메뉴 건너뛰기




Volumn 18, Issue 7, 2006, Pages 1637-1677

Representation and timing in theories of the dopamine system

Author keywords

[No Author keywords available]

Indexed keywords

DOPAMINE;

EID: 33745787929     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/neco.2006.18.7.1637     Document Type: Article
Times cited : (128)

References (92)
  • 1
    • 0000353178 scopus 로고
    • A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains
    • Baum, L. E., Petrie, T., Soulds, G., & Weiss, N. (1970). A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Annals of Mathematical Statistics, 41, 164-171.
    • (1970) Annals of Mathematical Statistics , vol.41 , pp. 164-171
    • Baum, L.E.1    Petrie, T.2    Soulds, G.3    Weiss, N.4
  • 2
    • 21544435722 scopus 로고    scopus 로고
    • Midbrain dopamine neurons encode a quantitative reward prediction error signal
    • Bayer, H. M., & Glimcher, P. W. (2005). Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron, 47, 129-141.
    • (2005) Neuron , vol.47 , pp. 129-141
    • Bayer, H.M.1    Glimcher, P.W.2
  • 3
    • 0006101544 scopus 로고    scopus 로고
    • Mechanisms of feature-positive and feature-negative discrimination learning in an appetitive conditioning paradigm
    • N. A. Schmajuk & P. C. Holland (Eds.). Washington, DC: American Psychological Association
    • Bouton, M. E., & Nelson, J. B. (1998). Mechanisms of feature-positive and feature-negative discrimination learning in an appetitive conditioning paradigm. In N. A. Schmajuk & P. C. Holland (Eds.), Occasion setting: Associative learning and cognition in animals (pp. 69-112). Washington, DC: American Psychological Association.
    • (1998) Occasion Setting: Associative Learning and Cognition in Animals , pp. 69-112
    • Bouton, M.E.1    Nelson, J.B.2
  • 4
    • 85150714688 scopus 로고
    • Reinforcement learning methods for continuous-time Markov decision problems
    • G. Tesauro, D. S. Touretzky, & T. K. Leen (Eds.). Cambridge, MA: MIT Press
    • Bradtke, S. J., & Duff, M. O. (1995). Reinforcement learning methods for continuous-time Markov decision problems. In G. Tesauro, D. S. Touretzky, & T. K. Leen (Eds.), Advances in neural information processing systems, 7 (pp. 393-400). Cambridge, MA: MIT Press.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 393-400
    • Bradtke, S.J.1    Duff, M.O.2
  • 5
    • 0033508899 scopus 로고    scopus 로고
    • How the basal ganglia use parallel excitatory and inhibitory learning pathways to selectively respond to unexpected rewarding cues
    • Brown, J., Bullock, D., & Grossberg, S. (1999). How the basal ganglia use parallel excitatory and inhibitory learning pathways to selectively respond to unexpected rewarding cues. Journal of Neuroscience, 19(23), 10502-10511.
    • (1999) Journal of Neuroscience , vol.19 , Issue.23 , pp. 10502-10511
    • Brown, J.1    Bullock, D.2    Grossberg, S.3
  • 6
  • 8
    • 33750189183 scopus 로고    scopus 로고
    • Similarity and discrimination in classical conditioning: A latent variable account
    • L. K. Saul, Y. Weiss, & L. Bottou (Eds.). Cambridge, MA: MIT Press
    • Courville, A. C., Daw, N. D., & Touretzky, D. S. (2004). Similarity and discrimination in classical conditioning: A latent variable account. In L. K. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in neural information processing systems, 17. Cambridge, MA: MIT Press.
    • (2004) Advances in Neural Information Processing Systems , vol.17
    • Courville, A.C.1    Daw, N.D.2    Touretzky, D.S.3
  • 9
    • 84899024060 scopus 로고    scopus 로고
    • Modeling temporal structure in classical conditioning
    • T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.). Cambridge, MA: MIT Press
    • Courville, A. C., & Touretzky, D. S. (2001). Modeling temporal structure in classical conditioning. In T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in neural information processing systems, 14 (pp. 3-10). Cambridge, MA: MIT Press.
    • (2001) Advances in Neural Information Processing Systems , vol.14 , pp. 3-10
    • Courville, A.C.1    Touretzky, D.S.2
  • 10
    • 0032643313 scopus 로고    scopus 로고
    • Solving semi-Markov decision problems using average reward reinforcement learning
    • Das, T., Gosavi, A., Mahadevan, S., & Marchalleck, N. (1999). Solving semi-Markov decision problems using average reward reinforcement learning. Management Science, 45, 560-574.
    • (1999) Management Science , vol.45 , pp. 560-574
    • Das, T.1    Gosavi, A.2    Mahadevan, S.3    Marchalleck, N.4
  • 12
    • 0036592008 scopus 로고    scopus 로고
    • Opponent interactions between serotonin and dopamine
    • Daw, N. D., Kakade, S., & Dayan, P. (2002). Opponent interactions between serotonin and dopamine. Neural Networks, 15, 603-616.
    • (2002) Neural Networks , vol.15 , pp. 603-616
    • Daw, N.D.1    Kakade, S.2    Dayan, P.3
  • 13
    • 33644763667 scopus 로고    scopus 로고
    • Actions, values, policies, and the basal ganglia
    • (in press). E. Bezard (Ed.). New York: Nova Science
    • Daw, N. D., Niv, Y., & Dayan, P. (in press). Actions, values, policies, and the basal ganglia. In E. Bezard (Ed.), Recent breakthroughs in basal ganglia research. New York: Nova Science.
    • Recent Breakthroughs in Basal Ganglia Research
    • Daw, N.D.1    Niv, Y.2    Dayan, P.3
  • 14
    • 28044450875 scopus 로고    scopus 로고
    • Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control
    • Daw, N. D., Niv, Y., & Dayan, P. (2005). Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience.
    • (2005) Nature Neuroscience
    • Daw, N.D.1    Niv, Y.2    Dayan, P.3
  • 15
    • 0036835734 scopus 로고    scopus 로고
    • Long-term reward prediction in TD models of the dopamine system
    • Daw, N. D., & Touretzky, D. S. (2002). Long-term reward prediction in TD models of the dopamine system. Neural Computation, 14, 2567-2583.
    • (2002) Neural Computation , vol.14 , pp. 2567-2583
    • Daw, N.D.1    Touretzky, D.S.2
  • 17
    • 84899017487 scopus 로고    scopus 로고
    • Motivated reinforcement learning
    • T. Dietterich, S. Decker, & Z. Ghahramani (Eds.). Cambridge, MA: MIT Press
    • Dayan, P. (2002). Motivated reinforcement learning. In T. Dietterich, S. Decker, & Z. Ghahramani (Eds.), Advances in neural information processing systems, 14 (pp. 11-18). Cambridge, MA: MIT Press.
    • (2002) Advances in Neural Information Processing Systems , vol.14 , pp. 11-18
    • Dayan, P.1
  • 18
    • 0037057808 scopus 로고    scopus 로고
    • Reward, motivation and reinforcement learning
    • Dayan, P., & Balleine, B. W. (2002). Reward, motivation and reinforcement learning. Neuron, 36, 285-298.
    • (2002) Neuron , vol.36 , pp. 285-298
    • Dayan, P.1    Balleine, B.W.2
  • 20
    • 35648958957 scopus 로고    scopus 로고
    • Bayesian inference in spiking neurons
    • L. K. Saul, Y. Weiss, & L. Bottou (Eds.). Cambridge, MA: MIT Press
    • Deneve, S. (2004). Bayesian inference in spiking neurons. In L. K. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in neural information processing systems, 17. Cambridge, MA: MIT Press.
    • (2004) Advances in Neural Information Processing Systems , vol.17
    • Deneve, S.1
  • 24
    • 0033913868 scopus 로고    scopus 로고
    • Dissociation of Pavlovian and instrumental incentive learning under dopamine antagonists
    • Dickinson, A., Smith, J., & Mirenowicz, J. (2000). Dissociation of Pavlovian and instrumental incentive learning under dopamine antagonists. Behavioral Neuroscience, 114, 468-483.
    • (2000) Behavioral Neuroscience , vol.114 , pp. 468-483
    • Dickinson, A.1    Smith, J.2    Mirenowicz, J.3
  • 25
    • 0033213819 scopus 로고    scopus 로고
    • What are the computations in the cerebellum, the basal ganglia, and the cerebral cortex?
    • Doya, K. (1999). What are the computations in the cerebellum, the basal ganglia, and the cerebral cortex? Neural Networks, 12, 961-974.
    • (1999) Neural Networks , vol.12 , pp. 961-974
    • Doya, K.1
  • 26
    • 0034524427 scopus 로고    scopus 로고
    • Complementary roles of basal ganglia and cerebellum in learning and motor control
    • Doya, K. (2000). Complementary roles of basal ganglia and cerebellum in learning and motor control. Current Opinion in Neurobiology, 10, 732-739.
    • (2000) Current Opinion in Neurobiology , vol.10 , pp. 732-739
    • Doya, K.1
  • 27
    • 15244346900 scopus 로고    scopus 로고
    • Lesion to the nigrostriatal dopamine system disrupts stimulus-response habit formation
    • Faure, A., Haberland, U., Condé, F., & Massioui, N. E. (2005). Lesion to the nigrostriatal dopamine system disrupts stimulus-response habit formation. Journal of Neuroscience, 25, 2771-2780.
    • (2005) Journal of Neuroscience , vol.25 , pp. 2771-2780
    • Faure, A.1    Haberland, U.2    Condé, F.3    Massioui, N.E.4
  • 28
    • 33745774575 scopus 로고    scopus 로고
    • The reward responses of dopamine neurons persist when prediction of reward is probabilistic with respect to time or occurrence
    • Fiorillo, C. D., & Schultz, W. (2001). The reward responses of dopamine neurons persist when prediction of reward is probabilistic with respect to time or occurrence. In Society for Neuroscience Abstracts, 27, 827.5.
    • (2001) Society for Neuroscience Abstracts , vol.27
    • Fiorillo, C.D.1    Schultz, W.2
  • 29
    • 0037459319 scopus 로고    scopus 로고
    • Discrete coding of reward probability and uncertainty by dopamine neurons
    • Fiorillo, C. D., Tobler, P. N., & Schultz, W. (2003). Discrete coding of reward probability and uncertainty by dopamine neurons. Science, 299, 1898-1902.
    • (2003) Science , vol.299 , pp. 1898-1902
    • Fiorillo, C.D.1    Tobler, P.N.2    Schultz, W.3
  • 30
    • 0034169238 scopus 로고    scopus 로고
    • Time, rate and conditioning
    • Gallistel, C. R., & Gibbon, J. (2000). Time, rate and conditioning. Psychological Review, 107(2), 289-344.
    • (2000) Psychological Review , vol.107 , Issue.2 , pp. 289-344
    • Gallistel, C.R.1    Gibbon, J.2
  • 32
    • 0344787262 scopus 로고
    • Scalar expectancy theory and Weber's law in animal timing
    • Gibbon, J. (1977). Scalar expectancy theory and Weber's law in animal timing. Psychological Review, 84, 279-325.
    • (1977) Psychological Review , vol.84 , pp. 279-325
    • Gibbon, J.1
  • 33
    • 0037057757 scopus 로고    scopus 로고
    • Banburismus and the brain: Decoding the relationship between sensory stimuli, decisions, and reward
    • Gold, J. I., & Shadlen, M. N. (2002). Banburismus and the brain: Decoding the relationship between sensory stimuli, decisions, and reward. Neuron, 36, 299-308.
    • (2002) Neuron , vol.36 , pp. 299-308
    • Gold, J.I.1    Shadlen, M.N.2
  • 34
    • 0000272386 scopus 로고
    • Explicit state occupancy modeling by hidden semi-Markov models: Application of Derin's scheme
    • Guedon, Y., & Cocozza-Thivent, C. (1990). Explicit state occupancy modeling by hidden semi-Markov models: Application of Derin's scheme. Computer Speech and Language, 4, 167-192.
    • (1990) Computer Speech and Language , vol.4 , pp. 167-192
    • Guedon, Y.1    Cocozza-Thivent, C.2
  • 37
    • 0032942327 scopus 로고    scopus 로고
    • Hippocampal lesions interfere with Pavlovian negative occasion setting
    • Holland, P. C., Lamoureux, J. A., Han, J., & Gallagher, M. (1999). Hippocampal lesions interfere with Pavlovian negative occasion setting. Hippocampus, 9, 143-157.
    • (1999) Hippocampus , vol.9 , pp. 143-157
    • Holland, P.C.1    Lamoureux, J.A.2    Han, J.3    Gallagher, M.4
  • 38
    • 33644688754 scopus 로고    scopus 로고
    • Dopamine neurons report an error in the temporal prediction of reward during learning
    • Hollerman, J. R., & Schultz, W. (1998). Dopamine neurons report an error in the temporal prediction of reward during learning. Nature Neuroscience, 1, 304-309.
    • (1998) Nature Neuroscience , vol.1 , pp. 304-309
    • Hollerman, J.R.1    Schultz, W.2
  • 39
    • 0002861883 scopus 로고
    • A model of how the basal ganglia generate and use neural signals that predict reinforcement
    • J. C. Houk, J. L. Davis, & D. G. Beiser (Eds.). Cambridge, MA: MIT Press
    • Houk, J. C., Adams, J. L., & Barto, A. G. (1995). A model of how the basal ganglia generate and use neural signals that predict reinforcement. In J. C. Houk, J. L. Davis, & D. G. Beiser (Eds.), Models of information processing in the basal ganglia (pp. 249-270). Cambridge, MA: MIT Press.
    • (1995) Models of Information Processing in the Basal Ganglia , pp. 249-270
    • Houk, J.C.1    Adams, J.L.2    Barto, A.G.3
  • 40
    • 0036592026 scopus 로고    scopus 로고
    • Actor-critic models of the basal ganglia: New anatomical and computational perspectives
    • Joel, D., Niv, Y., & Ruppin, E. (2002). Actor-critic models of the basal ganglia: New anatomical and computational perspectives. Neural Networks, 15, 535-547.
    • (2002) Neural Networks , vol.15 , pp. 535-547
    • Joel, D.1    Niv, Y.2    Ruppin, E.3
  • 41
    • 0032073263 scopus 로고    scopus 로고
    • Planning and acting in partially observable stochastic domains
    • Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998). Planning and acting in partially observable stochastic domains. Artificial Intelligence, 101, 99-134.
    • (1998) Artificial Intelligence , vol.101 , pp. 99-134
    • Kaelbling, L.P.1    Littman, M.L.2    Cassandra, A.R.3
  • 42
    • 84898950247 scopus 로고    scopus 로고
    • Acquisition in autoshaping
    • S. A. Solla, T. K. Leen, & K. R. Muller (Eds.). Cambridge, MA: MIT Press
    • Kakade, S., & Dayan, P. (2000). Acquisition in autoshaping. In S. A. Solla, T. K. Leen, & K. R. Muller (Eds.), Advances in neural information processing systems, 12. Cambridge, MA: MIT Press.
    • (2000) Advances in Neural Information Processing Systems , vol.12
    • Kakade, S.1    Dayan, P.2
  • 43
    • 85047672086 scopus 로고    scopus 로고
    • Acquisition and extinction in autoshaping
    • Kakade, S., & Dayan, P. (2002). Acquisition and extinction in autoshaping. Psychological Review, 109, 533-544.
    • (2002) Psychological Review , vol.109 , pp. 533-544
    • Kakade, S.1    Dayan, P.2
  • 45
    • 33745784599 scopus 로고    scopus 로고
    • Action-selection in temporally dependent phenomena using temporal difference learning over a collective belief structure
    • Kurth-Nelson, Z., & Redish, A. (2004). μagents: Action-selection in temporally dependent phenomena using temporal difference learning over a collective belief structure. Society for Neuroscience Abstracts, 30, 207.1.
    • (2004) Society for Neuroscience Abstracts , vol.30
    • Kurth-Nelson, Z.1    Redish, A.2
  • 46
    • 0022685753 scopus 로고
    • Continuously variable duration hidden Markov models for automatic speech recognition
    • Levinson, S. E. (1986). Continuously variable duration hidden Markov models for automatic speech recognition. Computer Speech and Language, 1, 29-45.
    • (1986) Computer Speech and Language , vol.1 , pp. 29-45
    • Levinson, S.E.1
  • 47
    • 0036212160 scopus 로고    scopus 로고
    • Efficient coding of natural sounds
    • Lewicki, M. S. (2002). Efficient coding of natural sounds. Nature Neuroscience, 5, 356-363.
    • (2002) Nature Neuroscience , vol.5 , pp. 356-363
    • Lewicki, M.S.1
  • 49
    • 0026505520 scopus 로고
    • Responses of monkey dopamine neurons during learning of behavioral reactions
    • Ljungberg, T., Apicella, P., & Schultz, W. (1992). Responses of monkey dopamine neurons during learning of behavioral reactions. Journal of Neurophysiology, 67, 145-163.
    • (1992) Journal of Neurophysiology , vol.67 , pp. 145-163
    • Ljungberg, T.1    Apicella, P.2    Schultz, W.3
  • 50
    • 0031110595 scopus 로고    scopus 로고
    • Learning the temporal dynamics of behavior
    • Machado, A. (1997). Learning the temporal dynamics of behavior. Psychological Review, 104, 241-265.
    • (1997) Psychological Review , vol.104 , pp. 241-265
    • Machado, A.1
  • 52
    • 0033013403 scopus 로고    scopus 로고
    • Reinforcement-induced within-trial resetting of an internal clock
    • Matell, M. S., & Meek, W. H. (1999). Reinforcement-induced within-trial resetting of an internal clock. Behavioural Processes, 45, 159-171.
    • (1999) Behavioural Processes , vol.45 , pp. 159-171
    • Matell, M.S.1    Meek, W.H.2
  • 55
    • 0030026069 scopus 로고    scopus 로고
    • Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli
    • Mirenowicz, J., & Schultz, W. (1996). Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. Nature, 379, 449-451.
    • (1996) Nature , vol.379 , pp. 449-451
    • Mirenowicz, J.1    Schultz, W.2
  • 56
    • 0029981543 scopus 로고    scopus 로고
    • A framework for mesencephalic dopamine systems based on predictive Hebbian learning
    • Montague, P. R., Dayan, P., & Sejnowski, T. J. (1996). A framework for mesencephalic dopamine systems based on predictive Hebbian learning. Journal of Neuroscience, 16, 1936-1947.
    • (1996) Journal of Neuroscience , vol.16 , pp. 1936-1947
    • Montague, P.R.1    Dayan, P.2    Sejnowski, T.J.3
  • 57
    • 0027684215 scopus 로고
    • Prioritized sweeping: Reinforcement learning with less data and less real time
    • Moore, A. W., & Atkeson, C. G. (1993). Prioritized sweeping: Reinforcement learning with less data and less real time. Machine Learning, 13, 103-130.
    • (1993) Machine Learning , vol.13 , pp. 103-130
    • Moore, A.W.1    Atkeson, C.G.2
  • 58
    • 3242673464 scopus 로고    scopus 로고
    • Coincident but distinct messages of midbrain dopamine and striatal tonically active neurons
    • Morris, G., Arkadir, D., Nevet, A., Vaadia, E., & Bergman, H. (2004). Coincident but distinct messages of midbrain dopamine and striatal tonically active neurons. Neuron, 43, 133-143.
    • (2004) Neuron , vol.43 , pp. 133-143
    • Morris, G.1    Arkadir, D.2    Nevet, A.3    Vaadia, E.4    Bergman, H.5
  • 59
    • 33745774340 scopus 로고    scopus 로고
    • How fast to work: Response vigor, motivation, and tonic dopamine
    • L. K. Saul, Y. Weiss, & L. Bottou (Eds.). Cambridge, MA: MIT Press
    • Niv, Y., Daw, N. D., & Dayan, P. (2005). How fast to work: Response vigor, motivation, and tonic dopamine. In L. K. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in neural information processing systems, 17. Cambridge, MA: MIT Press.
    • (2005) Advances in Neural Information Processing Systems , vol.17
    • Niv, Y.1    Daw, N.D.2    Dayan, P.3
  • 62
    • 1942520195 scopus 로고    scopus 로고
    • Dissociable roles of ventral and dorsal striatum in instrumental conditioning
    • O'Doherty, J., Dayan, P., Schultz, J., Deichmann, R., Fristen, K., & Dolan, R. J. (2004). Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science, 304, 452-154.
    • (2004) Science , vol.304 , pp. 452-1154
    • O'Doherty, J.1    Dayan, P.2    Schultz, J.3    Deichmann, R.4    Fristen, K.5    Dolan, R.J.6
  • 63
    • 0030722121 scopus 로고    scopus 로고
    • Cognitive planning in humans: Neuropsychological, neuroanatomical and neuropharmacological perspectives
    • Owen, A. M. (1997). Cognitive planning in humans: Neuropsychological, neuroanatomical and neuropharmacological perspectives. Progress in Neurobiology, 53, 431-150.
    • (1997) Progress in Neurobiology , vol.53 , pp. 431-1150
    • Owen, A.M.1
  • 64
    • 21544455210 scopus 로고    scopus 로고
    • Dopamine cells respond to predicted events during classical conditioning: Evidence for eligibility traces in the reward-learning network
    • Pan, W. X., Schmidt, R., Wickens, J., & Hyland, B. (2005). Dopamine cells respond to predicted events during classical conditioning: Evidence for eligibility traces in the reward-learning network. Journal of Neuroscience, 25, 6235-6242.
    • (2005) Journal of Neuroscience , vol.25 , pp. 6235-6242
    • Pan, W.X.1    Schmidt, R.2    Wickens, J.3    Hyland, B.4
  • 66
    • 23844511443 scopus 로고    scopus 로고
    • Hierarchical Bayesian inference in networks of spiking neurons
    • L. K. Saul, Y. Weiss, & L. Bottou (Eds.). Cambridge, MA: MIT Press
    • Rao, R. P. N. (2004). Hierarchical Bayesian inference in networks of spiking neurons. In L. K. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in neural information processing systems, 17. Cambridge, MA: MIT Press.
    • (2004) Advances in Neural Information Processing Systems , vol.17
    • Rao, R.P.N.1
  • 68
    • 0242440823 scopus 로고    scopus 로고
    • Correlated coding of motivation and outcome of decision by dopamine neurons
    • Satoh, T., Nakai, S., Sato, T., & Kimura, M. (2003). Correlated coding of motivation and outcome of decision by dopamine neurons. Journal of Neuroscience, 23, 9913-9923.
    • (2003) Journal of Neuroscience , vol.23 , pp. 9913-9923
    • Satoh, T.1    Nakai, S.2    Sato, T.3    Kimura, M.4
  • 69
    • 0031867046 scopus 로고    scopus 로고
    • Predictive reward signal of dopamine neurons
    • Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neuro-physiology, 80, 1-27.
    • (1998) Journal of Neuro-physiology , vol.80 , pp. 1-27
    • Schultz, W.1
  • 70
    • 0027468102 scopus 로고
    • Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task
    • Schultz, W., Apicella, P., & Ljungberg, T. (1993). Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. Journal of Neuroscience, 13, 900-913.
    • (1993) Journal of Neuroscience , vol.13 , pp. 900-913
    • Schultz, W.1    Apicella, P.2    Ljungberg, T.3
  • 71
    • 0030896968 scopus 로고    scopus 로고
    • A neural substrate of prediction and reward
    • Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275, 1593-1599.
    • (1997) Science , vol.275 , pp. 1593-1599
    • Schultz, W.1    Dayan, P.2    Montague, P.R.3
  • 72
    • 0025216214 scopus 로고
    • Dopamine neurons of the monkey midbrain: Contingencies of responses to stimuli eliciting immediate behavioral reactions
    • Schultz, W., & Romo, R. (1990). Dopamine neurons of the monkey midbrain: Contingencies of responses to stimuli eliciting immediate behavioral reactions. Journal of Neurophysiology, 63, 607-624.
    • (1990) Journal of Neurophysiology , vol.63 , pp. 607-624
    • Schultz, W.1    Romo, R.2
  • 73
    • 13244284646 scopus 로고    scopus 로고
    • A computational model of the functional role of the ventral-striatal D2 receptor in the expression of previously acquired behaviors
    • Smith, A. J., Decker, S., & Kapur, S. (2005). A computational model of the functional role of the ventral-striatal D2 receptor in the expression of previously acquired behaviors. Neural Computation, 17, 361-395.
    • (2005) Neural Computation , vol.17 , pp. 361-395
    • Smith, A.J.1    Decker, S.2    Kapur, S.3
  • 77
    • 0035726809 scopus 로고    scopus 로고
    • Anticipatory responses of dopamine neurons and cortical neurons reproduced by internal model
    • Suri, R. E. (2001). Anticipatory responses of dopamine neurons and cortical neurons reproduced by internal model. Experimental Brain Research, 140, 234-240.
    • (2001) Experimental Brain Research , vol.140 , pp. 234-240
    • Suri, R.E.1
  • 78
    • 0031854385 scopus 로고    scopus 로고
    • Learning of sequential movements with dopamine-like reinforcement signal in neural network model
    • Suri, R. E., & Schultz, W. (1998). Learning of sequential movements with dopamine-like reinforcement signal in neural network model. Experimental Brain Research, 121, 350-354.
    • (1998) Experimental Brain Research , vol.121 , pp. 350-354
    • Suri, R.E.1    Schultz, W.2
  • 79
    • 0032930935 scopus 로고    scopus 로고
    • A neural network with dopamine-like reinforcement signal that learns a spatial delayed response task
    • Suri, R. E., & Schultz, W. (1999). A neural network with dopamine-like reinforcement signal that learns a spatial delayed response task. Neuroscience, 91, 871-890.
    • (1999) Neuroscience , vol.91 , pp. 871-890
    • Suri, R.E.1    Schultz, W.2
  • 81
    • 33847202724 scopus 로고
    • Learning to predict by the method of temporal differences
    • Sutton, R. S. (1988). Learning to predict by the method of temporal differences. Machine Learning, 3, 9-44.
    • (1988) Machine Learning , vol.3 , pp. 9-44
    • Sutton, R.S.1
  • 82
    • 85132026293 scopus 로고
    • Integrated architectures for learning, planning, and reacting based on approximating dynamic programming
    • San Mateo, CA: Morgan Kaufmann
    • Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting based on approximating dynamic programming. In Proceedings of the Seventh International Conference on Machine Learning, (pp. 216-224). San Mateo, CA: Morgan Kaufmann.
    • (1990) Proceedings of the Seventh International Conference on Machine Learning , pp. 216-224
    • Sutton, R.S.1
  • 85
    • 0742306447 scopus 로고    scopus 로고
    • Kalman filter control embedded into the reinforcement learning framework
    • Szita, I., & Lorincz, S. (2004). Kalman filter control embedded into the reinforcement learning framework. Neural Computation, 16, 491-499.
    • (2004) Neural Computation , vol.16 , pp. 491-499
    • Szita, I.1    Lorincz, S.2
  • 86
    • 0345255891 scopus 로고    scopus 로고
    • Coding of predicted reward omission by dopamine neurons in a conditioned inhibition paradigm
    • Tobler, P., Dickinson, A., & Schultz, W. (2003). Coding of predicted reward omission by dopamine neurons in a conditioned inhibition paradigm. Journal of Neuro-science, 23, 10402-10410.
    • (2003) Journal of Neuro-science , vol.23 , pp. 10402-10410
    • Tobler, P.1    Dickinson, A.2    Schultz, W.3
  • 87
    • 0036832957 scopus 로고    scopus 로고
    • On average versus discounted reward temporal-difference learning
    • Tsitsiklis, J. N., & Van Roy, B. (2002). On average versus discounted reward temporal-difference learning. Machine Learning, 49, 179-191.
    • (2002) Machine Learning , vol.49 , pp. 179-191
    • Tsitsiklis, J.N.1    Van Roy, B.2
  • 88
    • 1642404961 scopus 로고    scopus 로고
    • Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli
    • Ungless, M. A., Magill, P. J., & Bolam, J. P. (2004). Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science, 303, 2040-2042.
    • (2004) Science , vol.303 , pp. 2040-2042
    • Ungless, M.A.1    Magill, P.J.2    Bolam, J.P.3
  • 90
    • 0035811464 scopus 로고    scopus 로고
    • Dopamine responses comply with basic assumptions of formal learning theory
    • Waelti, P., Dickinson, A., & Schultz, W. (2001). Dopamine responses comply with basic assumptions of formal learning theory. Nature, 412, 43-48.
    • (2001) Nature , vol.412 , pp. 43-48
    • Waelti, P.1    Dickinson, A.2    Schultz, W.3
  • 91
    • 0028520185 scopus 로고
    • Second-order conditioning and Pavlovian conditioned inhibition: Operational similarities and differences
    • Yin, H., Barnet, R. C., & Miller, R. R. (1994). Second-order conditioning and Pavlovian conditioned inhibition: Operational similarities and differences. Journal of Experimental Psychology: Animal Behavior Processes, 20, 419-428.
    • (1994) Journal of Experimental Psychology: Animal Behavior Processes , vol.20 , pp. 419-428
    • Yin, H.1    Barnet, R.C.2    Miller, R.R.3
  • 92
    • 33745791519 scopus 로고    scopus 로고
    • Probabilistic computation in spiking neurons
    • L. K. Saul, Y. Weiss, & L. Bottou (Eds.). Cambridge, MA: MIT Press
    • Zemel, R., Huys, Q., Natarajan, R., & Dayan, P. (2004). Probabilistic computation in spiking neurons. In L. K. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in neural information processing systems, 17. Cambridge, MA: MIT Press.
    • (2004) Advances in Neural Information Processing Systems , vol.17
    • Zemel, R.1    Huys, Q.2    Natarajan, R.3    Dayan, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.