메뉴 건너뛰기




Volumn 34, Issue 3, 2010, Pages 229-239

Prediction of clinical conditions after coronary bypass surgery using dynamic data analysis

Author keywords

Binary probabilistic classifier; Cepstral coefficients; Gaussian processes; Intensive care; Time series analysis

Indexed keywords

ADULT; AGED; ARTICLE; CEPSTRAL COEFFICIENT; COMPUTER PREDICTION; CONSTANTS AND COEFFICIENTS; CONTROLLED STUDY; CORONARY ARTERY BYPASS SURGERY; CRITICALLY ILL PATIENT; DATA ANALYSIS; DATA EXTRACTION; DYNAMIC DATA ANALYSIS; FEMALE; HEART RATE; HOSPITAL ADMISSION; HUMAN; INTENSIVE CARE; KERNEL METHOD; LOGISTIC REGRESSION ANALYSIS; LUNG PRESSURE; MACHINE LEARNING; MAJOR CLINICAL STUDY; MALE; MULTIVARIATE AUTOREGRESSIVE MODEL; MULTIVARIATE LOGISTIC REGRESSION ANALYSIS; NORMAL DISTRIBUTION; OXYGEN SATURATION; PATIENT CODING; PREDICTION; STATISTICAL MODEL; SYSTOLIC BLOOD PRESSURE; TIME SERIES ANALYSIS; APACHE; BIOLOGICAL MODEL; CLASSIFICATION; CORONARY ARTERY BYPASS GRAFT; CRITICAL ILLNESS; MATHEMATICAL COMPUTING; MIDDLE AGED; MONITORING; POSTOPERATIVE CARE; RECEIVER OPERATING CHARACTERISTIC;

EID: 77954068190     PISSN: 01485598     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10916-008-9234-9     Document Type: Article
Times cited : (9)

References (57)
  • 1
    • 34249729430 scopus 로고    scopus 로고
    • Analysis of physiologic alterations in intensive care unit patients and their relationship with mortality
    • doi:10.1016/j.jcrc.2006.09.005.
    • Rivera-Fernandez, R., Nap, R., Vazquez-Mata, G., and Miranda, D. R., Analysis of Physiologic Alterations in Intensive Care Unit Patients and Their Relationship With Mortality. J. Crit. Care. 22:120-128, 2007. doi:10.1016/j.jcrc.2006.09.005.
    • (2007) J. Crit. Care , vol.22 , pp. 120-128
    • Rivera-Fernandez, R.1    Nap, R.2    Vazquez-Mata, G.3    Miranda, D.R.4
  • 2
    • 0035070978 scopus 로고    scopus 로고
    • Prognostic models in medicine-ai and statistical approaches
    • Abu-Hanna, A., and Lucas, P. J. F., Prognostic Models in Medicine-Ai and Statistical Approaches. Methods Inf. Med. 40:1-5, 2001.
    • (2001) Methods Inf. Med. , vol.40 , pp. 1-5
    • Abu-Hanna, A.1    Lucas, P.J.F.2
  • 4
    • 0024554734 scopus 로고
    • How well can physicians estimate mortality in a medical intensive-care unit
    • doi:10.1177/0272989X8900900207
    • Mcclish, D. K., and Powell, S. H., How Well Can Physicians Estimate Mortality in a Medical Intensive-Care Unit. Med. Decis. Making. 9:125-132, 1989. doi:10.1177/0272989X8900900207.
    • (1989) Med. Decis. Making. , vol.9 , pp. 125-132
    • Mcclish, D.K.1    Powell, S.H.2
  • 5
    • 33845455091 scopus 로고    scopus 로고
    • Temporal abstraction in intelligent clinical data analysis: A survey
    • DOI 10.1016/j.artmed.2006.08.002, PII S0933365706001345
    • Stacey, M., and Mcgregor, C., Temporal Abstraction in Intelligent Clinical Data Analysis: A Survey. Artif. Intell. Med. 39:1-24, 2007. doi:10.1016/j.artmed.2006.08.002. (Pubitemid 44895642)
    • (2007) Artificial Intelligence in Medicine , vol.39 , Issue.1 , pp. 1-24
    • Stacey, M.1    McGregor, C.2
  • 6
    • 33845385926 scopus 로고    scopus 로고
    • Combining neural network models for automated diagnostic systems
    • DOI 10.1007/s10916-006-9034-z
    • Ubeyli, E. D., Combining Neural Network Models for Automated Diagnostic Systems. J. Med. Syst. 30:483-488, 2006. doi:10.1007/s10916-006-9034-z. (Pubitemid 44900148)
    • (2006) Journal of Medical Systems , vol.30 , Issue.6 , pp. 483-488
    • Ubeyli, E.D.1
  • 7
    • 0030929984 scopus 로고    scopus 로고
    • A neural network application to classification of health status of HIV/AIDS patients
    • DOI 10.1023/A:1022890223449
    • Lee, N. K., and Lee, C. W., A Neural Network Application to Classification of Health Status of Hiv/Aids Patients. J. Med. Syst. 21:87-97, 1997. doi:10.1023/A:1022890223449. (Pubitemid 27385510)
    • (1997) Journal of Medical Systems , vol.21 , Issue.2 , pp. 87-97
    • Kwak, N.K.1    Lee, C.2
  • 8
    • 24044474732 scopus 로고    scopus 로고
    • Artificial neural network based epileptic detection using time-domain and frequency-domain features
    • DOI 10.1007/s10916-005-6133-1
    • Srinivasan, V., Eswaran, C., and Sriraam, N., Artificial Neural Network Based Epileptic Detection Using Time-Domain and Frequency-Domain Features. J. Med. Syst. 29:647-660, 2005. doi:10.1007/s10916-005-6133-1. (Pubitemid 41225146)
    • (2005) Journal of Medical Systems , vol.29 , Issue.6 , pp. 647-660
    • Srinivasan, V.1    Eswaran, C.2    Sriraam, A.N.3
  • 9
    • 33646775697 scopus 로고    scopus 로고
    • Individual and time-varying model between sleep and thermoregulation
    • doi:10.1111/j.1365-2869.2006.00519.x
    • Quanten, S., De Valck, E., Mairesse, O., Cluydts, R., and Berckmans, D., Individual and Time-Varying Model Between Sleep and Thermoregulation. J. Sleep Res. 15:243-244, 2006. doi:10.1111/j.1365-2869.2006.00519.x.
    • (2006) J. Sleep Res. , vol.15 , pp. 243-244
    • Quanten, S.1    De Valck, E.2    Mairesse, O.3    Cluydts, R.4    Berckmans, D.5
  • 10
    • 33744941320 scopus 로고    scopus 로고
    • Daily evaluation of organ function during renal replacement therapy in intensive care unit patients with acute renal failure
    • DOI 10.1016/j.jcrc.2005.07.003, PII S0883944106000396
    • Cappi, S. B., Sakr, Y., and Vincent, J. L., Daily Evaluation of Organ Function During Renal Replacement Therapy in Intensive Care Unit Patients With Acute Renal Failure. J. Crit. Care. 21:179-183, 2006. doi:10.1016/j.jcrc.2005. 07.003. (Pubitemid 43850199)
    • (2006) Journal of Critical Care , vol.21 , Issue.2 , pp. 179-183
    • Cappi, S.B.1    Sakr, Y.2    Vincent, J.-L.3
  • 11
    • 0023679154 scopus 로고
    • Predicting outcome among intensive-care unit patients using computerized trend analysis of daily apache-ii Scores Corrected for organ system failure
    • doi:10.1007/ BF00263530
    • Chang, R. W. S., Jacobs, S., and Lee, B., Predicting Outcome Among Intensive-Care Unit Patients Using Computerized Trend Analysis of Daily Apache-Ii Scores Corrected for Organ System Failure. Intensive Care Med. 14:558-566, 1988. doi:10.1007/ BF00263530.
    • (1988) Intensive Care Med. , vol.14 , pp. 558-566
    • Chang, R.W.S.1    Jacobs, S.2    Lee, B.3
  • 12
    • 0023904584 scopus 로고
    • Predicting deaths among intensive-care unit patients
    • Chang, R. W. S., Jacobs, S., Lee, B., and Pace, N., Predicting Deaths Among Intensive-Care Unit Patients. Crit. Care Med. 16:34-42, 1988.
    • (1988) Crit. Care Med. , vol.16 , pp. 34-42
    • Chang, R.W.S.1    Jacobs, S.2    Lee, B.3    Pace, N.4
  • 13
    • 0024372162 scopus 로고
    • Individual outcome prediction models for intensive-care units
    • doi:10.1016/ S0140-6736(89)90193-90201
    • Chang, R. W. S., Individual Outcome Prediction Models for Intensive-Care Units. Lancet. 2:143-146, 1989. doi:10.1016/ S0140-6736(89)90193-90201
    • (1989) Lancet , vol.2 , pp. 143-146
    • Chang, R.W.S.1
  • 14
    • 12944280269 scopus 로고    scopus 로고
    • Dynamic microsimulation to model multiple outcomes in cohorts of critically Ill patients
    • doi:10.1007/s00134-004-2456-2465
    • Clermont, G., Kaplan, V., Moreno, R., Vincent, J. L., Linde-Zwirble, W. T., Van Hout, B. et al, Dynamic Microsimulation to Model Multiple Outcomes in Cohorts of Critically Ill Patients. Intensive Care Med. 30:2237-2244, 2004. doi:10.1007/s00134- 004-2456-2465
    • (2004) Intensive Care Med. , vol.30 , pp. 2237-2244
    • Clermont, G.1    Kaplan, V.2    Moreno, R.3    Vincent, J.L.4    Linde-Zwirble, W.T.5    Van Hout, B.6
  • 15
    • 43049180282 scopus 로고    scopus 로고
    • Discovery and integration of univariate patterns from daily individual organ-Failure Scores for intensive care mortality prediction
    • doi:10.1016/j.artmed.2008.01.002
    • Toma, T., Abu-Hanna, A., and Bosman, R. J., Discovery and Integration of Univariate Patterns From Daily Individual Organ- Failure Scores for Intensive Care Mortality Prediction. Artif. Intell. Med. 43:47-60, 2008. doi:10.1016/j.artmed.2008.01.002.
    • (2008) Artif. Intell. Med. , vol.43 , pp. 47-60
    • Toma, T.1    Abu-Hanna, A.2    Bosman, R.J.3
  • 16
    • 36048986113 scopus 로고    scopus 로고
    • Discovery and inclusion of SOFA score episodes in mortality prediction
    • DOI 10.1016/j.jbi.2007.03.007, PII S153204640700024X, Intelligent Data Analysis in Biomedicine
    • Toma, T., Abu-Hanna, A., and Bosman, R. J., Discovery and Inclusion of Sofa Score Episodes inMortality Prediction. J. Biomed. Inform. 40:649-660, 2007. doi:10.1016/j.jbi.2007.03.007. (Pubitemid 350088615)
    • (2007) Journal of Biomedical Informatics , vol.40 , Issue.6 , pp. 649-660
    • Toma, T.1    Abu-Hanna, A.2    Bosman, R.-J.3
  • 17
    • 0031647499 scopus 로고    scopus 로고
    • Statistical pattern detection in univariate time series of intensive care on-line monitoring data
    • DOI 10.1007/s001340050767
    • Imhoff, M., Bauer, M., Gather, U., and Lohlein, D., Statistical Pattern Detection in Univariate Time Series of Intensive Care on- Line Monitoring Data. Intensive Care Med. 24:121305-121314, 1998. doi:10.1007/s001340050767. (Pubitemid 28564455)
    • (1998) Intensive Care Medicine , vol.24 , Issue.12 , pp. 1305-1314
    • Imhoff, M.1    Bauer, M.2    Gather, U.3    Lohlein, D.4
  • 18
    • 0028954145 scopus 로고
    • Time-Series analysis of long-term ambulatory myocardial-ischemia-effects of beta-adrenergic and calcium-channel blockade
    • doi:10.1016/0002-8703(95)90315-1
    • Lambert, C. R., Raymenants, E., and Pepine, C. J., Time-Series Analysis of Long-Term Ambulatory Myocardial-Ischemia- Effects of Beta-Adrenergic and Calcium-Channel Blockade. Am. Heart J. 129:677-684, 1995. doi:10.1016/0002- 8703(95)90315-1.
    • (1995) Am. Heart J. , vol.129 , pp. 677-684
    • Lambert, C.R.1    Raymenants, E.2    Pepine, C.J.3
  • 19
    • 0008402220 scopus 로고
    • On use of a linear model for identification of feedback systems
    • Akaike, H., On Use of a Linear Model for Identification of Feedback Systems. Ann. I. Stat. Math. 20:425-438, 1968.
    • (1968) Ann. I. Stat. Math. , vol.20 , pp. 425-438
    • Akaike, H.1
  • 21
    • 0023847601 scopus 로고
    • Application of multivariate autoregressive modeling for analysis of immunological networks in man
    • doi:10.1016/0898-1221(88)90125-3
    • Wada, T., Akaike, H., Yamada, Y., and Udagawa, E., Application of Multivariate Autoregressive Modeling for Analysis of Immunological Networks in Man. Comput. Math. Appl. 15:713-722, 1988. doi:10.1016/0898-1221(88)90125-3.
    • (1988) Comput. Math. Appl. , vol.15 , pp. 713-722
    • Wada, T.1    Akaike, H.2    Yamada, Y.3    Udagawa, E.4
  • 22
    • 0027625995 scopus 로고
    • Application of multivariate autoregressive modeling for analyzing chloride potassium bicarbonate relationship in the body
    • doi:10.1007/BF02446657
    • Wada, T., Sato, S., and Matsuo, N., Application of Multivariate Autoregressive Modeling for Analyzing Chloride Potassium Bicarbonate Relationship in the Body. Med. Biol. Eng. Comput. 31:S99-S107, 1993. doi:10.1007/BF02446657.
    • (1993) Med. Biol. Eng. Comput. , vol.31
    • Wada, T.1    Sato, S.2    Matsuo, N.3
  • 23
    • 0346167049 scopus 로고
    • Clinical usefulness of multivariate autoregressive: (Ar) Modeling as a tool for analyzing Lymphocyte-T subset fluctuations
    • doi:10.1016/0895-7177(90)90254-K
    • Wada, T., Yamada, H., Inoue, H., Iso, T., Udagawa, E., and Kuroda, S., Clinical Usefulness of Multivariate Autoregressive: (Ar) Modeling as a Tool for Analyzing Lymphocyte-T Subset Fluctuations. Math. Comput. Model. 14:610-613, 1990. doi:10.1016/0895-7177(90)90254-K.
    • (1990) Math. Comput. Model , vol.14 , pp. 610-613
    • Wada, T.1    Yamada, H.2    Inoue, H.3    Iso, T.4    Udagawa, E.5    Kuroda, S.6
  • 24
    • 0031205140 scopus 로고    scopus 로고
    • Recognition of individual heart rate patterns with cepstral vectors
    • doi:10.1007/s004220050371
    • Curcie, D. J., and Craelius, W., Recognition of Individual Heart Rate Patterns With Cepstral Vectors. Biol. Cybern. 77:103-109, 1997. doi:10.1007/s004220050371.
    • (1997) Biol. Cybern. , vol.77 , pp. 103-109
    • Curcie, D.J.1    Craelius, W.2
  • 25
    • 0032895111 scopus 로고    scopus 로고
    • Selected techniques for data mining in medicine
    • DOI 10.1016/S0933-3657(98)00062-1, PII S0933365798000621
    • Lavrac, N., Selected techniques for data mining in medicine. Artif. Intell. Med. 16:3-23, 1999. doi:10.1016/S0933-3657(98)00062-1. (Pubitemid 29166882)
    • (1999) Artificial Intelligence in Medicine , vol.16 , Issue.1 , pp. 3-23
    • Lavrac, N.1
  • 28
    • 0036754616 scopus 로고    scopus 로고
    • Analysis of respiratory pressure-volume curves in intensive care medicine using inductive machine learning
    • doi:10.1016/S0933-3657(02) 00053-2
    • Ganzert, S., Guttmann, J., Kersting, K., Kuhlen, R., Putensen, C., Sydow, M. et al, Analysis of respiratory pressure-volume curves in intensive care medicine using inductive machine learning. Artif. Intell. Med. 26:1-269-286, 2002. doi:10.1016/S0933-3657(02) 00053-2.
    • (2002) Artif. Intell. Med. , vol.26 , pp. 1269-1286
    • Ganzert, S.1    Guttmann, J.2    Kersting, K.3    Kuhlen, R.4    Putensen, C.5    Sydow, M.6
  • 30
    • 0036591372 scopus 로고    scopus 로고
    • Extending ventilation duration estimations approach from adult to neonatal intensive care patients using artificial neural networks
    • DOI 10.1109/TITB.2002.1006305, PII S1089777102049051
    • Tong, Y., Frize, M., and Walker, R., Extending ventilator duration estimations approach from adult to neonatal intensive care patients using artificial neural networks. IEEE T. Inf. Technol. B. 6:2188-2191, 2002. doi:10.1109/TITB.2002.1006305. (Pubitemid 34799099)
    • (2002) IEEE Transactions on Information Technology in Biomedicine , vol.6 , Issue.2 , pp. 188-191
    • Tong, Y.1    Frize, M.2    Walker, R.3
  • 33
    • 0036649978 scopus 로고    scopus 로고
    • A survey of temporal knowledge discovery paradigms and methods
    • doi:10.1109/TKDE.2002.1019212
    • Roddick, J. F., and Spiliopoulou, M., A survey of temporal knowledge discovery paradigms and methods. IEEE Trans. Knowl. Data Eng. 14:750-767, 2002. doi:10.1109/TKDE.2002. 1019212.
    • (2002) IEEE Trans. Knowl. Data Eng. , vol.14 , pp. 750-767
    • Roddick, J.F.1    Spiliopoulou, M.2
  • 35
    • 34548277939 scopus 로고    scopus 로고
    • Temporal abstraction for feature extraction: A comparative case study in prediction from intensive care monitoring data
    • doi:10.1016/j. artmed.2007.06.003
    • Verduijn, M., Sacchi, L., Peek, N., Bellazzi, R., de Jonge, E., and de Mol, B. A., Temporal abstraction for feature extraction: A comparative case study in prediction from intensive care monitoring data. Artif. Intell. Med. 41:11-12, 2007. doi:10.1016/j. artmed.2007.06.003.
    • (2007) Artif. Intell. Med. , vol.41 , pp. 11-12
    • Verduijn, M.1    Sacchi, L.2    Peek, N.3    Bellazzi, R.4    De Jonge, E.5    De Mol, B.A.6
  • 36
    • 84883658864 scopus 로고    scopus 로고
    • Temporal abstractions for interpreting diabetic patients monitoring data
    • doi:10.1016/S1088-467X(98)00020-1
    • Bellazzi, R., Larizza, C., and Riva, A., Temporal abstractions for interpreting diabetic patients monitoring data. Intell. Data Anal. 2:1-15, 1998. doi:10.1016/S1088-467X(98)00020-1.
    • (1998) Intell. Data Anal. , vol.2 , pp. 1-15
    • Bellazzi, R.1    Larizza, C.2    Riva, A.3
  • 37
    • 21644434168 scopus 로고    scopus 로고
    • Use of support vector machines and neural network in diagnosis of neuromuscular disorders
    • DOI 10.1007/s10916-005-5187-4
    • Guler, N. F., and Kocer, S., Use of Support Vector Machines and Neural Network in Diagnosis of Neuromuscular Disorders. J. Med. Syst. 29:271-284, 2005. doi:10.1007/s10916-005-5187-4. (Pubitemid 40931930)
    • (2005) Journal of Medical Systems , vol.29 , Issue.3 , pp. 271-284
    • Guler, N.F.1    Kocer, S.2
  • 38
    • 15544380168 scopus 로고    scopus 로고
    • Classification of multivariate time series and structured data using constructive induction
    • DOI 10.1007/s10994-005-5826-5
    • Kadous, M. W., and Sammut, C., Classification of multivariate time series and structured data using constructive induction. Mach. Learn. 58:179-216, 2005. doi:10.1007/s10994-005-5826-5. (Pubitemid 40400637)
    • (2005) Machine Learning , vol.58 , Issue.2-3 , pp. 179-216
    • Kadous, M.W.1    Sammut, C.2
  • 39
    • 0034033522 scopus 로고    scopus 로고
    • Parsonnet score is a good predictor of the duration of intensive care unit stay following cardiac surgery
    • doi:10.1136/heart.83.4.429
    • Lawrence, D. R., Valencia, O., Smith, E. E. J., Murday, A., and Treasure, T., Parsonnet Score Is a Good Predictor of the Duration of Intensive Care Unit Stay Following Cardiac Surgery. Heart. 83:429-432, 2002. doi:10.1136/heart.83.4. 429.
    • (2002) Heart , vol.83 , pp. 429-432
    • Lawrence, D.R.1    Valencia, O.2    Smith, E.E.J.3    Murday, A.4    Treasure, T.5
  • 42
    • 0002537922 scopus 로고    scopus 로고
    • Algorithm 808: ARFIT - A Matlab package for the estimation of parameters and eigenmodes of multivariate autoregressive models
    • DOI 10.1145/382043.382316
    • Schneider, T., and Neumaier, A., Algorithm 808: ARfit-A Matlab package for the estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Trans. Math. Softw. 27:58-65, 2001. doi:10.1145/382043.382316. (Pubitemid 33609115)
    • (2001) ACM Transactions on Mathematical Software , vol.27 , Issue.1 , pp. 58-65
    • Schneider, T.1    Neumaier, A.2
  • 45
    • 12444291490 scopus 로고    scopus 로고
    • Gaussian processes for machine learning
    • doi:10.1142/S0129065704001899
    • Seeger,M., Gaussian Processes for Machine Learning. Int. J. Neural Syst. 14:269-1106, 2004. doi:10.1142/S0129065704001899.
    • (2004) Int. J. Neural Syst. , vol.14 , pp. 269-1106
    • Seeger, M.1
  • 47
    • 0032289422 scopus 로고    scopus 로고
    • Bayesian classification with gaussian processes
    • doi:10.1109/34.735807
    • Williams, C. K. I., and Barber, D., Bayesian Classification with Gaussian Processes. IEEE T. Pattern. 20:121342-121351, 1998. doi:10.1109/34.735807.
    • (1998) IEEE T. Pattern , vol.20 , pp. 121342-121351
    • Williams, C.K.I.1    Barber, D.2
  • 51
    • 0034728368 scopus 로고    scopus 로고
    • On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology
    • doi:10.1002/(SICI) 1097-0258(20000229)19:4<541::AID-SIM355>3.0. CO;2-V
    • Schwarzer, G., Vach, W., and Schumacher, M., On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology. Stat. Med. 19:4541-561, 2000. doi:10.1002/(SICI) 1097-0258(20000229)19:43.0.CO;2-V.
    • (2000) Stat. Med. , vol.19 , pp. 4541-561
    • Schwarzer, G.1    Vach, W.2    Schumacher, M.3
  • 54
    • 0023710206 scopus 로고
    • Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach
    • doi:10.2307/2531595
    • DeLong, E. R., DeLong, D. M., and Clarke-Pearson, D. L., Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 44:3837-3845, 1988. doi:10.2307/2531595.
    • (1988) Biometrics , vol.44 , pp. 3837-3845
    • DeLong, E.R.1    DeLong, D.M.2    Clarke-Pearson, D.L.3
  • 56
    • 34548068067 scopus 로고    scopus 로고
    • Comparison of the levels of accuracy of an artificial neural network model and a logistic regression model for the diagnosis of acute appendicitis
    • DOI 10.1007/s10916-007-9077-9
    • Sakai, S., Kobayashi, K., Toyabe, S. I., Mandai, N., Kanda, T., and Akazawa, K., Comparison of the Levels of Accuracy of an Artificial Neural Network Model and a Logistic Regression Model for the Diagnosis of Acute Appendicitis. J. Med. Syst. 31:357-364, 2007. doi:10.1007/s10916-007-9077-9. (Pubitemid 47293323)
    • (2007) Journal of Medical Systems , vol.31 , Issue.5 , pp. 357-364
    • Sakai, S.1    Kobayashi, K.2    Toyabe, S.-I.3    Mandai, N.4    Kanda, T.5    Akazawa, K.6
  • 57
    • 21544452774 scopus 로고    scopus 로고
    • Prediction of minor head injured patients using logistic regression and MLP neural network
    • DOI 10.1007/s10916-005-5181-x
    • Erol, F. S., Uysal, H., Ergun, U., Barisci, N., Serhathoglu, S., and Hardalac, F., Prediction of Minor Head Injured Patients Using Logistic Regression and Mlp Neural Network. J. Med. Syst. 29:205-215, 2005. doi:10.1007/s10916-005-5181-x. (Pubitemid 40922808)
    • (2005) Journal of Medical Systems , vol.29 , Issue.3 , pp. 205-215
    • Erol, F.S.1    Uysal, H.2    Ergun, U.3    Barisci, N.4    Serhatlioglu, S.5    Hardalac, F.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.