-
1
-
-
34249729430
-
Analysis of physiologic alterations in intensive care unit patients and their relationship with mortality
-
doi:10.1016/j.jcrc.2006.09.005.
-
Rivera-Fernandez, R., Nap, R., Vazquez-Mata, G., and Miranda, D. R., Analysis of Physiologic Alterations in Intensive Care Unit Patients and Their Relationship With Mortality. J. Crit. Care. 22:120-128, 2007. doi:10.1016/j.jcrc.2006.09.005.
-
(2007)
J. Crit. Care
, vol.22
, pp. 120-128
-
-
Rivera-Fernandez, R.1
Nap, R.2
Vazquez-Mata, G.3
Miranda, D.R.4
-
2
-
-
0035070978
-
Prognostic models in medicine-ai and statistical approaches
-
Abu-Hanna, A., and Lucas, P. J. F., Prognostic Models in Medicine-Ai and Statistical Approaches. Methods Inf. Med. 40:1-5, 2001.
-
(2001)
Methods Inf. Med.
, vol.40
, pp. 1-5
-
-
Abu-Hanna, A.1
Lucas, P.J.F.2
-
3
-
-
33748323431
-
Prognosis in critical care
-
DOI 10.1146/annurev.bioeng.8.061505.095842
-
Ohno-Machado, L., Resnic, F. S., and Matheny, N. E., Prognosis in Critical Care. Annu. Rev. Biomed. Eng. 8:567-599, 2006. doi:10.1146/annurev. bioeng.8.061505.095842. (Pubitemid 44321385)
-
(2006)
Annual Review of Biomedical Engineering
, vol.8
, pp. 567-599
-
-
Ohno-Machado, L.1
Resnic, F.S.2
Matheny, M.E.3
-
4
-
-
0024554734
-
How well can physicians estimate mortality in a medical intensive-care unit
-
doi:10.1177/0272989X8900900207
-
Mcclish, D. K., and Powell, S. H., How Well Can Physicians Estimate Mortality in a Medical Intensive-Care Unit. Med. Decis. Making. 9:125-132, 1989. doi:10.1177/0272989X8900900207.
-
(1989)
Med. Decis. Making.
, vol.9
, pp. 125-132
-
-
Mcclish, D.K.1
Powell, S.H.2
-
5
-
-
33845455091
-
Temporal abstraction in intelligent clinical data analysis: A survey
-
DOI 10.1016/j.artmed.2006.08.002, PII S0933365706001345
-
Stacey, M., and Mcgregor, C., Temporal Abstraction in Intelligent Clinical Data Analysis: A Survey. Artif. Intell. Med. 39:1-24, 2007. doi:10.1016/j.artmed.2006.08.002. (Pubitemid 44895642)
-
(2007)
Artificial Intelligence in Medicine
, vol.39
, Issue.1
, pp. 1-24
-
-
Stacey, M.1
McGregor, C.2
-
6
-
-
33845385926
-
Combining neural network models for automated diagnostic systems
-
DOI 10.1007/s10916-006-9034-z
-
Ubeyli, E. D., Combining Neural Network Models for Automated Diagnostic Systems. J. Med. Syst. 30:483-488, 2006. doi:10.1007/s10916-006-9034-z. (Pubitemid 44900148)
-
(2006)
Journal of Medical Systems
, vol.30
, Issue.6
, pp. 483-488
-
-
Ubeyli, E.D.1
-
7
-
-
0030929984
-
A neural network application to classification of health status of HIV/AIDS patients
-
DOI 10.1023/A:1022890223449
-
Lee, N. K., and Lee, C. W., A Neural Network Application to Classification of Health Status of Hiv/Aids Patients. J. Med. Syst. 21:87-97, 1997. doi:10.1023/A:1022890223449. (Pubitemid 27385510)
-
(1997)
Journal of Medical Systems
, vol.21
, Issue.2
, pp. 87-97
-
-
Kwak, N.K.1
Lee, C.2
-
8
-
-
24044474732
-
Artificial neural network based epileptic detection using time-domain and frequency-domain features
-
DOI 10.1007/s10916-005-6133-1
-
Srinivasan, V., Eswaran, C., and Sriraam, N., Artificial Neural Network Based Epileptic Detection Using Time-Domain and Frequency-Domain Features. J. Med. Syst. 29:647-660, 2005. doi:10.1007/s10916-005-6133-1. (Pubitemid 41225146)
-
(2005)
Journal of Medical Systems
, vol.29
, Issue.6
, pp. 647-660
-
-
Srinivasan, V.1
Eswaran, C.2
Sriraam, A.N.3
-
9
-
-
33646775697
-
Individual and time-varying model between sleep and thermoregulation
-
doi:10.1111/j.1365-2869.2006.00519.x
-
Quanten, S., De Valck, E., Mairesse, O., Cluydts, R., and Berckmans, D., Individual and Time-Varying Model Between Sleep and Thermoregulation. J. Sleep Res. 15:243-244, 2006. doi:10.1111/j.1365-2869.2006.00519.x.
-
(2006)
J. Sleep Res.
, vol.15
, pp. 243-244
-
-
Quanten, S.1
De Valck, E.2
Mairesse, O.3
Cluydts, R.4
Berckmans, D.5
-
10
-
-
33744941320
-
Daily evaluation of organ function during renal replacement therapy in intensive care unit patients with acute renal failure
-
DOI 10.1016/j.jcrc.2005.07.003, PII S0883944106000396
-
Cappi, S. B., Sakr, Y., and Vincent, J. L., Daily Evaluation of Organ Function During Renal Replacement Therapy in Intensive Care Unit Patients With Acute Renal Failure. J. Crit. Care. 21:179-183, 2006. doi:10.1016/j.jcrc.2005. 07.003. (Pubitemid 43850199)
-
(2006)
Journal of Critical Care
, vol.21
, Issue.2
, pp. 179-183
-
-
Cappi, S.B.1
Sakr, Y.2
Vincent, J.-L.3
-
11
-
-
0023679154
-
Predicting outcome among intensive-care unit patients using computerized trend analysis of daily apache-ii Scores Corrected for organ system failure
-
doi:10.1007/ BF00263530
-
Chang, R. W. S., Jacobs, S., and Lee, B., Predicting Outcome Among Intensive-Care Unit Patients Using Computerized Trend Analysis of Daily Apache-Ii Scores Corrected for Organ System Failure. Intensive Care Med. 14:558-566, 1988. doi:10.1007/ BF00263530.
-
(1988)
Intensive Care Med.
, vol.14
, pp. 558-566
-
-
Chang, R.W.S.1
Jacobs, S.2
Lee, B.3
-
12
-
-
0023904584
-
Predicting deaths among intensive-care unit patients
-
Chang, R. W. S., Jacobs, S., Lee, B., and Pace, N., Predicting Deaths Among Intensive-Care Unit Patients. Crit. Care Med. 16:34-42, 1988.
-
(1988)
Crit. Care Med.
, vol.16
, pp. 34-42
-
-
Chang, R.W.S.1
Jacobs, S.2
Lee, B.3
Pace, N.4
-
13
-
-
0024372162
-
Individual outcome prediction models for intensive-care units
-
doi:10.1016/ S0140-6736(89)90193-90201
-
Chang, R. W. S., Individual Outcome Prediction Models for Intensive-Care Units. Lancet. 2:143-146, 1989. doi:10.1016/ S0140-6736(89)90193-90201
-
(1989)
Lancet
, vol.2
, pp. 143-146
-
-
Chang, R.W.S.1
-
14
-
-
12944280269
-
Dynamic microsimulation to model multiple outcomes in cohorts of critically Ill patients
-
doi:10.1007/s00134-004-2456-2465
-
Clermont, G., Kaplan, V., Moreno, R., Vincent, J. L., Linde-Zwirble, W. T., Van Hout, B. et al, Dynamic Microsimulation to Model Multiple Outcomes in Cohorts of Critically Ill Patients. Intensive Care Med. 30:2237-2244, 2004. doi:10.1007/s00134- 004-2456-2465
-
(2004)
Intensive Care Med.
, vol.30
, pp. 2237-2244
-
-
Clermont, G.1
Kaplan, V.2
Moreno, R.3
Vincent, J.L.4
Linde-Zwirble, W.T.5
Van Hout, B.6
-
15
-
-
43049180282
-
Discovery and integration of univariate patterns from daily individual organ-Failure Scores for intensive care mortality prediction
-
doi:10.1016/j.artmed.2008.01.002
-
Toma, T., Abu-Hanna, A., and Bosman, R. J., Discovery and Integration of Univariate Patterns From Daily Individual Organ- Failure Scores for Intensive Care Mortality Prediction. Artif. Intell. Med. 43:47-60, 2008. doi:10.1016/j.artmed.2008.01.002.
-
(2008)
Artif. Intell. Med.
, vol.43
, pp. 47-60
-
-
Toma, T.1
Abu-Hanna, A.2
Bosman, R.J.3
-
16
-
-
36048986113
-
Discovery and inclusion of SOFA score episodes in mortality prediction
-
DOI 10.1016/j.jbi.2007.03.007, PII S153204640700024X, Intelligent Data Analysis in Biomedicine
-
Toma, T., Abu-Hanna, A., and Bosman, R. J., Discovery and Inclusion of Sofa Score Episodes inMortality Prediction. J. Biomed. Inform. 40:649-660, 2007. doi:10.1016/j.jbi.2007.03.007. (Pubitemid 350088615)
-
(2007)
Journal of Biomedical Informatics
, vol.40
, Issue.6
, pp. 649-660
-
-
Toma, T.1
Abu-Hanna, A.2
Bosman, R.-J.3
-
17
-
-
0031647499
-
Statistical pattern detection in univariate time series of intensive care on-line monitoring data
-
DOI 10.1007/s001340050767
-
Imhoff, M., Bauer, M., Gather, U., and Lohlein, D., Statistical Pattern Detection in Univariate Time Series of Intensive Care on- Line Monitoring Data. Intensive Care Med. 24:121305-121314, 1998. doi:10.1007/s001340050767. (Pubitemid 28564455)
-
(1998)
Intensive Care Medicine
, vol.24
, Issue.12
, pp. 1305-1314
-
-
Imhoff, M.1
Bauer, M.2
Gather, U.3
Lohlein, D.4
-
18
-
-
0028954145
-
Time-Series analysis of long-term ambulatory myocardial-ischemia-effects of beta-adrenergic and calcium-channel blockade
-
doi:10.1016/0002-8703(95)90315-1
-
Lambert, C. R., Raymenants, E., and Pepine, C. J., Time-Series Analysis of Long-Term Ambulatory Myocardial-Ischemia- Effects of Beta-Adrenergic and Calcium-Channel Blockade. Am. Heart J. 129:677-684, 1995. doi:10.1016/0002- 8703(95)90315-1.
-
(1995)
Am. Heart J.
, vol.129
, pp. 677-684
-
-
Lambert, C.R.1
Raymenants, E.2
Pepine, C.J.3
-
19
-
-
0008402220
-
On use of a linear model for identification of feedback systems
-
Akaike, H., On Use of a Linear Model for Identification of Feedback Systems. Ann. I. Stat. Math. 20:425-438, 1968.
-
(1968)
Ann. I. Stat. Math.
, vol.20
, pp. 425-438
-
-
Akaike, H.1
-
20
-
-
0013600523
-
-
Academic Press, Inc., New York
-
Jones, R. W., Principles of biological regulation: an introduction to feedback systems. Academic Press, Inc., New York, p. 359, 1973.
-
(1973)
Principles of Biological Rregulation: An Introduction to Feedback Systems
, pp. 359
-
-
Jones, R.W.1
-
21
-
-
0023847601
-
Application of multivariate autoregressive modeling for analysis of immunological networks in man
-
doi:10.1016/0898-1221(88)90125-3
-
Wada, T., Akaike, H., Yamada, Y., and Udagawa, E., Application of Multivariate Autoregressive Modeling for Analysis of Immunological Networks in Man. Comput. Math. Appl. 15:713-722, 1988. doi:10.1016/0898-1221(88)90125-3.
-
(1988)
Comput. Math. Appl.
, vol.15
, pp. 713-722
-
-
Wada, T.1
Akaike, H.2
Yamada, Y.3
Udagawa, E.4
-
22
-
-
0027625995
-
Application of multivariate autoregressive modeling for analyzing chloride potassium bicarbonate relationship in the body
-
doi:10.1007/BF02446657
-
Wada, T., Sato, S., and Matsuo, N., Application of Multivariate Autoregressive Modeling for Analyzing Chloride Potassium Bicarbonate Relationship in the Body. Med. Biol. Eng. Comput. 31:S99-S107, 1993. doi:10.1007/BF02446657.
-
(1993)
Med. Biol. Eng. Comput.
, vol.31
-
-
Wada, T.1
Sato, S.2
Matsuo, N.3
-
23
-
-
0346167049
-
Clinical usefulness of multivariate autoregressive: (Ar) Modeling as a tool for analyzing Lymphocyte-T subset fluctuations
-
doi:10.1016/0895-7177(90)90254-K
-
Wada, T., Yamada, H., Inoue, H., Iso, T., Udagawa, E., and Kuroda, S., Clinical Usefulness of Multivariate Autoregressive: (Ar) Modeling as a Tool for Analyzing Lymphocyte-T Subset Fluctuations. Math. Comput. Model. 14:610-613, 1990. doi:10.1016/0895-7177(90)90254-K.
-
(1990)
Math. Comput. Model
, vol.14
, pp. 610-613
-
-
Wada, T.1
Yamada, H.2
Inoue, H.3
Iso, T.4
Udagawa, E.5
Kuroda, S.6
-
24
-
-
0031205140
-
Recognition of individual heart rate patterns with cepstral vectors
-
doi:10.1007/s004220050371
-
Curcie, D. J., and Craelius, W., Recognition of Individual Heart Rate Patterns With Cepstral Vectors. Biol. Cybern. 77:103-109, 1997. doi:10.1007/s004220050371.
-
(1997)
Biol. Cybern.
, vol.77
, pp. 103-109
-
-
Curcie, D.J.1
Craelius, W.2
-
25
-
-
0032895111
-
Selected techniques for data mining in medicine
-
DOI 10.1016/S0933-3657(98)00062-1, PII S0933365798000621
-
Lavrac, N., Selected techniques for data mining in medicine. Artif. Intell. Med. 16:3-23, 1999. doi:10.1016/S0933-3657(98)00062-1. (Pubitemid 29166882)
-
(1999)
Artificial Intelligence in Medicine
, vol.16
, Issue.1
, pp. 3-23
-
-
Lavrac, N.1
-
27
-
-
34250897965
-
Mining data from intensive care patients
-
doi:10.1016/j.aei.2006. 12.002
-
Ramon, J., Fierens, D., Güiza, F., Meyfroidt, G., Blockeel, H., Bruynooghe, M. et al, Mining data from intensive care patients. Adv. Eng. Inform. 21:3243-3256, 2007. doi:10.1016/j.aei.2006. 12.002.
-
(2007)
Adv. Eng. Inform.
, vol.21
, pp. 3243-3256
-
-
Ramon, J.1
Fierens, D.2
Güiza, F.3
Meyfroidt, G.4
Blockeel, H.5
Bruynooghe, M.6
-
28
-
-
0036754616
-
Analysis of respiratory pressure-volume curves in intensive care medicine using inductive machine learning
-
doi:10.1016/S0933-3657(02) 00053-2
-
Ganzert, S., Guttmann, J., Kersting, K., Kuhlen, R., Putensen, C., Sydow, M. et al, Analysis of respiratory pressure-volume curves in intensive care medicine using inductive machine learning. Artif. Intell. Med. 26:1-269-286, 2002. doi:10.1016/S0933-3657(02) 00053-2.
-
(2002)
Artif. Intell. Med.
, vol.26
, pp. 1269-1286
-
-
Ganzert, S.1
Guttmann, J.2
Kersting, K.3
Kuhlen, R.4
Putensen, C.5
Sydow, M.6
-
29
-
-
77954536149
-
Decision tree analysis of data from a neurological intensive care unit
-
Andrews, P., Sleeman, D., McQuatt, A., Corruble, V., Jones, P.A., Howells, T., et al., Decision tree analysis of data from a neurological intensive care unit. Proceedings of the international conference on Artificial Intelligence in Medicine. 1999.
-
(1999)
Proceedings of the International Conference on Artificial Intelligence in Medicine
-
-
Andrews, P.1
Sleeman, D.2
McQuatt, A.3
Corruble, V.4
Jones, P.A.5
Howells, T.6
-
30
-
-
0036591372
-
Extending ventilation duration estimations approach from adult to neonatal intensive care patients using artificial neural networks
-
DOI 10.1109/TITB.2002.1006305, PII S1089777102049051
-
Tong, Y., Frize, M., and Walker, R., Extending ventilator duration estimations approach from adult to neonatal intensive care patients using artificial neural networks. IEEE T. Inf. Technol. B. 6:2188-2191, 2002. doi:10.1109/TITB.2002.1006305. (Pubitemid 34799099)
-
(2002)
IEEE Transactions on Information Technology in Biomedicine
, vol.6
, Issue.2
, pp. 188-191
-
-
Tong, Y.1
Frize, M.2
Walker, R.3
-
31
-
-
34047142637
-
Support vector machine classification applied on weaning trials patients
-
Giraldo, B., Garde, A., Arizmendi, C., Jané, R., Benito, S., Diaz, I., Ballesteros, D., Support Vector Machine Classification Applied on Weaning Trials Patients. Proceedings of the 28th IEEE EMBS Annual International Conference. 5587-5590, 2006.
-
(2006)
Proceedings of the 28th IEEE EMBS Annual International Conference
, pp. 5587-5590
-
-
Giraldo, B.1
Garde, A.2
Arizmendi, C.3
Jané, R.4
Benito, S.5
Diaz, I.6
Ballesteros, D.7
-
32
-
-
36349007727
-
Gaussian process modeling of EEG for the Detection of Neonatal Seizures
-
Faul, S., Gregorcic, G., Boylan, G., Marnane, W., Lightbody, G., and Connolly, S., Gaussian Process Modeling of EEG for the Detection of Neonatal Seizures. IEEE T. Bio-med. Eng. 54:122151-122162, 2007.
-
(2007)
IEEE T. Bio-med. Eng.
, vol.54
, pp. 122151-122162
-
-
Faul, S.1
Gregorcic, G.2
Boylan, G.3
Marnane, W.4
Lightbody, G.5
Connolly, S.6
-
33
-
-
0036649978
-
A survey of temporal knowledge discovery paradigms and methods
-
doi:10.1109/TKDE.2002.1019212
-
Roddick, J. F., and Spiliopoulou, M., A survey of temporal knowledge discovery paradigms and methods. IEEE Trans. Knowl. Data Eng. 14:750-767, 2002. doi:10.1109/TKDE.2002. 1019212.
-
(2002)
IEEE Trans. Knowl. Data Eng.
, vol.14
, pp. 750-767
-
-
Roddick, J.F.1
Spiliopoulou, M.2
-
34
-
-
33745916784
-
Feature extraction for time series classification using discriminating wavelet coefficients
-
Advances in Neural Networks - ISNN 2006: Third International Symposium on Neural Networks, ISNN 2006, Proceedings
-
Zhang, H., Ho, T. B., Lin, M. -S., and Liang, X., Feature extraction for time series classification using discriminating wavelet coefficients. In: Wang, J., Yi, Z., Zurada, J. M., Lu, B. -L., and Yin, H. (Eds.), Proceedings of the third international symposium on neural networksSpringer, Berlin, pp. 1394-1399, 2006. (Pubitemid 44046284)
-
(2006)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.3971
, pp. 1394-1399
-
-
Zhang, H.1
Ho, T.B.2
Lin, M.-S.3
Liang, X.4
-
35
-
-
34548277939
-
Temporal abstraction for feature extraction: A comparative case study in prediction from intensive care monitoring data
-
doi:10.1016/j. artmed.2007.06.003
-
Verduijn, M., Sacchi, L., Peek, N., Bellazzi, R., de Jonge, E., and de Mol, B. A., Temporal abstraction for feature extraction: A comparative case study in prediction from intensive care monitoring data. Artif. Intell. Med. 41:11-12, 2007. doi:10.1016/j. artmed.2007.06.003.
-
(2007)
Artif. Intell. Med.
, vol.41
, pp. 11-12
-
-
Verduijn, M.1
Sacchi, L.2
Peek, N.3
Bellazzi, R.4
De Jonge, E.5
De Mol, B.A.6
-
36
-
-
84883658864
-
Temporal abstractions for interpreting diabetic patients monitoring data
-
doi:10.1016/S1088-467X(98)00020-1
-
Bellazzi, R., Larizza, C., and Riva, A., Temporal abstractions for interpreting diabetic patients monitoring data. Intell. Data Anal. 2:1-15, 1998. doi:10.1016/S1088-467X(98)00020-1.
-
(1998)
Intell. Data Anal.
, vol.2
, pp. 1-15
-
-
Bellazzi, R.1
Larizza, C.2
Riva, A.3
-
37
-
-
21644434168
-
Use of support vector machines and neural network in diagnosis of neuromuscular disorders
-
DOI 10.1007/s10916-005-5187-4
-
Guler, N. F., and Kocer, S., Use of Support Vector Machines and Neural Network in Diagnosis of Neuromuscular Disorders. J. Med. Syst. 29:271-284, 2005. doi:10.1007/s10916-005-5187-4. (Pubitemid 40931930)
-
(2005)
Journal of Medical Systems
, vol.29
, Issue.3
, pp. 271-284
-
-
Guler, N.F.1
Kocer, S.2
-
38
-
-
15544380168
-
Classification of multivariate time series and structured data using constructive induction
-
DOI 10.1007/s10994-005-5826-5
-
Kadous, M. W., and Sammut, C., Classification of multivariate time series and structured data using constructive induction. Mach. Learn. 58:179-216, 2005. doi:10.1007/s10994-005-5826-5. (Pubitemid 40400637)
-
(2005)
Machine Learning
, vol.58
, Issue.2-3
, pp. 179-216
-
-
Kadous, M.W.1
Sammut, C.2
-
39
-
-
0034033522
-
Parsonnet score is a good predictor of the duration of intensive care unit stay following cardiac surgery
-
doi:10.1136/heart.83.4.429
-
Lawrence, D. R., Valencia, O., Smith, E. E. J., Murday, A., and Treasure, T., Parsonnet Score Is a Good Predictor of the Duration of Intensive Care Unit Stay Following Cardiac Surgery. Heart. 83:429-432, 2002. doi:10.1136/heart.83.4. 429.
-
(2002)
Heart
, vol.83
, pp. 429-432
-
-
Lawrence, D.R.1
Valencia, O.2
Smith, E.E.J.3
Murday, A.4
Treasure, T.5
-
40
-
-
0032801163
-
European system for cardiac operative risk evaluation (EuroSCORE)
-
Nashef, S. A. M., Roques, F., Michel, P., Gauducheau, E., Lemeshow, S., and Salamon, R., European system for cardiac operative risk evaluation (EuroSCORE). Eur J Cardio-thorac. 16:9-13, 1999.
-
(1999)
Eur J Cardio-thorac
, vol.16
, pp. 9-13
-
-
Nashef, S.A.M.1
Roques, F.2
Michel, P.3
Gauducheau, E.4
Lemeshow, S.5
Salamon, R.6
-
41
-
-
0003410292
-
-
Prentice-Hall International,New Jersey
-
Box, G. E., Jenkins, G. M., and Reinsel, G. C., Time series analysis: forecasting and control. Prentice-Hall International, New Jersey, 1994.
-
(1994)
Time Series Analysis: Forecasting and Control
-
-
Box, G.E.1
Jenkins, G.M.2
Reinsel, G.C.3
-
42
-
-
0002537922
-
Algorithm 808: ARFIT - A Matlab package for the estimation of parameters and eigenmodes of multivariate autoregressive models
-
DOI 10.1145/382043.382316
-
Schneider, T., and Neumaier, A., Algorithm 808: ARfit-A Matlab package for the estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Trans. Math. Softw. 27:58-65, 2001. doi:10.1145/382043.382316. (Pubitemid 33609115)
-
(2001)
ACM Transactions on Mathematical Software
, vol.27
, Issue.1
, pp. 58-65
-
-
Schneider, T.1
Neumaier, A.2
-
43
-
-
78149299418
-
Distance measures for effective clustering of ARIMA time-series
-
ICDM 2001
-
Kapalkis, K., Gada, D., and Puttagunta, V., Distance measures for effective clustering of ARIMA time-series. Proceedings IEEE International Conference on Data Mining (ICDM 2001):273-280, 2001.
-
(2001)
Proceedings IEEE International Conference on Data Mining
, pp. 273-280
-
-
Kapalkis, K.1
Gada, D.2
Puttagunta, V.3
-
45
-
-
12444291490
-
Gaussian processes for machine learning
-
doi:10.1142/S0129065704001899
-
Seeger,M., Gaussian Processes for Machine Learning. Int. J. Neural Syst. 14:269-1106, 2004. doi:10.1142/S0129065704001899.
-
(2004)
Int. J. Neural Syst.
, vol.14
, pp. 269-1106
-
-
Seeger, M.1
-
47
-
-
0032289422
-
Bayesian classification with gaussian processes
-
doi:10.1109/34.735807
-
Williams, C. K. I., and Barber, D., Bayesian Classification with Gaussian Processes. IEEE T. Pattern. 20:121342-121351, 1998. doi:10.1109/34.735807.
-
(1998)
IEEE T. Pattern
, vol.20
, pp. 121342-121351
-
-
Williams, C.K.I.1
Barber, D.2
-
51
-
-
0034728368
-
On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology
-
doi:10.1002/(SICI) 1097-0258(20000229)19:4<541::AID-SIM355>3.0. CO;2-V
-
Schwarzer, G., Vach, W., and Schumacher, M., On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology. Stat. Med. 19:4541-561, 2000. doi:10.1002/(SICI) 1097-0258(20000229)19:43.0.CO;2-V.
-
(2000)
Stat. Med.
, vol.19
, pp. 4541-561
-
-
Schwarzer, G.1
Vach, W.2
Schumacher, M.3
-
53
-
-
0003611154
-
-
Chapman and Hall CRC, Boca Raton
-
Efron, B., and Tibshirani, R. J., An introduction to the bootstrap, vol.57 of monographs on statistics and applied probability. Chapman and Hall CRC, Boca Raton, 1993.
-
(1993)
An Introduction to the Bootstrap, vol. 57 of Monographs on Statistics and Applied Probability
-
-
Efron, B.1
Tibshirani, R.J.2
-
54
-
-
0023710206
-
Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach
-
doi:10.2307/2531595
-
DeLong, E. R., DeLong, D. M., and Clarke-Pearson, D. L., Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 44:3837-3845, 1988. doi:10.2307/2531595.
-
(1988)
Biometrics
, vol.44
, pp. 3837-3845
-
-
DeLong, E.R.1
DeLong, D.M.2
Clarke-Pearson, D.L.3
-
55
-
-
0003684449
-
-
Springer
-
Hastie, T., Tibshirani, R., and Friedman, J., The Elements of Statistical Learning, Data Mining, Ingerence and Prediction. Springer, 2001.
-
(2001)
The Elements of Statistical Learning, Data Mining, Ingerence and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
56
-
-
34548068067
-
Comparison of the levels of accuracy of an artificial neural network model and a logistic regression model for the diagnosis of acute appendicitis
-
DOI 10.1007/s10916-007-9077-9
-
Sakai, S., Kobayashi, K., Toyabe, S. I., Mandai, N., Kanda, T., and Akazawa, K., Comparison of the Levels of Accuracy of an Artificial Neural Network Model and a Logistic Regression Model for the Diagnosis of Acute Appendicitis. J. Med. Syst. 31:357-364, 2007. doi:10.1007/s10916-007-9077-9. (Pubitemid 47293323)
-
(2007)
Journal of Medical Systems
, vol.31
, Issue.5
, pp. 357-364
-
-
Sakai, S.1
Kobayashi, K.2
Toyabe, S.-I.3
Mandai, N.4
Kanda, T.5
Akazawa, K.6
-
57
-
-
21544452774
-
Prediction of minor head injured patients using logistic regression and MLP neural network
-
DOI 10.1007/s10916-005-5181-x
-
Erol, F. S., Uysal, H., Ergun, U., Barisci, N., Serhathoglu, S., and Hardalac, F., Prediction of Minor Head Injured Patients Using Logistic Regression and Mlp Neural Network. J. Med. Syst. 29:205-215, 2005. doi:10.1007/s10916-005-5181-x. (Pubitemid 40922808)
-
(2005)
Journal of Medical Systems
, vol.29
, Issue.3
, pp. 205-215
-
-
Erol, F.S.1
Uysal, H.2
Ergun, U.3
Barisci, N.4
Serhatlioglu, S.5
Hardalac, F.6
|