메뉴 건너뛰기




Volumn 11, Issue , 2016, Pages 67-73

Reinforcement learning with Marr

Author keywords

[No Author keywords available]

Indexed keywords

DOPAMINE;

EID: 84973375982     PISSN: None     EISSN: 23521546     Source Type: Journal    
DOI: 10.1016/j.cobeha.2016.04.005     Document Type: Review
Times cited : (38)

References (103)
  • 1
    • 0017573822 scopus 로고
    • From understanding computation to understanding neural circuitry
    • Marr D., Poggio T. From understanding computation to understanding neural circuitry. Neurosci Res Program Bull 1977, 15:470-488.
    • (1977) Neurosci Res Program Bull , vol.15 , pp. 470-488
    • Marr, D.1    Poggio, T.2
  • 3
    • 33847202724 scopus 로고
    • Learning to predict by the methods of temporal differences
    • Sutton R.S. Learning to predict by the methods of temporal differences. Mach Learn 1988, 3:9-44.
    • (1988) Mach Learn , vol.3 , pp. 9-44
    • Sutton, R.S.1
  • 4
    • 45949092119 scopus 로고    scopus 로고
    • Dialogues on prediction errors
    • Niv Y., Schoenbaum G. Dialogues on prediction errors. Trends Cogn Sci 2008, 12:265-272.
    • (2008) Trends Cogn Sci , vol.12 , pp. 265-272
    • Niv, Y.1    Schoenbaum, G.2
  • 5
    • 67349283062 scopus 로고    scopus 로고
    • Reinforcement learning in the brain
    • Niv Y. Reinforcement learning in the brain. J Math Psychol 2009, 53:139-154.
    • (2009) J Math Psychol , vol.53 , pp. 139-154
    • Niv, Y.1
  • 6
    • 0002861883 scopus 로고
    • A model of how the basal ganglia generate and use neural signals that predict reinforcement
    • MIT Press, J.C. Houk, J.L. Davis, D.G. Beiser (Eds.)
    • Houk J.C., Adams J.L., Barto A.G. A model of how the basal ganglia generate and use neural signals that predict reinforcement. Models of information processing in the basal ganglia 1995, 249-270. MIT Press. J.C. Houk, J.L. Davis, D.G. Beiser (Eds.).
    • (1995) Models of information processing in the basal ganglia , pp. 249-270
    • Houk, J.C.1    Adams, J.L.2    Barto, A.G.3
  • 7
    • 33644927837 scopus 로고    scopus 로고
    • Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia
    • O'Reilly R.C., Frank M.J. Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural Computat 2006, 18:283-328.
    • (2006) Neural Computat , vol.18 , pp. 283-328
    • O'Reilly, R.C.1    Frank, M.J.2
  • 8
    • 0032973437 scopus 로고    scopus 로고
    • The basal ganglia: a vertebrate solution to the selection problem?
    • Redgrave P., Prescott T.J., Gurney K. The basal ganglia: a vertebrate solution to the selection problem?. Neuroscience 1999, 89:1009-1023.
    • (1999) Neuroscience , vol.89 , pp. 1009-1023
    • Redgrave, P.1    Prescott, T.J.2    Gurney, K.3
  • 9
    • 0029981543 scopus 로고    scopus 로고
    • A framework for mesencephalic dopamine systems based on predictive Hebbian learning
    • Montague P.R., Dayan P., Sejnowski T.J. A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J Neurosci 1996, 16:1936-1947.
    • (1996) J Neurosci , vol.16 , pp. 1936-1947
    • Montague, P.R.1    Dayan, P.2    Sejnowski, T.J.3
  • 10
    • 0030896968 scopus 로고    scopus 로고
    • A neural substrate of prediction and reward
    • Schultz W., Dayan P., Montague P.R. A neural substrate of prediction and reward. Science 1997, 275:1593-1599.
    • (1997) Science , vol.275 , pp. 1593-1599
    • Schultz, W.1    Dayan, P.2    Montague, P.R.3
  • 11
    • 0000541213 scopus 로고
    • Adaptive critics and the basal ganglia
    • MIT Press, J.C. Houk, J.L. Davis, D.G. Beiser (Eds.)
    • Barto A.G. Adaptive critics and the basal ganglia. Models of information processing in the basal ganglia 1995, 215-232. MIT Press. J.C. Houk, J.L. Davis, D.G. Beiser (Eds.).
    • (1995) Models of information processing in the basal ganglia , pp. 215-232
    • Barto, A.G.1
  • 12
    • 68249083099 scopus 로고    scopus 로고
    • The wick in the candle of learning epistemic curiosity activates reward circuitry and enhances memory
    • Kang M.J., Hsu M., Krajbich I.M., Loewenstein G., McClure S.M., Wang J.T., Camerer C.F. The wick in the candle of learning epistemic curiosity activates reward circuitry and enhances memory. Psychol Sci 2009, 20:963-973.
    • (2009) Psychol Sci , vol.20 , pp. 963-973
    • Kang, M.J.1    Hsu, M.2    Krajbich, I.M.3    Loewenstein, G.4    McClure, S.M.5    Wang, J.T.6    Camerer, C.F.7
  • 13
    • 12044252203 scopus 로고
    • The psychology of curiosity: a review and reinterpretation
    • Loewenstein G. The psychology of curiosity: a review and reinterpretation. Psychol Bull 1994, 116:75.
    • (1994) Psychol Bull , vol.116 , pp. 75
    • Loewenstein, G.1
  • 15
    • 75149137813 scopus 로고    scopus 로고
    • What is intrinsic motivation? A typology of computational approaches
    • Oudeyer P.-Y., Kaplan F. What is intrinsic motivation? A typology of computational approaches. Front Neurorobot 2007, 1:6.
    • (2007) Front Neurorobot , vol.1 , pp. 6
    • Oudeyer, P.-Y.1    Kaplan, F.2
  • 20
    • 84949990028 scopus 로고    scopus 로고
    • When good pigeons make bad decisions: choice with probabilistic delays and outcomes
    • Pisklak J.M., McDevitt M.A., Dunn R.M., Spetch M.L. When good pigeons make bad decisions: choice with probabilistic delays and outcomes. J Exp Anal Behav 2015, 104:241-251.
    • (2015) J Exp Anal Behav , vol.104 , pp. 241-251
    • Pisklak, J.M.1    McDevitt, M.A.2    Dunn, R.M.3    Spetch, M.L.4
  • 21
    • 68349115012 scopus 로고    scopus 로고
    • Midbrain dopamine neurons signal preference for advance information about upcoming rewards
    • Bromberg-Martin E.S., Hikosaka O. Midbrain dopamine neurons signal preference for advance information about upcoming rewards. Neuron 2009, 63:119-126.
    • (2009) Neuron , vol.63 , pp. 119-126
    • Bromberg-Martin, E.S.1    Hikosaka, O.2
  • 22
    • 80052211211 scopus 로고    scopus 로고
    • Lateral habenula neurons signal errors in the prediction of reward information
    • Bromberg-Martin E.S., Hikosaka O. Lateral habenula neurons signal errors in the prediction of reward information. Nature Neurosci 2011, 14:1209-1216.
    • (2011) Nature Neurosci , vol.14 , pp. 1209-1216
    • Bromberg-Martin, E.S.1    Hikosaka, O.2
  • 23
    • 84922147919 scopus 로고    scopus 로고
    • Orbitofrontal cortex uses distinct codes for different choice attributes in decisions motivated by curiosity
    • Blanchard T.C., Hayden B.Y., Bromberg-Martin E.S. Orbitofrontal cortex uses distinct codes for different choice attributes in decisions motivated by curiosity. Neuron 2015, 85:602-614.
    • (2015) Neuron , vol.85 , pp. 602-614
    • Blanchard, T.C.1    Hayden, B.Y.2    Bromberg-Martin, E.S.3
  • 24
    • 79953822184 scopus 로고    scopus 로고
    • Intrinsically motivated reinforcement learning: An evolutionary perspective
    • Singh S., Lewis R.L., Barto A.G., Sorg J. Intrinsically motivated reinforcement learning: An evolutionary perspective. IEEE Trans Autonom Mental Dev 2010, 2:70-82.
    • (2010) IEEE Trans Autonom Mental Dev , vol.2 , pp. 70-82
    • Singh, S.1    Lewis, R.L.2    Barto, A.G.3    Sorg, J.4
  • 28
    • 84964313382 scopus 로고    scopus 로고
    • Homeostatic reinforcement learning for integrating reward collection and physiological stability
    • Keramati M., Gutkin B. Homeostatic reinforcement learning for integrating reward collection and physiological stability. eLife 2014, 3:e04811.
    • (2014) eLife , vol.3
    • Keramati, M.1    Gutkin, B.2
  • 31
    • 84995965487 scopus 로고    scopus 로고
    • Building health behavior models to guide the development of just-in-time adaptive interventions: a pragmatic framework
    • Nahum-Shani I., Hekler E.B., Spruijt-Metz D. Building health behavior models to guide the development of just-in-time adaptive interventions: a pragmatic framework. Health Psychol 2015, 34:1209.
    • (2015) Health Psychol , vol.34 , pp. 1209
    • Nahum-Shani, I.1    Hekler, E.B.2    Spruijt-Metz, D.3
  • 32
    • 84862001711 scopus 로고    scopus 로고
    • Transfer in reinforcement learning via shared features
    • Konidaris G., Scheidwasser I., Barto A.G. Transfer in reinforcement learning via shared features. J Mach Learn Res 2012, 13:1333-1371.
    • (2012) J Mach Learn Res , vol.13 , pp. 1333-1371
    • Konidaris, G.1    Scheidwasser, I.2    Barto, A.G.3
  • 33
    • 77952541839 scopus 로고    scopus 로고
    • Learning latent structure: carving nature at its joints
    • Gershman S.J., Niv Y. Learning latent structure: carving nature at its joints. Curr Opin Neurobiol 2010, 20:251-256.
    • (2010) Curr Opin Neurobiol , vol.20 , pp. 251-256
    • Gershman, S.J.1    Niv, Y.2
  • 35
    • 84938863250 scopus 로고    scopus 로고
    • Discovering latent causes in reinforcement learning
    • Gershman S.J., Norman K.A., Niv Y. Discovering latent causes in reinforcement learning. Curr Opin Behav Sci 2015, 5:43-50.
    • (2015) Curr Opin Behav Sci , vol.5 , pp. 43-50
    • Gershman, S.J.1    Norman, K.A.2    Niv, Y.3
  • 36
  • 37
    • 84887935902 scopus 로고    scopus 로고
    • Gradual extinction prevents the return of fear: implications for the discovery of state
    • Gershman S.J., Jones C.E., Norman K.A., Monfils M.-H., Niv Y. Gradual extinction prevents the return of fear: implications for the discovery of state. Front Behav Neurosci 2013, 7:164.
    • (2013) Front Behav Neurosci , vol.7 , pp. 164
    • Gershman, S.J.1    Jones, C.E.2    Norman, K.A.3    Monfils, M.-H.4    Niv, Y.5
  • 38
    • 84885362378 scopus 로고    scopus 로고
    • Perceptual estimation obeys Occam's razor
    • Gershman S.J., Niv Y. Perceptual estimation obeys Occam's razor. Front Psychol 2013, 4:623.
    • (2013) Front Psychol , vol.4 , pp. 623
    • Gershman, S.J.1    Niv, Y.2
  • 39
    • 84912082331 scopus 로고    scopus 로고
    • Working memory contributions to reinforcement learning impairments in schizophrenia
    • Collins A.G., Brown J.K., Gold J.M., Waltz J.A., Frank M.J. Working memory contributions to reinforcement learning impairments in schizophrenia. J Neurosci 2014, 34:13747-13756.
    • (2014) J Neurosci , vol.34 , pp. 13747-13756
    • Collins, A.G.1    Brown, J.K.2    Gold, J.M.3    Waltz, J.A.4    Frank, M.J.5
  • 40
  • 43
    • 84878186347 scopus 로고    scopus 로고
    • The root of all value: a neural common currency for choice
    • Levy D.J., Glimcher P.W. The root of all value: a neural common currency for choice. Curr Opin Neurobiol 2012, 22:1027-1038.
    • (2012) Curr Opin Neurobiol , vol.22 , pp. 1027-1038
    • Levy, D.J.1    Glimcher, P.W.2
  • 44
    • 33646566317 scopus 로고    scopus 로고
    • Neurons in the orbitofrontal cortex encode economic value
    • Padoa-Schioppa C., Assad J.A. Neurons in the orbitofrontal cortex encode economic value. Nature 2006, 441:223-226.
    • (2006) Nature , vol.441 , pp. 223-226
    • Padoa-Schioppa, C.1    Assad, J.A.2
  • 45
    • 37549055372 scopus 로고    scopus 로고
    • The representation of economic value in the orbitofrontal cortex is invariant for changes of menu
    • Padoa-Schioppa C., Assad J.A. The representation of economic value in the orbitofrontal cortex is invariant for changes of menu. Nature Neurosci 2008, 11:95-102.
    • (2008) Nature Neurosci , vol.11 , pp. 95-102
    • Padoa-Schioppa, C.1    Assad, J.A.2
  • 46
    • 0013535965 scopus 로고    scopus 로고
    • Infinite-horizon policy-gradient estimation
    • Baxter J., Bartlett P.L. Infinite-horizon policy-gradient estimation. J Artif Intell Res 2001, 319-350.
    • (2001) J Artif Intell Res , pp. 319-350
    • Baxter, J.1    Bartlett, P.L.2
  • 49
    • 79955721719 scopus 로고    scopus 로고
    • Signals in human striatum are appropriate for policy update rather than value prediction
    • Li J., Daw N.D. Signals in human striatum are appropriate for policy update rather than value prediction. J Neurosci 2011, 31:5504-5511.
    • (2011) J Neurosci , vol.31 , pp. 5504-5511
    • Li, J.1    Daw, N.D.2
  • 50
  • 51
    • 33745787929 scopus 로고    scopus 로고
    • Representation and timing in theories of the dopamine system
    • Daw N.D., Courville A.C., Touretzky D.S. Representation and timing in theories of the dopamine system. Neural Computat 2006, 18:1637-1677.
    • (2006) Neural Computat , vol.18 , pp. 1637-1677
    • Daw, N.D.1    Courville, A.C.2    Touretzky, D.S.3
  • 52
    • 84870910490 scopus 로고    scopus 로고
    • Evaluating the TD model of classical conditioning
    • Ludvig E.A., Sutton R.S., Kehoe E.J. Evaluating the TD model of classical conditioning. Learn Behav 2012, 40:305-319.
    • (2012) Learn Behav , vol.40 , pp. 305-319
    • Ludvig, E.A.1    Sutton, R.S.2    Kehoe, E.J.3
  • 53
    • 77549088745 scopus 로고    scopus 로고
    • Alternative time representation in dopamine models
    • Rivest F., Kalaska J.F., Bengio Y. Alternative time representation in dopamine models. J Computat Neurosci 2010, 28:107-130.
    • (2010) J Computat Neurosci , vol.28 , pp. 107-130
    • Rivest, F.1    Kalaska, J.F.2    Bengio, Y.3
  • 54
    • 85150714688 scopus 로고
    • Reinforcement learning methods for continuous time Markov decision problems
    • Bradtke S.J., Duff M.O. Reinforcement learning methods for continuous time Markov decision problems. Adv Neural Inform Process Syst 1995, 7:393.
    • (1995) Adv Neural Inform Process Syst , vol.7 , pp. 393
    • Bradtke, S.J.1    Duff, M.O.2
  • 55
    • 84991262300 scopus 로고    scopus 로고
    • Temporal specificity of reward prediction errors signaled by putative dopamine neurons in rat VTA depends on ventral striatum
    • Takahashi Y., Langdon A.J., Niv Y., Schoenbaum G. Temporal specificity of reward prediction errors signaled by putative dopamine neurons in rat VTA depends on ventral striatum. Neuron 2016.
    • (2016) Neuron
    • Takahashi, Y.1    Langdon, A.J.2    Niv, Y.3    Schoenbaum, G.4
  • 56
    • 84929025181 scopus 로고    scopus 로고
    • A scalable population code for time in the striatum
    • Mello G.B., Soares S., Paton J.J. A scalable population code for time in the striatum. Curr Biol 2015, 25:1113-1122.
    • (2015) Curr Biol , vol.25 , pp. 1113-1122
    • Mello, G.B.1    Soares, S.2    Paton, J.J.3
  • 58
    • 84896722491 scopus 로고    scopus 로고
    • Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences
    • Jin X., Tecuapetla F., Costa R.M. Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nature Neurosci 2014, 17:423-430.
    • (2014) Nature Neurosci , vol.17 , pp. 423-430
    • Jin, X.1    Tecuapetla, F.2    Costa, R.M.3
  • 59
    • 70350566799 scopus 로고    scopus 로고
    • Hierarchically organized behavior and its neural foundations: a reinforcement learning perspective
    • Botvinick M.M., Niv Y., Barto A.C. Hierarchically organized behavior and its neural foundations: a reinforcement learning perspective. Cognition 2009, 113:262-280.
    • (2009) Cognition , vol.113 , pp. 262-280
    • Botvinick, M.M.1    Niv, Y.2    Barto, A.C.3
  • 60
    • 84878190351 scopus 로고    scopus 로고
    • Hierarchical reinforcement learning and decision making
    • Botvinick M.M. Hierarchical reinforcement learning and decision making. Curr Opin Neurobiol 2012, 22:956-962.
    • (2012) Curr Opin Neurobiol , vol.22 , pp. 956-962
    • Botvinick, M.M.1
  • 62
    • 0032073263 scopus 로고    scopus 로고
    • Planning and acting in partially observable stochastic domains
    • Kaelbling L.P., Littman M.L., Cassandra A.R. Planning and acting in partially observable stochastic domains. Artif Intell 1998, 101:99-134.
    • (1998) Artif Intell , vol.101 , pp. 99-134
    • Kaelbling, L.P.1    Littman, M.L.2    Cassandra, A.R.3
  • 64
    • 28044450875 scopus 로고    scopus 로고
    • Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control
    • Daw N.D., Niv Y., Dayan P. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neurosci 2005, 8:1704-1711.
    • (2005) Nature Neurosci , vol.8 , pp. 1704-1711
    • Daw, N.D.1    Niv, Y.2    Dayan, P.3
  • 65
    • 79958143780 scopus 로고    scopus 로고
    • Speed/accuracy trade-off between the habitual and the goal-directed processes
    • Keramati M., Dezfouli A., Piray P. Speed/accuracy trade-off between the habitual and the goal-directed processes. PLoS Computat Biol 2011, 7. e1002055.
    • (2011) PLoS Computat Biol , vol.7
    • Keramati, M.1    Dezfouli, A.2    Piray, P.3
  • 66
    • 79952746011 scopus 로고    scopus 로고
    • Model-based influences on humans' choices and striatal prediction errors
    • Daw N.D., Gershman S.J., Seymour B., Dayan P., Dolan R.J. Model-based influences on humans' choices and striatal prediction errors. Neuron 2011, 69:1204-1215.
    • (2011) Neuron , vol.69 , pp. 1204-1215
    • Daw, N.D.1    Gershman, S.J.2    Seymour, B.3    Dayan, P.4    Dolan, R.J.5
  • 67
    • 84877341847 scopus 로고    scopus 로고
    • The curse of planning dissecting multiple reinforcement-learning systems by taxing the central executive
    • Otto A.R., Gershman S.J., Markman A.B., Daw N.D. The curse of planning dissecting multiple reinforcement-learning systems by taxing the central executive. Psychol Sci 2013, 24:751-761.
    • (2013) Psychol Sci , vol.24 , pp. 751-761
    • Otto, A.R.1    Gershman, S.J.2    Markman, A.B.3    Daw, N.D.4
  • 70
    • 84961875552 scopus 로고    scopus 로고
    • Characterizing a psychological dimension related to deficits in goal-directed control
    • Gillan C., Kosinski R.W., Phelps E.A., Daw N.D. Characterizing a psychological dimension related to deficits in goal-directed control. eLife 2016, 5:e11305.
    • (2016) eLife , vol.5
    • Gillan, C.1    Kosinski, R.W.2    Phelps, E.A.3    Daw, N.D.4
  • 71
    • 84905503383 scopus 로고    scopus 로고
    • Opponent actor learning (OpAL): modeling interactive effects of striatal dopamine on reinforcement learning and choice incentive
    • Collins A.G., Frank M.J. Opponent actor learning (OpAL): modeling interactive effects of striatal dopamine on reinforcement learning and choice incentive. Psychol Rev 2014, 121:337.
    • (2014) Psychol Rev , vol.121 , pp. 337
    • Collins, A.G.1    Frank, M.J.2
  • 72
    • 84905569399 scopus 로고    scopus 로고
    • A reinforcement learning mechanism responsible for the valuation of free choice
    • Cockburn J., Collins A.G., Frank M.J. A reinforcement learning mechanism responsible for the valuation of free choice. Neuron 2014, 83:551-557.
    • (2014) Neuron , vol.83 , pp. 551-557
    • Cockburn, J.1    Collins, A.G.2    Frank, M.J.3
  • 73
    • 36448968271 scopus 로고    scopus 로고
    • Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards
    • Roesch M.R., Calu D.J., Schoenbaum G. Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards. Nature Neurosci 2007, 10:1615-1624.
    • (2007) Nature Neurosci , vol.10 , pp. 1615-1624
    • Roesch, M.R.1    Calu, D.J.2    Schoenbaum, G.3
  • 74
    • 0035817882 scopus 로고    scopus 로고
    • A cellular mechanism of reward-related learning
    • Reynolds J.N., Hyland B.I., Wickens J.R. A cellular mechanism of reward-related learning. Nature 2001, 413:67-70.
    • (2001) Nature , vol.413 , pp. 67-70
    • Reynolds, J.N.1    Hyland, B.I.2    Wickens, J.R.3
  • 75
    • 0036592025 scopus 로고    scopus 로고
    • Dopamine-dependent plasticity of corticostriatal synapses
    • Reynolds J.N., Wickens J.R. Dopamine-dependent plasticity of corticostriatal synapses. Neural Netw 2002, 15:507-521.
    • (2002) Neural Netw , vol.15 , pp. 507-521
    • Reynolds, J.N.1    Wickens, J.R.2
  • 76
    • 84864066393 scopus 로고    scopus 로고
    • Reinforcement learning: computing the temporal difference of values via distinct corticostriatal pathways
    • Morita K., Morishima M., Sakai K., Kawaguchi Y. Reinforcement learning: computing the temporal difference of values via distinct corticostriatal pathways. Trends Neurosci 2012, 35:457-467.
    • (2012) Trends Neurosci , vol.35 , pp. 457-467
    • Morita, K.1    Morishima, M.2    Sakai, K.3    Kawaguchi, Y.4
  • 77
    • 79958078227 scopus 로고    scopus 로고
    • An imperfect dopaminergic error signal can drive temporal-difference learning
    • Potjans W., Diesmann M., Morrison A. An imperfect dopaminergic error signal can drive temporal-difference learning. PLoS Computat Biol 2011, 7. e1001133.
    • (2011) PLoS Computat Biol , vol.7
    • Potjans, W.1    Diesmann, M.2    Morrison, A.3
  • 78
    • 67650298948 scopus 로고    scopus 로고
    • A spiking neural network model of an actor-critic learning agent
    • Potjans W., Morrison A., Diesmann M. A spiking neural network model of an actor-critic learning agent. Neural Computat 2009, 21:301-339.
    • (2009) Neural Computat , vol.21 , pp. 301-339
    • Potjans, W.1    Morrison, A.2    Diesmann, M.3
  • 79
    • 0036592026 scopus 로고    scopus 로고
    • Actor-critic models of the basal ganglia: new anatomical and computational perspectives
    • Joel D., Niv Y., Ruppin E. Actor-critic models of the basal ganglia: new anatomical and computational perspectives. Neural Netw 2002, 15:535-547.
    • (2002) Neural Netw , vol.15 , pp. 535-547
    • Joel, D.1    Niv, Y.2    Ruppin, E.3
  • 80
    • 84941212802 scopus 로고    scopus 로고
    • Arithmetic and local circuitry underlying dopamine prediction errors
    • Eshel N., Bukwich M., Rao V., Hemmelder V., Tian J., Uchida N. Arithmetic and local circuitry underlying dopamine prediction errors. Nature 2015, 525:243-246.
    • (2015) Nature , vol.525 , pp. 243-246
    • Eshel, N.1    Bukwich, M.2    Rao, V.3    Hemmelder, V.4    Tian, J.5    Uchida, N.6
  • 81
    • 0035489925 scopus 로고    scopus 로고
    • Spike-timing-dependent Hebbian plasticity as temporal difference learning
    • Rao R.P., Sejnowski T.J. Spike-timing-dependent Hebbian plasticity as temporal difference learning. Neural Computat 2001, 13:2221-2237.
    • (2001) Neural Computat , vol.13 , pp. 2221-2237
    • Rao, R.P.1    Sejnowski, T.J.2
  • 82
    • 33847634405 scopus 로고    scopus 로고
    • The debate over dopamine's role in reward: the case for incentive salience
    • Berridge K.C. The debate over dopamine's role in reward: the case for incentive salience. Psychopharmacology 2007, 191:391-431.
    • (2007) Psychopharmacology , vol.191 , pp. 391-431
    • Berridge, K.C.1
  • 83
    • 0033119561 scopus 로고    scopus 로고
    • Is the short-latency dopamine response too short to signal reward error?
    • Redgrave P., Prescott T.J., Gurney K. Is the short-latency dopamine response too short to signal reward error?. Trends Neurosci 1999, 22:146-151.
    • (1999) Trends Neurosci , vol.22 , pp. 146-151
    • Redgrave, P.1    Prescott, T.J.2    Gurney, K.3
  • 85
    • 84856431209 scopus 로고    scopus 로고
    • Neuron-type-specific signals for reward and punishment in the ventral tegmental area
    • Cohen J.Y., Haesler S., Vong L., Lowell B.B., Uchida N. Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature 2012, 482:85-88.
    • (2012) Nature , vol.482 , pp. 85-88
    • Cohen, J.Y.1    Haesler, S.2    Vong, L.3    Lowell, B.B.4    Uchida, N.5
  • 88
    • 58149236469 scopus 로고    scopus 로고
    • Midbrain dopaminergic neurons and striatal cholinergic interneurons encode the difference between reward and aversive events at different epochs of probabilistic classical conditioning trials
    • Joshua M., Adler A., Mitelman R., Vaadia E., Bergman H. Midbrain dopaminergic neurons and striatal cholinergic interneurons encode the difference between reward and aversive events at different epochs of probabilistic classical conditioning trials. J Neurosci 2008, 28:11673-11684.
    • (2008) J Neurosci , vol.28 , pp. 11673-11684
    • Joshua, M.1    Adler, A.2    Mitelman, R.3    Vaadia, E.4    Bergman, H.5
  • 89
    • 84875468581 scopus 로고    scopus 로고
    • Hierarchical learning induces two simultaneous, but separable, prediction errors in human basal ganglia
    • Diuk C., Tsai K., Wallis J., Botvinick M., Niv Y. Hierarchical learning induces two simultaneous, but separable, prediction errors in human basal ganglia. J Neurosci 2013, 33:5797-5805.
    • (2013) J Neurosci , vol.33 , pp. 5797-5805
    • Diuk, C.1    Tsai, K.2    Wallis, J.3    Botvinick, M.4    Niv, Y.5
  • 91
    • 0001158047 scopus 로고
    • Improving generalization for temporal difference learning: the successor representation
    • Dayan P. Improving generalization for temporal difference learning: the successor representation. Neural Computat 1993, 5:613-624.
    • (1993) Neural Computat , vol.5 , pp. 613-624
    • Dayan, P.1
  • 92
    • 34347343926 scopus 로고    scopus 로고
    • Lateral habenula as a source of negative reward signals in dopamine neurons
    • Matsumoto M., Hikosaka O. Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 2007, 447:1111-1115.
    • (2007) Nature , vol.447 , pp. 1111-1115
    • Matsumoto, M.1    Hikosaka, O.2
  • 93
    • 58149127270 scopus 로고    scopus 로고
    • Representation of negative motivational value in the primate lateral habenula
    • Matsumoto M., Hikosaka O. Representation of negative motivational value in the primate lateral habenula. Nature Neurosci 2009, 12:77-84.
    • (2009) Nature Neurosci , vol.12 , pp. 77-84
    • Matsumoto, M.1    Hikosaka, O.2
  • 96
    • 10344250993 scopus 로고    scopus 로고
    • By carrot or by stick: cognitive reinforcement learning in parkinsonism
    • Frank M.J., Seeberger L.C., O'Reilly R.C. By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science 2004, 306:1940-1943.
    • (2004) Science , vol.306 , pp. 1940-1943
    • Frank, M.J.1    Seeberger, L.C.2    O'Reilly, R.C.3
  • 97
    • 84921728992 scopus 로고    scopus 로고
    • Striatal D1 and D2 signaling differentially predict learning from positive and negative outcomes
    • Cox S.M., Frank M.J., Larcher K., Fellows L.K., Clark C.A., Leyton M., Dagher A. Striatal D1 and D2 signaling differentially predict learning from positive and negative outcomes. Neuroimage 2015, 109:95-101.
    • (2015) Neuroimage , vol.109 , pp. 95-101
    • Cox, S.M.1    Frank, M.J.2    Larcher, K.3    Fellows, L.K.4    Clark, C.A.5    Leyton, M.6    Dagher, A.7
  • 98
    • 84866055418 scopus 로고    scopus 로고
    • Transient stimulation of distinct subpopulations of striatal neurons mimics changes in action value
    • Tai L.-H., Lee A.M., Benavidez N., Bonci A., Wilbrecht L. Transient stimulation of distinct subpopulations of striatal neurons mimics changes in action value. Nature Neurosci 2012, 15:1281-1289.
    • (2012) Nature Neurosci , vol.15 , pp. 1281-1289
    • Tai, L.-H.1    Lee, A.M.2    Benavidez, N.3    Bonci, A.4    Wilbrecht, L.5
  • 99
    • 84873733797 scopus 로고    scopus 로고
    • Concurrent activation of striatal direct and indirect pathways during action initiation
    • Cui G., Jun S.B., Jin X., Pham M.D., Vogel S.S., Lovinger D.M., Costa R.M. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 2013, 494:238-242.
    • (2013) Nature , vol.494 , pp. 238-242
    • Cui, G.1    Jun, S.B.2    Jin, X.3    Pham, M.D.4    Vogel, S.S.5    Lovinger, D.M.6    Costa, R.M.7
  • 101
    • 28444472936 scopus 로고    scopus 로고
    • Neural bases of food-seeking: affect, arousal and reward in corticostriatolimbic circuits
    • Balleine B.W. Neural bases of food-seeking: affect, arousal and reward in corticostriatolimbic circuits. Physiol Behav 2005, 86:717-730.
    • (2005) Physiol Behav , vol.86 , pp. 717-730
    • Balleine, B.W.1
  • 103
    • 84953837909 scopus 로고    scopus 로고
    • Brief optogenetic inhibition of dopamine neurons mimics endogenous negative reward prediction errors
    • Chang C.Y., Esber G.R., Marrero-Garcia Y., Yau H.-J., Bonci A., Schoenbaum G. Brief optogenetic inhibition of dopamine neurons mimics endogenous negative reward prediction errors. Nature Neurosci 2016, 19:111-116.
    • (2016) Nature Neurosci , vol.19 , pp. 111-116
    • Chang, C.Y.1    Esber, G.R.2    Marrero-Garcia, Y.3    Yau, H.-J.4    Bonci, A.5    Schoenbaum, G.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.