-
1
-
-
33644804207
-
Close membrane-membrane proximity induced by ca(2+)-dependent multivalent binding of synaptotagmin-1 to phospholipids
-
Arac¸ D, Chen X, Khant HA, Ubach J, Ludtke SJ, Kikkawa M, Johnson AE, Chiu W, Südhof TC, Rizo J. 2006. Close membrane-membrane proximity induced by ca(2+)-dependent multivalent binding of synaptotagmin-1 to phospholipids. Nature Structural & Molecular Biology 13:209–217. doi: 10.1038/nsmb1056
-
(2006)
Nature Structural & Molecular Biology
, vol.13
, pp. 209-217
-
-
Arac¸, D.1
Chen, X.2
Khant, H.A.3
Ubach, J.4
Ludtke, S.J.5
Kikkawa, M.6
Johnson, A.E.7
Chiu, W.8
Südhof, T.C.9
Rizo, J.10
-
2
-
-
0842291506
-
Pip2 increases the speed of response of synaptotagmin and steers its membrane-penetration activity toward the plasma membrane
-
Bai J, Tucker WC, Chapman ER. 2004. Pip2 increases the speed of response of synaptotagmin and steers its membrane-penetration activity toward the plasma membrane. Nature Structural & Molecular Biology 11:36–44. doi: 10.1038/nsmb709
-
(2004)
Nature Structural & Molecular Biology
, vol.11
, pp. 36-44
-
-
Bai, J.1
Tucker, W.C.2
Chapman, E.R.3
-
3
-
-
84898619506
-
SNARE and regulatory proteins induce local membrane protrusions to prime docked vesicles for fast calcium-triggered fusion
-
Bharat TA, Malsam J, Hagen WJ, Scheutzow A, Söllner TH, Briggs JA. 2014. SNARE and regulatory proteins induce local membrane protrusions to prime docked vesicles for fast calcium-triggered fusion. EMBO Reports 15:308–314. doi: 10.1002/embr.201337807
-
(2014)
EMBO Reports
, vol.15
, pp. 308-314
-
-
Bharat, T.A.1
Malsam, J.2
Hagen, W.J.3
Scheutzow, A.4
Söllner, T.H.5
Briggs, J.A.6
-
4
-
-
84936742157
-
Dynamic binding mode of a Synaptotagmin-1-SNARE complex in solution
-
Brewer KD, Bacaj T, Cavalli A, Camilloni C, Swarbrick JD, Liu J, Zhou A, Zhou P, Barlow N, Xu J, Seven AB, Prinslow EA, Voleti R, Häussinger D, Bonvin AM, Tomchick DR, Vendruscolo M, Graham B, Südhof TC, Rizo J. 2015. Dynamic binding mode of a Synaptotagmin-1-SNARE complex in solution. Nature Structural & Molecular Biology 22:555–564. doi: 10.1038/nsmb.3035
-
(2015)
Nature Structural & Molecular Biology
, vol.22
, pp. 555-564
-
-
Brewer, K.D.1
Bacaj, T.2
Cavalli, A.3
Camilloni, C.4
Swarbrick, J.D.5
Liu, J.6
Zhou, A.7
Zhou, P.8
Barlow, N.9
Xu, J.10
Seven, A.B.11
Prinslow, E.A.12
Voleti, R.13
Häussinger, D.14
Bonvin, A.M.15
Tomchick, D.R.16
Vendruscolo, M.17
Graham, B.18
Südhof, T.C.19
Rizo, J.20
more..
-
5
-
-
0032577067
-
Direct interaction of a Ca2+-binding loop of synaptotagmin with lipid bilayers
-
2+-binding loop of synaptotagmin with lipid bilayers. The Journal of Biological Chemistry 273:13995–14001. doi: 10.1074/jbc.273.22.13995
-
(1998)
The Journal of Biological Chemistry
, vol.273
, pp. 13995-14001
-
-
Chapman, E.R.1
Davis, A.F.2
-
6
-
-
46449093538
-
How does synaptotagmin trigger neurotransmitter release?
-
Chapman ER. 2008. How does synaptotagmin trigger neurotransmitter release? Annual Review of Biochemistry 77:615–641. doi: 10.1146/annurev.biochem.77.062005.101135
-
(2008)
Annual Review of Biochemistry
, vol.77
, pp. 615-641
-
-
Chapman, E.R.1
-
7
-
-
0027162564
-
The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation
-
Crowley KS, Reinhart GD, Johnson AE. 1993. The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation. Cell 73:1101–1115. doi: 10.1016/0092-8674(93)90640-c
-
(1993)
Cell
, vol.73
, pp. 1101-1115
-
-
Crowley, K.S.1
Reinhart, G.D.2
Johnson, A.E.3
-
8
-
-
69449108209
-
Synaptotagmin-1 docks secretory vesicles to syntaxin-1/snap-25 acceptor complexes
-
de Wit H, Walter AM, Milosevic I, Gulyás-Kovács A, Riedel D, Sørensen JB, Verhage M. 2009. Synaptotagmin-1 docks secretory vesicles to syntaxin-1/snap-25 acceptor complexes. Cell 138:935–946. doi: 10.1016/j.cell.2009.07.027
-
(2009)
Cell
, vol.138
, pp. 935-946
-
-
De Wit, H.1
Walter, A.M.2
Milosevic, I.3
Gulyás-Kovács, A.4
Riedel, D.5
Sørensen, J.B.6
Verhage, M.7
-
9
-
-
84881514823
-
Synaptic proteins promote calcium-triggered fast transition from point contact to full fusion
-
Diao J, Grob P, Cipriano DJ, Kyoung M, Zhang Y, Shah S, Nguyen A, Padolina M, Srivastava A, Vrljic M, Shah A, Nogales E, Chu S, Brunger AT. 2012. Synaptic proteins promote calcium-triggered fast transition from point contact to full fusion. eLife 1:e00109. doi: 10.7554/eLife.00109
-
(2012)
Elife
, vol.1
-
-
Diao, J.1
Grob, P.2
Cipriano, D.J.3
Kyoung, M.4
Zhang, Y.5
Shah, S.6
Nguyen, A.7
Padolina, M.8
Srivastava, A.9
Vrljic, M.10
Shah, A.11
Nogales, E.12
Chu, S.13
Brunger, A.T.14
-
10
-
-
0035924571
-
Three-dimensional structure of the synaptotagmin 1 C2B-domain: Synaptotagmin 1 as a phospholipid binding machine
-
Fernandez I, Arac¸ D, Ubach J, Gerber SH, Shin O, Gao Y, Anderson RG, Südhof TC, Rizo J. 2001. Three-dimensional structure of the synaptotagmin 1 C2B-domain: Synaptotagmin 1 as a phospholipid binding machine. Neuron 32:1057–1069. doi: 10.2210/pdb1k5w/pdb
-
(2001)
Neuron
, vol.32
, pp. 1057-1069
-
-
Fernandez, I.1
Arac¸, D.2
Ubach, J.3
Gerber, S.H.4
Shin, O.5
Gao, Y.6
Erson, R.G.7
Südhof, T.C.8
Rizo, J.9
-
11
-
-
0035282457
-
Synaptotagmin I functions as a calcium regulator of release probability
-
Fernández-Chacón R, Königstorfer A, Gerber SH, García J, Matos MF, Stevens CF, Brose N, Rizo J, Rosenmund C, Südhof TC. 2001. Synaptotagmin I functions as a calcium regulator of release probability. Nature 410:41–49. doi: 10.1038/35065004
-
(2001)
Nature
, vol.410
, pp. 41-49
-
-
Fernández-Chacón, R.1
Königstorfer, A.2
Gerber, S.H.3
García, J.4
Matos, M.F.5
Stevens, C.F.6
Brose, N.7
Rizo, J.8
Rosenmund, C.9
Südhof, T.C.10
-
14
-
-
84878917689
-
Phosphatidylinositol 4,5- bisphosphate clusters act as molecular beacons for vesicle recruitment
-
Honigmann A, van den Bogaart G, Iraheta E, Risselada HJ, Milovanovic D, Mueller V, Müllar S, Diederichsen U, Fasshauer D, Grubmüller H, Hell SW, Eggeling C, Kühnel K, Jahn R. 2013. Phosphatidylinositol 4,5- bisphosphate clusters act as molecular beacons for vesicle recruitment. Nature Structural & Molecular Biology 20:679–686. doi: 10.1038/nsmb.2570
-
(2013)
Nature Structural & Molecular Biology
, vol.20
, pp. 679-686
-
-
Honigmann, A.1
Van Den Bogaart, G.2
Iraheta, E.3
Risselada, H.J.4
Milovanovic, D.5
Mueller, V.6
Müllar, S.7
Diederichsen, U.8
Fasshauer, D.9
Grubmüller, H.10
Hell, S.W.11
Eggeling, C.12
Kühnel, K.13
Jahn, R.14
-
15
-
-
79960053907
-
Mechanism and function of synaptotagmin-mediated membrane apposition
-
Hui E, Gaffaney JD, Wang Z, Johnson CP, Evans CS, Chapman ER. 2011. Mechanism and function of synaptotagmin-mediated membrane apposition. Nature Structural & Molecular Biology 18:813–U892. doi: 10.1038/nsmb.2075
-
(2011)
Nature Structural & Molecular Biology
, vol.18
, pp. U813-U892
-
-
Hui, E.1
Gaffaney, J.D.2
Wang, Z.3
Johnson, C.P.4
Evans, C.S.5
Chapman, E.R.6
-
16
-
-
68749083522
-
Synaptotagmin-mediated bending of the target membrane is a critical step in Ca(2+)-regulated fusion
-
Hui E, Johnson CP, Yao J, Dunning FM, Chapman ER. 2009. Synaptotagmin-mediated bending of the target membrane is a critical step in Ca(2+)-regulated fusion. Cell 138:709–721. doi: 10.1016/j.cell.2009.05.049
-
(2009)
Cell
, vol.138
, pp. 709-721
-
-
Hui, E.1
Johnson, C.P.2
Yao, J.3
Dunning, F.M.4
Chapman, E.R.5
-
17
-
-
33748109969
-
Short-range molecular rearrangements in ion channels detected by tryptophan quenching of bimane fluorescence
-
Islas LD, Zagotta WN. 2006. Short-range molecular rearrangements in ion channels detected by tryptophan quenching of bimane fluorescence. The Journal of General Physiology 128:337–346. doi: 10.1085/jgp.200609556
-
(2006)
The Journal of General Physiology
, vol.128
, pp. 337-346
-
-
Islas, L.D.1
Zagotta, W.N.2
-
18
-
-
33747622293
-
Snares–engines for membrane fusion. Nature Reviews
-
Jahn R, Scheller RH. 2006. Snares–engines for membrane fusion. Nature Reviews. Molecular Cell Biology 7:631–643. doi: 10.1038/nrm2002
-
(2006)
Molecular Cell Biology
, vol.7
, pp. 631-643
-
-
Jahn, R.1
Scheller, R.H.2
-
19
-
-
84860444275
-
Molecular level interaction of inositol hexaphosphate with the C2B domain of human synaptotagmin I
-
Joung MJ, Mohan SK, Yu C. 2012. Molecular level interaction of inositol hexaphosphate with the C2B domain of human synaptotagmin I. Biochemistry 51:3675–3683. doi: 10.1021/bi300005w
-
(2012)
Biochemistry
, vol.51
, pp. 3675-3683
-
-
Joung, M.J.1
Mohan, S.K.2
Yu, C.3
-
20
-
-
79961082568
-
In vitro system capable of differentiating fast Ca2+-triggered content mixing from lipid exchange for mechanistic studies of neurotransmitter release
-
2+-triggered content mixing from lipid exchange for mechanistic studies of neurotransmitter release. Proceedings of the National Academy of Sciences of the United States of America 108:E304–313. doi: 10.1073/pnas.1107900108
-
(2011)
Proceedings of the National Academy of Sciences of the United States of America
, vol.108
, pp. E304-E313
-
-
Kyoung, M.1
Srivastava, A.2
Zhang, Y.3
Diao, J.4
Vrljic, M.5
Grob, P.6
Nogales, E.7
Chu, S.8
Brunger, A.T.9
-
22
-
-
33744921671
-
Phosphatidylinositol phosphates as co-activators of Ca2+ binding to C2 domains of synaptotagmin 1
-
2+ binding to C2 domains of synaptotagmin 1. The Journal of Biological Chemistry 281: 15845–15852. doi: 10.1074/jbc.M600888200
-
(2006)
The Journal of Biological Chemistry
, vol.281
, pp. 15845-15852
-
-
Li, L.1
Shin, O.H.2
Rhee, J.S.3
Arac¸, D.4
Rah, J.C.5
Rizo, J.6
Südhof, T.7
Rosenmund, C.8
-
23
-
-
84872802734
-
Reconstitution of the vital functions of munc18 and munc13 in neurotransmitter release
-
Ma C, Su L, Seven AB, Xu Y, Rizo J. 2013. Reconstitution of the vital functions of munc18 and munc13 in neurotransmitter release. Science 339:421–425. doi: 10.1126/science.1230473
-
(2013)
Science
, vol.339
, pp. 421-425
-
-
Ma, C.1
Su, L.2
Seven, A.B.3
Xu, Y.4
Rizo, J.5
-
24
-
-
0037130255
-
The C(2)B ca(2+)-binding motif of synaptotagmin is required for synaptic transmission in vivo
-
Mackler JM, Drummond JA, Loewen CA, Robinson IM, Reist NE. 2002. The C(2)B ca(2+)-binding motif of synaptotagmin is required for synaptic transmission in vivo. Nature 418:340–344. doi: 10.1038/nature00846
-
(2002)
Nature
, vol.418
, pp. 340-344
-
-
Mackler, J.M.1
Drummond, J.A.2
Loewen, C.A.3
Robinson, I.M.4
Reist, N.E.5
-
25
-
-
0037176909
-
Mapping proximity within proteins using fluorescence spectroscopy. A study of T4 lysozyme showing that tryptophan residues quench bimane fluorescence
-
Mansoor SE, McHaourab HS, Farrens DL. 2002. Mapping proximity within proteins using fluorescence spectroscopy. A study of T4 lysozyme showing that tryptophan residues quench bimane fluorescence. Biochemistry 41:2475–2484. doi: 10.1021/bi011198i
-
(2002)
Biochemistry
, vol.41
, pp. 2475-2484
-
-
Mansoor, S.E.1
McHaourab, H.S.2
Farrens, D.L.3
-
26
-
-
34249933061
-
How synaptotagmin promotes membrane fusion
-
Martens S, Kozlov MM, McMahon HT. 2007. How synaptotagmin promotes membrane fusion. Science 316: 1205–1208. doi: 10.1126/science.1142614
-
(2007)
Science
, vol.316
, pp. 1205-1208
-
-
Martens, S.1
Kozlov, M.M.2
McMahon, H.T.3
-
27
-
-
84925384206
-
Membrane curvature at a glance
-
McMahon HT, Boucrot E. 2015. Membrane curvature at a glance. Journal of Cell Science 128:1065–1070. doi: 10.1242/jcs.114454
-
(2015)
Journal of Cell Science
, vol.128
, pp. 1065-1070
-
-
McMahon, H.T.1
Boucrot, E.2
-
28
-
-
84883430611
-
Synaptotagmin interaction with SNAP-25 governs vesicle docking, priming, and fusion triggering
-
Mohrmann R, de Wit H, Connell E, Pinheiro PS, Leese C, Bruns D, Davletov B, Verhage M, Sørensen JB. 2013. Synaptotagmin interaction with SNAP-25 governs vesicle docking, priming, and fusion triggering. The Journal of Neuroscience 33:14417–14430. doi: 10.1523/JNEUROSCI.1236-13.2013
-
(2013)
The Journal of Neuroscience
, vol.33
, pp. 14417-14430
-
-
Mohrmann, R.1
De Wit, H.2
Connell, E.3
Pinheiro, P.S.4
Leese, C.5
Bruns, D.6
Davletov, B.7
Verhage, M.8
Sørensen, J.B.9
-
29
-
-
3042796387
-
Synaptotagmin I synchronizes transmitter release in mouse hippocampal neurons
-
Nishiki T, Augustine GJ. 2004. Synaptotagmin I synchronizes transmitter release in mouse hippocampal neurons. The Journal of Neuroscience 24:6127–6132. doi: 10.1523/JNEUROSCI.1563-04.2004
-
(2004)
The Journal of Neuroscience
, vol.24
, pp. 6127-6132
-
-
Nishiki, T.1
Augustine, G.J.2
-
30
-
-
84867230114
-
Controlling synaptotagmin activity by electrostatic screening
-
Park Y, Hernandez JM, van den Bogaart G, Ahmed S, Holt M, Riedel D, Jahn R. 2012. Controlling synaptotagmin activity by electrostatic screening. Nature Structural & Molecular Biology 19:991–997. doi: 10.1038/nsmb.2375
-
(2012)
Nature Structural & Molecular Biology
, vol.19
, pp. 991-997
-
-
Park, Y.1
Hernandez, J.M.2
Van Den Bogaart, G.3
Ahmed, S.4
Holt, M.5
Riedel, D.6
Jahn, R.7
-
31
-
-
84943402948
-
Synaptotagmin-1 binds to pip(2)-containing membrane but not to snares at physiological ionic strength
-
Park Y, Seo JB, Fraind A, Pérez-Lara A, Yavuz H, Han K, Jung SR, Kattan I, Walla PJ, Choi M, Cafiso DS, Koh DS, Jahn R. 2015. Synaptotagmin-1 binds to pip(2)-containing membrane but not to snares at physiological ionic strength. Nature Structural & Molecular Biology 22:815–823. doi: 10.1038/nsmb.3097
-
(2015)
Nature Structural & Molecular Biology
, vol.22
, pp. 815-823
-
-
Park, Y.1
Seo, J.B.2
Fraind, A.3
Pérez-Lara, A.4
Yavuz, H.5
Han, K.6
Jung, S.R.7
Kattan, I.8
Walla, P.J.9
Choi, M.10
Cafiso, D.S.11
Koh, D.S.12
Jahn, R.13
-
32
-
-
70350025513
-
The Ca2+ affinity of synaptotagmin 1 is markedly increased by a specific interaction of its C2B domain with phosphatidylinositol 4,5-bisphosphate
-
2+ affinity of synaptotagmin 1 is markedly increased by a specific interaction of its C2B domain with phosphatidylinositol 4,5-bisphosphate. The Journal of Biological Chemistry 284:25749–25760. doi: 10.1074/jbc.M109.042499
-
(2009)
The Journal of Biological Chemistry
, vol.284
, pp. 25749-25760
-
-
Radhakrishnan, A.1
Stein, A.2
Jahn, R.3
Fasshauer, D.4
-
34
-
-
84937394649
-
The synaptic vesicle release machinery
-
Rizo J, Xu J. 2015. The synaptic vesicle release machinery. Annual Review of Biophysics 44:339–367. doi: 10.1146/annurev-biophys-060414-034057
-
(2015)
Annual Review of Biophysics
, vol.44
, pp. 339-367
-
-
Rizo, J.1
Xu, J.2
-
35
-
-
0037130260
-
Synaptotagmins I and IV promote transmitter release independently of Ca(2+) binding in the C(2)A domain
-
Robinson IM, Ranjan R, Schwarz TL. 2002. Synaptotagmins I and IV promote transmitter release independently of Ca(2+) binding in the C(2)A domain. Nature 418:336–340. doi: 10.1038/nature00915
-
(2002)
Nature
, vol.418
, pp. 336-340
-
-
Robinson, I.M.1
Ranjan, R.2
Schwarz, T.L.3
-
36
-
-
0032541943
-
Solution structures of the Ca2+ free and Ca2+-bound C2A domain of synaptotagmin I: Does Ca2+ induce a conformational change?
-
2+ induce a conformational change? Biochemistry 37:16106–16115. doi: 10.1021/bi981789h
-
(1998)
Biochemistry
, vol.37
, pp. 16106-16115
-
-
Shao, X.1
Fernandez, I.2
Südhof, T.C.3
Rizo, J.4
-
39
-
-
3543096759
-
Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution
-
Sutton RB, Fasshauer D, Jahn R, Brunger AT. 1998. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395:347–353. doi: 10.1038/26412
-
(1998)
Nature
, vol.395
, pp. 347-353
-
-
Sutton, R.B.1
Fasshauer, D.2
Jahn, R.3
Brunger, A.T.4
-
40
-
-
77952339435
-
Fluorescence applications in molecular neurobiology
-
Taraska JW, Zagotta WN. 2010. Fluorescence applications in molecular neurobiology. Neuron 66:170–189. doi: 10.1016/j.neuron.2010.02.002
-
(2010)
Neuron
, vol.66
, pp. 170-189
-
-
Taraska, J.W.1
Zagotta, W.N.2
-
41
-
-
79960048696
-
Synaptotagmin-1 may be a distance regulator acting upstream of SNARE nucleation
-
van den Bogaart G, Thutupalli S, Risselada JH, Meyenberg K, Holt M, Riedel D, Diederichsen U, Herminghaus S, Grubmüller H, Jahn R. 2011a. Synaptotagmin-1 may be a distance regulator acting upstream of SNARE nucleation. Nature Structural & Molecular Biology 18:805–812. doi: 10.1038/nsmb.2061
-
(2011)
Nature Structural & Molecular Biology
, vol.18
, pp. 805-812
-
-
Van Den Bogaart, G.1
Thutupalli, S.2
Risselada, J.H.3
Meyenberg, K.4
Holt, M.5
Riedel, D.6
Diederichsen, U.7
Herminghaus, S.8
Grubmüller, H.9
Jahn, R.10
-
42
-
-
81855221892
-
Membrane protein sequestering by ionic protein–lipid interactions
-
van den Bogaart G, Meyenberg K, Risselada HJ, Amin H, Willig KI, Hubrich BE, Dier M, Hell SW, Grubmüller H, Diederichsen U, Jahn R. 2011b. Membrane protein sequestering by ionic protein–lipid interactions. Nature 479:552–555. doi: 10.1038/nature10545
-
(2011)
Nature
, vol.479
, pp. 552-555
-
-
Van Den Bogaart, G.1
Meyenberg, K.2
Risselada, H.J.3
Amin, H.4
Willig, K.I.5
Hubrich, B.E.6
Dier, M.7
Hell, S.W.8
Grubmüller, H.9
Diederichsen, U.10
Jahn, R.11
-
43
-
-
84907212874
-
Calcium sensitive ring-like oligomers formed by synaptotagmin
-
Wang J, Bello O, Auclair SM, Wang J, Coleman J, Pincet F, Krishnakumar SS, Sindelar CV, Rothman JE. 2014. Calcium sensitive ring-like oligomers formed by synaptotagmin. Proceedings of the National Academy of Sciences of the United States of America 111:13966–13971. doi: 10.1073/pnas.1415849111
-
(2014)
Proceedings of the National Academy of Sciences of the United States of America
, vol.111
, pp. 13966-13971
-
-
Wang, J.1
Bello, O.2
Auclair, S.M.3
Wang, J.4
Coleman, J.5
Pincet, F.6
Krishnakumar, S.S.7
Sindelar, C.V.8
Rothman, J.E.9
-
44
-
-
0032549708
-
SNAREpins: Minimal machinery for membrane fusion
-
Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Söllner TH, Rothman JE. 1998. SNAREpins: minimal machinery for membrane fusion. Cell 92:759–772. doi: 10.1016/S0092-8674(00)81404-X
-
(1998)
Cell
, vol.92
, pp. 759-772
-
-
Weber, T.1
Zemelman, B.V.2
McNew, J.A.3
Westermann, B.4
Gmachl, M.5
Parlati, F.6
Söllner, T.H.7
Rothman, J.E.8
-
45
-
-
67649749252
-
Is assembly of the SNARE complex enough to fuel membrane fusion?
-
Wiederhold K, Fasshauer D. 2009. Is assembly of the SNARE complex enough to fuel membrane fusion? The Journal of Biological Chemistry 284:13143–13152. doi: 10.1074/jbc.M900703200
-
(2009)
The Journal of Biological Chemistry
, vol.284
, pp. 13143-13152
-
-
Wiederhold, K.1
Fasshauer, D.2
-
46
-
-
55549100557
-
The janus-faced nature of the C(2)B domain is fundamental for synaptotagmin-1 function
-
Xue M, Ma C, Craig TK, Rosenmund C, Rizo J. 2008. The janus-faced nature of the C(2)B domain is fundamental for synaptotagmin-1 function. Nature Structural & Molecular Biology 15:1160–1168. doi: 10.1038/nsmb.1508
-
(2008)
Nature Structural & Molecular Biology
, vol.15
, pp. 1160-1168
-
-
Xue, M.1
Ma, C.2
Craig, T.K.3
Rosenmund, C.4
Rizo, J.5
-
47
-
-
84936764104
-
Syntaxin opening by the MUN domain underlies the function of munc13 in synaptic-vesicle priming
-
Yang X, Wang S, Sheng Y, Zhang M, Zou W, Wu L, Kang L, Rizo J, Zhang R, Xu T, Ma C. 2015. Syntaxin opening by the MUN domain underlies the function of munc13 in synaptic-vesicle priming. Nature Structural & Molecular Biology 22:547–554. doi: 10.1038/nsmb.3038
-
(2015)
Nature Structural & Molecular Biology
, vol.22
, pp. 547-554
-
-
Yang, X.1
Wang, S.2
Sheng, Y.3
Zhang, M.4
Zou, W.5
Wu, L.6
Kang, L.7
Rizo, J.8
Zhang, R.9
Xu, T.10
Ma, C.11
-
48
-
-
84940928578
-
Architecture of the synaptotagmin-snare machinery for neuronal exocytosis
-
Zhou Q, Lai Y, Bacaj T, Zhao M, Lyubimov AY, Uervirojnangkoorn M, Zeldin OB, Brewster AS, Sauter NK, Cohen AE, Soltis SM, Alonso-Mori R, Chollet M, Lemke HT, Pfuetzner RA, Choi UB, Weis WI, Diao J, Südhof TC, Brunger AT. 2015. Architecture of the synaptotagmin-snare machinery for neuronal exocytosis. Nature 525:62–67. doi: 10.1038/nature14975
-
(2015)
Nature
, vol.525
, pp. 62-67
-
-
Zhou, Q.1
Lai, Y.2
Bacaj, T.3
Zhao, M.4
Lyubimov, A.Y.5
Uervirojnangkoorn, M.6
Zeldin, O.B.7
Brewster, A.S.8
Sauter, N.K.9
Cohen, A.E.10
Soltis, S.M.11
Alonso-Mori, R.12
Chollet, M.13
Lemke, H.T.14
Pfuetzner, R.A.15
Choi, U.B.16
Weis, W.I.17
Diao, J.18
Südhof, T.C.19
Brunger, A.T.20
more..
|