent manner
-
Newton, P. T., Vuppalapati, K. K., Bouderlique, T. & Chagin, A. S. Pharmacological inhibition of lysosomes activates the MTORC1 signaling pathway in chondrocytes in an autophagy-independent manner. Autophagy 11, 1594-1607 (2015).
-
(2015)
Autophagy
, vol.11
, pp. 1594-1607
-
-
Newton, P.T.1
Vuppalapati, K.K.2
Bouderlique, T.3
Chagin, A.S.4
-
47
-
-
80555143078
-
MTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase
-
Zoncu, R. et al. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334, 678-683 (2011).
-
(2011)
Science
, vol.334
, pp. 678-683
-
-
Zoncu, R.1
-
48
-
-
0037040890
-
Synaptotagmins: Why so many?
-
Sudhof, T. C. Synaptotagmins: why so many? J. Biol. Chem. 277, 7629-7632 (2002).
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 7629-7632
-
-
Sudhof, T.C.1
-
49
-
-
0030952081
-
The evolutionary pressure to inactivate. A subclass of synaptotagmins with an amino acid substitution that abolishes Ca2+ binding
-
von Poser, C., Ichtchenko, K., Shao, X., Rizo, J. & Sudhof, T. C. The evolutionary pressure to inactivate. A subclass of synaptotagmins with an amino acid substitution that abolishes Ca2+ binding. J. Biol. Chem. 272, 14314-14319 (1997).
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 14314-14319
-
-
Von Poser, C.1
Ichtchenko, K.2
Shao, X.3
Rizo, J.4
Sudhof, T.C.5
-
50
-
-
4344616380
-
Structural basis for the evolutionary inactivation of Ca2+ binding to synaptotagmin 4
-
Dai, H. et al. Structural basis for the evolutionary inactivation of Ca2+ binding to synaptotagmin 4. Nat. Struct. Mol. Biol. 11, 844-849 (2004).
-
(2004)
Nat. Struct. Mol. Biol.
, vol.11
, pp. 844-849
-
-
Dai, H.1
-
51
-
-
84955358715
-
Synaptotagmin-11 inhibits clathrin-mediated and bulk endocytosis
-
Wang, C. et al. Synaptotagmin-11 inhibits clathrin-mediated and bulk endocytosis. EMBO Rep. 17, 47-63 (2016).
-
(2016)
EMBO Rep.
, vol.17
, pp. 47-63
-
-
Wang, C.1
-
52
-
-
84880439539
-
Leishmania evades host immunity by inhibiting antigen cross-presentation through direct cleavage of the SNARE VAMP8
-
Matheoud, D. et al. Leishmania evades host immunity by inhibiting antigen cross-presentation through direct cleavage of the SNARE VAMP8. Cell Host Microbe 14, 15-25 (2013).
-
(2013)
Cell Host Microbe
, vol.14
, pp. 15-25
-
-
Matheoud, D.1
-
53
-
-
73449094255
-
The Leishmania donovani lipophosphoglycan excludes the vesicular proton-ATPase from phagosomes by impairing the recruitment of synaptotagmin v
-
Vinet, A. F., Fukuda, M., Turco, S. J. & Descoteaux, A. The Leishmania donovani lipophosphoglycan excludes the vesicular proton-ATPase from phagosomes by impairing the recruitment of synaptotagmin V. PLoS Pathog. 5, e1000628 (2009).
-
(2009)
PLoS Pathog
, vol.5
, pp. e1000628
-
-
Vinet, A.F.1
Fukuda, M.2
Turco, S.J.3
Descoteaux, A.4
-
54
-
-
77955863456
-
A reporter cell system to monitor autophagy based on p62/ SQSTM1
-
Larsen, K. B. et al. A reporter cell system to monitor autophagy based on p62/ SQSTM1. Autophagy 6, 784-793 (2010).
-
(2010)
Autophagy
, vol.6
, pp. 784-793
-
-
Larsen, K.B.1
-
55
-
-
0036342294
-
Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway
-
Manning, B. D., Tee, A. R., Logsdon, M. N., Blenis, J. & Cantley, L. C. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol. Cell 10, 151-162 (2002).
-
(2002)
Mol. Cell
, vol.10
, pp. 151-162
-
-
Manning, B.D.1
Tee, A.R.2
Logsdon, M.N.3
Blenis, J.4
Cantley, L.C.5
-
56
-
-
84932081512
-
SiRNA screen identifies QPCT as a druggable target for Huntington's disease
-
Jimenez-Sanchez, M. et al. siRNA screen identifies QPCT as a druggable target for Huntington's disease. Nat. Chem. Biol. 11, 347-354 (2015).
-
(2015)
Nat. Chem. Biol.
, vol.11
, pp. 347-354
-
-
Jimenez-Sanchez, M.1
-
57
-
-
84884288934
-
Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
-
Ran, F. A. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380-1389 (2013).
-
(2013)
Cell
, vol.154
, pp. 1380-1389
-
-
Ran, F.A.1
-
58
-
-
84887010498
-
Genome engineering using the CRISPR-Cas9 system
-
Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281-2308 (2013).
-
(2013)
Nat. Protoc.
, vol.8
, pp. 2281-2308
-
-
Ran, F.A.1
-
59
-
-
33847758560
-
Directed assembly of DNA molecules via simultaneous ligation and digestion
-
Cost, G. J. & Cozzarelli, N. R. Directed assembly of DNA molecules via simultaneous ligation and digestion. BioTechniques 42(84): 86-89 (2007).
-
(2007)
BioTechniques
, vol.42
, Issue.84
, pp. 86-89
-
-
Cost, G.J.1
Cozzarelli, N.R.2
-
60
-
-
79551546749
-
Autophagic substrate clearance requires activity of the syntaxin-5 SNARE complex
-
Renna, M. et al. Autophagic substrate clearance requires activity of the syntaxin-5 SNARE complex. J. Cell. Sci. 124, 469-482 (2011).
-
(2011)
J. Cell. Sci.
, vol.124
, pp. 469-482
-
-
Renna, M.1
|