-
2
-
-
84892434381
-
Fabrication of a circular PDMS microchannel for constructing a three-dimensional endothelial cell layer
-
J.S. Choi, Y. Piao, and T.S. Seo Fabrication of a circular PDMS microchannel for constructing a three-dimensional endothelial cell layer Bioprocess Biosyst. Eng. 36 2013 1871 1878
-
(2013)
Bioprocess Biosyst. Eng.
, vol.36
, pp. 1871-1878
-
-
Choi, J.S.1
Piao, Y.2
Seo, T.S.3
-
3
-
-
79953199826
-
Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography
-
M.E. Wilson, N. Kota, Y.T. Kim, Y. Wang, D.B. Stolz, P.R. LeDuc, and O.B. Ozdoganlar Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography Lab Chip 11 2011 1550 1555
-
(2011)
Lab Chip
, vol.11
, pp. 1550-1555
-
-
Wilson, M.E.1
Kota, N.2
Kim, Y.T.3
Wang, Y.4
Stolz, D.B.5
LeDuc, P.R.6
Ozdoganlar, O.B.7
-
4
-
-
57049106292
-
3-D biomimetic micro-Channel network by laser direct writing
-
D.H. Kam, and J. Mazumder 3-D biomimetic micro-Channel network by laser direct writing J. Laser Appl. 20 2008 185 192
-
(2008)
J. Laser Appl.
, vol.20
, pp. 185-192
-
-
Kam, D.H.1
Mazumder, J.2
-
5
-
-
84867006790
-
Fabrication of various cross-sectional shaped polymer microchannels by a simple PDMS mold based stamping method
-
J.S. Choi, Y. Piao, and T.S. Seo Fabrication of various cross-sectional shaped polymer microchannels by a simple PDMS mold based stamping method BioChip J. 6 2012 240 246
-
(2012)
BioChip J.
, vol.6
, pp. 240-246
-
-
Choi, J.S.1
Piao, Y.2
Seo, T.S.3
-
6
-
-
77249100175
-
A circular cross-section PDMS microfluidics system for replication of cardiovascular flow conditions
-
L.K. Fiddes, N. Raz, S. Srigunapalan, E. Tumarkan, C.A. Simmons, A.R. Wheeler, and E. Kumacheva A circular cross-section PDMS microfluidics system for replication of cardiovascular flow conditions Biomaterials 31 2010 3459 3464
-
(2010)
Biomaterials
, vol.31
, pp. 3459-3464
-
-
Fiddes, L.K.1
Raz, N.2
Srigunapalan, S.3
Tumarkan, E.4
Simmons, C.A.5
Wheeler, A.R.6
Kumacheva, E.7
-
7
-
-
84863687318
-
Sucrose-based fabrication of D-networked, cylindrical microfluidic channels for rapid prototyping of lab-on-a-chip and vaso-mimetic devices
-
J. Lee, J. Paek, and J. Kim Sucrose-based fabrication of D-networked, cylindrical microfluidic channels for rapid prototyping of lab-on-a-chip and vaso-mimetic devices Lab Chip 12 2012 2638 3642
-
(2012)
Lab Chip
, vol.12
, pp. 2638-3642
-
-
Lee, J.1
Paek, J.2
Kim, J.3
-
8
-
-
78149390544
-
Use of directly molded poly(methyl methacrylate) channels for microfluidic applications
-
S.H. Lee, D.H. Kang, H.N. Kim, and K.Y. Suh Use of directly molded poly(methyl methacrylate) channels for microfluidic applications Lab Chip 10 2010 3300 3306
-
(2010)
Lab Chip
, vol.10
, pp. 3300-3306
-
-
Lee, S.H.1
Kang, D.H.2
Kim, H.N.3
Suh, K.Y.4
-
9
-
-
84897928302
-
Embedding synthetic microvascular networks in poly(Lactic Acid) substrates with rounded cross- sections for cell culture applications
-
J.H. Huang, J. Kim, Y. Ding, A. Jayaraman, and V.M. Ugaz Embedding synthetic microvascular networks in poly(Lactic Acid) substrates with rounded cross- sections for cell culture applications PLoS One 8 2013 e73188
-
(2013)
PLoS One
, vol.8
, pp. e73188
-
-
Huang, J.H.1
Kim, J.2
Ding, Y.3
Jayaraman, A.4
Ugaz, V.M.5
-
10
-
-
84925455866
-
Inkjet print microchannels based on liquid template
-
Y. Guo, L. Li, F. Li, H. Zhou, and Y. Song Inkjet print microchannels based on liquid template Lab Chip 15 2015 1759 1764
-
(2015)
Lab Chip
, vol.15
, pp. 1759-1764
-
-
Guo, Y.1
Li, L.2
Li, F.3
Zhou, H.4
Song, Y.5
-
11
-
-
44649098281
-
Fabrication of 3-D curved microstructures by constrained gas expansion and photopolymerization
-
M.B.C. Park, C. Yang, X. Guo, L.Q. Chen, S.F. Yoon, and J.H. Chun Fabrication of 3-D curved microstructures by constrained gas expansion and photopolymerization Langmuir 24 2008 5492 5499
-
(2008)
Langmuir
, vol.24
, pp. 5492-5499
-
-
Park, M.B.C.1
Yang, C.2
Guo, X.3
Chen, L.Q.4
Yoon, S.F.5
Chun, J.H.6
-
12
-
-
84859305475
-
Rapid fabrication of a microdevice with concave microwells and its application in embryoid body formation
-
Y. Xu, F. Xie, T. Qiu, L. Xie, W. Xing, and J. Cheng Rapid fabrication of a microdevice with concave microwells and its application in embryoid body formation Biomicrofluidics 6 2012 016504
-
(2012)
Biomicrofluidics
, vol.6
, pp. 016504
-
-
Xu, Y.1
Xie, F.2
Qiu, T.3
Xie, L.4
Xing, W.5
Cheng, J.6
-
13
-
-
36349007501
-
Microfabrication of cavities in polydimethylsiloxane using DRIE silicon molds
-
U.B.T. Giang, D. Lee, M.R. King, and L.A. DeLouise Microfabrication of cavities in polydimethylsiloxane using DRIE silicon molds Lab Chip 7 2007 1660 1662
-
(2007)
Lab Chip
, vol.7
, pp. 1660-1662
-
-
Giang, U.B.T.1
Lee, D.2
King, M.R.3
DeLouise, L.A.4
-
14
-
-
11344281339
-
Elastomeric molds with tunable microtopography
-
J.M. Hoffman, J. Shao, C.H. Hsu, and A. Folch Elastomeric molds with tunable microtopography Adv. Mater. 16 2004 2201 2206
-
(2004)
Adv. Mater.
, vol.16
, pp. 2201-2206
-
-
Hoffman, J.M.1
Shao, J.2
Hsu, C.H.3
Folch, A.4
-
15
-
-
84956786634
-
Microchip-based electrochemical detection using a 3-D printed wall-jet electrode device
-
A.S. Munshi, and R.S. Martin Microchip-based electrochemical detection using a 3-D printed wall-jet electrode device Analyst 141 2016 862 869
-
(2016)
Analyst
, vol.141
, pp. 862-869
-
-
Munshi, A.S.1
Martin, R.S.2
-
16
-
-
84901939254
-
3D-printed fluidic devices enable quantitative evaluation of blood components in modified storage solutions for use in transfusion medicine
-
C. Chen, Y. Wang, S.Y. Lockwood, and D.M. Spence 3D-printed fluidic devices enable quantitative evaluation of blood components in modified storage solutions for use in transfusion medicine Analyst 139 2014 3219
-
(2014)
Analyst
, vol.139
, pp. 3219
-
-
Chen, C.1
Wang, Y.2
Lockwood, S.Y.3
Spence, D.M.4
-
17
-
-
84929152386
-
C-peptide and zinc delivery to erythrocytes requires the presence of albumin: Implications in diabetes explored with a 3D-printed fluidic device
-
Y. Liu, C. Chen, S. Summers, W. Medawala, and D.M. Spence C-peptide and zinc delivery to erythrocytes requires the presence of albumin: implications in diabetes explored with a 3D-printed fluidic device Integr. Biol. 7 2015 534 543
-
(2015)
Integr. Biol.
, vol.7
, pp. 534-543
-
-
Liu, Y.1
Chen, C.2
Summers, S.3
Medawala, W.4
Spence, D.M.5
-
18
-
-
84905706976
-
3D-Printed microfluidic microdissector for high-Throughput studies of cellular aging
-
E.C. Spivey, B. Xhemalce, J.B. Shear, and I.J. Finkelstein 3D-Printed microfluidic microdissector for high-Throughput studies of cellular aging Anal. Chem. 86 2014 7406 7412
-
(2014)
Anal. Chem.
, vol.86
, pp. 7406-7412
-
-
Spivey, E.C.1
Xhemalce, B.2
Shear, J.B.3
Finkelstein, I.J.4
-
20
-
-
84907229197
-
Rapid and low cost replication of complex microfluidic structures with PDMS double casting technology
-
L. Yang, X. Hao, C. Wang, B. Zhang, and W. Wang Rapid and low cost replication of complex microfluidic structures with PDMS double casting technology Microsyst. Technol. 20 2014 1933 1940
-
(2014)
Microsyst. Technol.
, vol.20
, pp. 1933-1940
-
-
Yang, L.1
Hao, X.2
Wang, C.3
Zhang, B.4
Wang, W.5
-
22
-
-
84856268933
-
Soft lithography replication based on PDMS partial curing
-
H. Yu, G. Zhou, F.S. Chau, and S.K. Sinha Soft lithography replication based on PDMS partial curing Microsyst. Technol. 17 2011 443 449
-
(2011)
Microsyst. Technol.
, vol.17
, pp. 443-449
-
-
Yu, H.1
Zhou, G.2
Chau, F.S.3
Sinha, S.K.4
|