-
1
-
-
80355131976
-
Protective and pathogenic functions of macrophage subsets
-
Murray P.J., Wynn T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 2011, 11:723-737. 10.1038/nri3073.
-
(2011)
Nat. Rev. Immunol.
, vol.11
, pp. 723-737
-
-
Murray, P.J.1
Wynn, T.A.2
-
2
-
-
28544446111
-
Monocyte and macrophage heterogeneity
-
Gordon S., Taylor P.R. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 2005, 5:953-964. 10.1038/nri1733.
-
(2005)
Nat. Rev. Immunol.
, vol.5
, pp. 953-964
-
-
Gordon, S.1
Taylor, P.R.2
-
3
-
-
84857883847
-
Macrophage plasticity and polarization: in vivo veritas
-
Antonio S., Albelto M. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest. 2012, 122:787-795. 10.1172/JCI59643DS1.
-
(2012)
J. Clin. Invest.
, vol.122
, pp. 787-795
-
-
Antonio, S.1
Albelto, M.2
-
4
-
-
27744437941
-
Abnormally differentiated subsets of intestinal macrophage play a key role in Th1-dominant chronic colitis through excess production of IL-12 and IL-23 in response to bacteria
-
175/10/6900 [ii]
-
Kamada N., Hisamatsu T., Okamoto S., Sato T., Matsuoka K., Arai K., et al. Abnormally differentiated subsets of intestinal macrophage play a key role in Th1-dominant chronic colitis through excess production of IL-12 and IL-23 in response to bacteria. J. Immunol. 2005, 175:6900-6908. 175/10/6900 [ii].
-
(2005)
J. Immunol.
, vol.175
, pp. 6900-6908
-
-
Kamada, N.1
Hisamatsu, T.2
Okamoto, S.3
Sato, T.4
Matsuoka, K.5
Arai, K.6
-
5
-
-
33646455658
-
Phenotypic and functional pro ling of human proin ammatory type-1 and anti-in ammatory type-2 macrophages in response to microbial antigens and IFN-gamma- and CD40L-mediated costimulation
-
Verreck F.A.W., De Boer T., Langenberg D.M.L., Van Der Zanden L., Ottenhoff T.H.M. Phenotypic and functional pro ling of human proin ammatory type-1 and anti-in ammatory type-2 macrophages in response to microbial antigens and IFN-gamma- and CD40L-mediated costimulation. J. Leukoc. Biol. 2006, 79:285-293. 10.1189/jlb.0105015.Journal.
-
(2006)
J. Leukoc. Biol.
, vol.79
, pp. 285-293
-
-
Verreck, F.A.W.1
De Boer, T.2
Langenberg, D.M.L.3
Van Der Zanden, L.4
Ottenhoff, T.H.M.5
-
6
-
-
77951902290
-
Monocyte chemoattractant protein-1 contributes to gut homeostasis and intestinal inflammation by composition of IL-10-producing regulatory macrophage subset
-
Takada Y., Hisamatsu T., Kamada N., Kitazume M.T., Honda H., Oshima Y., et al. Monocyte chemoattractant protein-1 contributes to gut homeostasis and intestinal inflammation by composition of IL-10-producing regulatory macrophage subset. J. Immunol. 2010, 184:2671-2676. 10.4049/jimmunol.0804012.
-
(2010)
J. Immunol.
, vol.184
, pp. 2671-2676
-
-
Takada, Y.1
Hisamatsu, T.2
Kamada, N.3
Kitazume, M.T.4
Honda, H.5
Oshima, Y.6
-
7
-
-
0035950972
-
Interleukin-10 contributes development of macrophage suppressor activities by macrophage colony-stimulating factor, but not by granulocyte-macrophage colony-stimulating factor
-
Mochida-Nishimura K., Akagawa K.S., a Rich E. Interleukin-10 contributes development of macrophage suppressor activities by macrophage colony-stimulating factor, but not by granulocyte-macrophage colony-stimulating factor. Cell. Immunol. 2001, 214:81-88. 10.1006/cimm.2001.1801.
-
(2001)
Cell. Immunol.
, vol.214
, pp. 81-88
-
-
Mochida-Nishimura, K.1
Akagawa, K.S.2
a Rich, E.3
-
8
-
-
0031020848
-
Enhancement of macrophage colony-stimulating factor-induced growth and differentiation of human monocytes by interleukin-10
-
Hashimoto S., Yamada M., Motoyoshi K., Akagawa K.S. Enhancement of macrophage colony-stimulating factor-induced growth and differentiation of human monocytes by interleukin-10. Blood 1997, 89:315-321.
-
(1997)
Blood
, vol.89
, pp. 315-321
-
-
Hashimoto, S.1
Yamada, M.2
Motoyoshi, K.3
Akagawa, K.S.4
-
9
-
-
36448983633
-
Protective immune mechanisms in helminth infection
-
Anthony R.M., Rutitzky L.I., Urban J.F., Stadecker M.J., Gause W.C. Protective immune mechanisms in helminth infection. Nat. Rev. Immunol. 2007, 7:975-987. 10.1038/nri2199.
-
(2007)
Nat. Rev. Immunol.
, vol.7
, pp. 975-987
-
-
Anthony, R.M.1
Rutitzky, L.I.2
Urban, J.F.3
Stadecker, M.J.4
Gause, W.C.5
-
10
-
-
33846026712
-
Obesity induces a phenotypic switch in adipose tissue macrophage polarization
-
Lumeng C.N., Bodzin J.L., Saltiel A.R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 2007, 117:175-184. 10.1172/JCI29881.
-
(2007)
J. Clin. Invest.
, vol.117
, pp. 175-184
-
-
Lumeng, C.N.1
Bodzin, J.L.2
Saltiel, A.R.3
-
11
-
-
34347354309
-
Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance
-
Odegaard J.I., Ricardo-Gonzalez R.R., Goforth M.H., Morel C.R., Subramanian V., Mukundan L., et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 2007, 447:1116-1120. 10.1038/nature05894.
-
(2007)
Nature
, vol.447
, pp. 1116-1120
-
-
Odegaard, J.I.1
Ricardo-Gonzalez, R.R.2
Goforth, M.H.3
Morel, C.R.4
Subramanian, V.5
Mukundan, L.6
-
12
-
-
84896905991
-
Metabolic regulation of immune responses
-
Ganeshan K., Chawla A. Metabolic regulation of immune responses. Annu. Rev. Immunol. 2014, 32:609-634. 10.1146/annurev-immunol-032713-120236.
-
(2014)
Annu. Rev. Immunol.
, vol.32
, pp. 609-634
-
-
Ganeshan, K.1
Chawla, A.2
-
13
-
-
84876758617
-
Metabolic Pathways in immune cell activation and Quiescence
-
Pearce E.L., Pearce E.J. Metabolic Pathways in immune cell activation and Quiescence. Immunity 2013, 38:633-643. 10.1016/j.biotechadv.2011.08.021.Secreted.
-
(2013)
Immunity
, vol.38
, pp. 633-643
-
-
Pearce, E.L.1
Pearce, E.J.2
-
14
-
-
79955532516
-
TLR signalling augments macrophage bactericidal activity through mitochondrial ROS
-
Phillip W., Igor B., Gerald S., Sankar G. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 2011, 472:476-480. 10.1038/nature09973.
-
(2011)
Nature
, vol.472
, pp. 476-480
-
-
Phillip, W.1
Igor, B.2
Gerald, S.3
Sankar, G.4
-
15
-
-
84876285741
-
Succinate is an inflammatory signal that induces IL-1β through HIF-1&alpha
-
Tannahill G.M., Curtis A.M., Adamik J., Palsson-McDermott E.M., McGettrick A.F., Goel G., et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1&alpha. Nature 2013, 496:238-242. 10.1038/nature11986.
-
(2013)
Nature
, vol.496
, pp. 238-242
-
-
Tannahill, G.M.1
Curtis, A.M.2
Adamik, J.3
Palsson-McDermott, E.M.4
McGettrick, A.F.5
Goel, G.6
-
16
-
-
84901218517
-
Lactate reduces liver and pancreatic injury in toll-like receptor- and inflammasome-mediated inflammation via GPR81-mediated suppression of innate immunity
-
Hoque R., Farooq A., Ghani A., Gorelick F., Mehal W.Z. Lactate reduces liver and pancreatic injury in toll-like receptor- and inflammasome-mediated inflammation via GPR81-mediated suppression of innate immunity. Gastroenterology 2014, 146:1763-1774. 10.1053/j.gastro.2014.03.014.
-
(2014)
Gastroenterology
, vol.146
, pp. 1763-1774
-
-
Hoque, R.1
Farooq, A.2
Ghani, A.3
Gorelick, F.4
Mehal, W.Z.5
-
17
-
-
84862016400
-
The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism
-
Haschemi A., Kosma P., Gille L., Evans C.R., Burant C.F., Starkl P., et al. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab. 2012, 15:813-826. 10.1016/j.cmet.2012.04.023.
-
(2012)
Cell Metab.
, vol.15
, pp. 813-826
-
-
Haschemi, A.1
Kosma, P.2
Gille, L.3
Evans, C.R.4
Burant, C.F.5
Starkl, P.6
-
18
-
-
33745428666
-
Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation
-
Vats D., Mukundan L., Odegaard J.I., Zhang L., Smith K.L., Morel C.R., et al. Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab. 2006, 4:13-24. 10.1016/j.cmet.2006.05.011.
-
(2006)
Cell Metab.
, vol.4
, pp. 13-24
-
-
Vats, D.1
Mukundan, L.2
Odegaard, J.I.3
Zhang, L.4
Smith, K.L.5
Morel, C.R.6
-
19
-
-
84906319549
-
Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages
-
Huang S.C.-C., Everts B., Ivanova Y., O'sullivan D., Nascimento M., Smith A.M., et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat. Immunol. 2014, 15:846-855. 10.1038/ni.2956.
-
(2014)
Nat. Immunol.
, vol.15
, pp. 846-855
-
-
Huang, S.C.-C.1
Everts, B.2
Ivanova, Y.3
O'sullivan, D.4
Nascimento, M.5
Smith, A.M.6
-
20
-
-
45749107055
-
Unique CD14+ intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-γ axis
-
Kamada N., Hisamatsu T., Okamoto S., Chinen H., Kobayashi T., Sato T., et al. Unique CD14+ intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-γ axis. J. Clin. Invest. 2008, 118:2269-2280. 10.1172/JCI34610.
-
(2008)
J. Clin. Invest.
, vol.118
, pp. 2269-2280
-
-
Kamada, N.1
Hisamatsu, T.2
Okamoto, S.3
Chinen, H.4
Kobayashi, T.5
Sato, T.6
-
21
-
-
84897556094
-
The M1 and M2 paradigm of macrophage activation: time for reassessment
-
Martinez F.O., Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014, 6:6-13. 10.12703/P.
-
(2014)
F1000Prime Rep.
, vol.6
, pp. 6-13
-
-
Martinez, F.O.1
Gordon, S.2
-
22
-
-
33746879141
-
Glycolysis inhibition for anticancer treatment
-
Pelicano H., Martin D.S., Xu R.-H., Huang P. Glycolysis inhibition for anticancer treatment. Oncogene 2006, 25:4633-4646. 10.1038/sj.onc.1209597.
-
(2006)
Oncogene
, vol.25
, pp. 4633-4646
-
-
Pelicano, H.1
Martin, D.S.2
Xu, R.-H.3
Huang, P.4
-
23
-
-
53049103850
-
Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer
-
Michelakis E.D., Webster L., Mackey J.R. Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br. J. Cancer. 2008, 99:989-994. 10.1038/sj.bjc.6604554.
-
(2008)
Br. J. Cancer.
, vol.99
, pp. 989-994
-
-
Michelakis, E.D.1
Webster, L.2
Mackey, J.R.3
-
24
-
-
84878626950
-
Activated hepatic stellate cells mediate the differentiation of macrophages
-
Chang J., Hisamatsu T., Shimamura K., Yoneno K., Adachi M., Naruse H., et al. Activated hepatic stellate cells mediate the differentiation of macrophages. Hepatol. Res. 2013, 43:658-669. 10.1111/j.1872-034X.2012.01111.x.
-
(2013)
Hepatol. Res.
, vol.43
, pp. 658-669
-
-
Chang, J.1
Hisamatsu, T.2
Shimamura, K.3
Yoneno, K.4
Adachi, M.5
Naruse, H.6
-
25
-
-
80052242132
-
M.G. Vander Heiden, Targeting cancer metabolism: a therapeutic window opens
-
M.G. Vander Heiden, Targeting cancer metabolism: a therapeutic window opens. Nat. Rev. Drug Discov. 2011, 10:671-684. 10.1038/nrd3504.
-
(2011)
Nat. Rev. Drug Discov.
, vol.10
, pp. 671-684
-
-
-
26
-
-
33846002728
-
A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth
-
Bonnet S., Archer S.L., Allalunis-Turner J., Haromy A., Beaulieu C., Thompson R., et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. 2007, 11:37-51. 10.1016/j.ccr.2006.10.020.
-
(2007)
Cancer Cell.
, vol.11
, pp. 37-51
-
-
Bonnet, S.1
Archer, S.L.2
Allalunis-Turner, J.3
Haromy, A.4
Beaulieu, C.5
Thompson, R.6
-
27
-
-
7444254061
-
CSF-1 regulation of the wandering macrophage: complexity in action
-
Pixley F.J., Stanley E.R. CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol. 2004, 14:628-638. 10.1016/j.tcb.2004.09.016.
-
(2004)
Trends Cell Biol.
, vol.14
, pp. 628-638
-
-
Pixley, F.J.1
Stanley, E.R.2
-
28
-
-
7944225940
-
Membrane-bound macrophage colony-stimulating factor mediated auto-juxtacrine downregulates matrix metalloproteinase-9 release on J6-1 leukemic cell
-
Rao Q., Zheng G.-G., Li G., Lin Y.-M., Wu K.-F. Membrane-bound macrophage colony-stimulating factor mediated auto-juxtacrine downregulates matrix metalloproteinase-9 release on J6-1 leukemic cell. Exp. Biol. Med. 2004, 229:946-953.
-
(2004)
Exp. Biol. Med.
, vol.229
, pp. 946-953
-
-
Rao, Q.1
Zheng, G.-G.2
Li, G.3
Lin, Y.-M.4
Wu, K.-F.5
-
29
-
-
0035412388
-
Rescue of the colony-stimulating factor 1 (CSF-1)-nullizygous mouse (Csf1 op/Csf1 op) phenotype with a CSF-1 transgene and identification of sites of local CSF-1 synthesis
-
Ryan G.R., Dai X., Dominguez M.G., Tong W., Chuan F., Chisholm O., et al. Rescue of the colony-stimulating factor 1 (CSF-1)-nullizygous mouse (Csf1 op/Csf1 op) phenotype with a CSF-1 transgene and identification of sites of local CSF-1 synthesis. Blood 2001, 98:74-84. 10.1182/blood.V98.1.74.
-
(2001)
Blood
, vol.98
, pp. 74-84
-
-
Ryan, G.R.1
Dai, X.2
Dominguez, M.G.3
Tong, W.4
Chuan, F.5
Chisholm, O.6
-
30
-
-
30044448462
-
Colony-stimulating factor-1 in immunity and inflammation
-
Chitu V., Stanley E.R. Colony-stimulating factor-1 in immunity and inflammation. Curr. Opin. Immunol. 2006, 18:39-48. 10.1016/j.coi.2005.11.006.
-
(2006)
Curr. Opin. Immunol.
, vol.18
, pp. 39-48
-
-
Chitu, V.1
Stanley, E.R.2
-
31
-
-
46249090513
-
Colony-stimulating factors in inflammation and autoimmunity
-
Hamilton J.A. Colony-stimulating factors in inflammation and autoimmunity. Nat. Rev. Immunol. 2008, 8:533-544. 10.1038/nri2356.
-
(2008)
Nat. Rev. Immunol.
, vol.8
, pp. 533-544
-
-
Hamilton, J.A.1
-
32
-
-
0033999678
-
Membrane-bound macrophage colony-stimulating factor and its receptor play adhesion molecule-like roles in leukemic cells
-
Zheng G., Rao Q., Wu K., He Z., Geng Y. Membrane-bound macrophage colony-stimulating factor and its receptor play adhesion molecule-like roles in leukemic cells. Leuk. Res. 2000, 24:375-383. 10.1016/S0145-2126(99)00192-7.
-
(2000)
Leuk. Res.
, vol.24
, pp. 375-383
-
-
Zheng, G.1
Rao, Q.2
Wu, K.3
He, Z.4
Geng, Y.5
-
33
-
-
1642541143
-
Incomplete restoration of colony-stimulating factor 1 (CSF-1) function in CSF-1-deficient Csf1op/CSF1op mice by transgenic expression of cell surface CSF-1
-
Dai X., Zong X., Sylvestre V., Stanley E.R. Incomplete restoration of colony-stimulating factor 1 (CSF-1) function in CSF-1-deficient Csf1op/CSF1op mice by transgenic expression of cell surface CSF-1. Blood 2004, 103:1114-1123. 10.1182/blood-2003-08-2739.Supported.
-
(2004)
Blood
, vol.103
, pp. 1114-1123
-
-
Dai, X.1
Zong, X.2
Sylvestre, V.3
Stanley, E.R.4
-
34
-
-
84893487976
-
Angiogenic capacity of M1- and M2-polarized macrophages is determined by the levels of TIMP-1 complexed with their secreted proMMP-9
-
Zajac E., Schweighofer B., Kupriyanova T.A., Juncker-Jensen A., Minder P., Quigley J.P., et al. Angiogenic capacity of M1- and M2-polarized macrophages is determined by the levels of TIMP-1 complexed with their secreted proMMP-9. Blood 2013, 122:4054-4067. 10.1182/blood-2013-05-501494.
-
(2013)
Blood
, vol.122
, pp. 4054-4067
-
-
Zajac, E.1
Schweighofer, B.2
Kupriyanova, T.A.3
Juncker-Jensen, A.4
Minder, P.5
Quigley, J.P.6
-
35
-
-
84875670440
-
Macrophage heterogeneity in respiratory diseases
-
Boorsma C.E., Draijer C., Melgert B.N. Macrophage heterogeneity in respiratory diseases. Mediators Inflamm. 2013, 2013:1-19. 10.1155/2013/769214.
-
(2013)
Mediators Inflamm.
, vol.2013
, pp. 1-19
-
-
Boorsma, C.E.1
Draijer, C.2
Melgert, B.N.3
-
36
-
-
0037442674
-
VEGF expression in human macrophages is NF-κB-dependent: studies using adenoviruses expressing the endogenous NF-κB inhibitor IκBα and a kinase-defective form of the IκB kinase 2
-
Kiriakidis S., Andreakos E., Monaco C., Foxwell B., Feldmann M., Paleolog E. VEGF expression in human macrophages is NF-κB-dependent: studies using adenoviruses expressing the endogenous NF-κB inhibitor IκBα and a kinase-defective form of the IκB kinase 2. J. Cell Sci. 2003, 116:665-674. 10.1242/jcs.00286.
-
(2003)
J. Cell Sci.
, vol.116
, pp. 665-674
-
-
Kiriakidis, S.1
Andreakos, E.2
Monaco, C.3
Foxwell, B.4
Feldmann, M.5
Paleolog, E.6
-
37
-
-
84943594573
-
Monocyte and macrophage plasticity in tissue repair and regeneration
-
Das A., Sinha M., Datta S., Abas M., Chaffee S., Sen C.K., et al. Monocyte and macrophage plasticity in tissue repair and regeneration. Am. J. Pathol. 2015, 185:1-11. 10.1016/j.ajpath.2015.06.001.
-
(2015)
Am. J. Pathol.
, vol.185
, pp. 1-11
-
-
Das, A.1
Sinha, M.2
Datta, S.3
Abas, M.4
Chaffee, S.5
Sen, C.K.6
-
38
-
-
28344449833
-
Macrophage activation switching: an asset for the resolution of inflammation
-
Porcheray F., Viaud S., Rimaniol a.C., Léone C., Samah B., Dereuddre-Bosquet N., et al. Macrophage activation switching: an asset for the resolution of inflammation. Clin. Exp. Immunol. 2005, 142:481-489. 10.1111/j.1365-2249.2005.02934.x.
-
(2005)
Clin. Exp. Immunol.
, vol.142
, pp. 481-489
-
-
Porcheray, F.1
Viaud, S.2
Rimaniol, A.C.3
Léone, C.4
Samah, B.5
Dereuddre-Bosquet, N.6
-
39
-
-
84893357660
-
Engulfment of apoptotic cells by macrophages: a role of microRNA-21 in the resolution of wound inflammation
-
Das A., Ganesh K., Khanna S., Sen C.K., Roy S. Engulfment of apoptotic cells by macrophages: a role of microRNA-21 in the resolution of wound inflammation. J. Immunol. 2014, 192:1120-1129. 10.4049/jimmunol.1300613.
-
(2014)
J. Immunol.
, vol.192
, pp. 1120-1129
-
-
Das, A.1
Ganesh, K.2
Khanna, S.3
Sen, C.K.4
Roy, S.5
-
40
-
-
84881537511
-
Hematological disorders following gastric bypass surgery: emerging concepts of the interplay between nutritional deficiency and inflammation
-
Chen M., Krishnamurthy a, Mohamed a R., Green R. Hematological disorders following gastric bypass surgery: emerging concepts of the interplay between nutritional deficiency and inflammation. Biomed. Res. Int. 2013, 2013:205467. 10.1155/2013/205467.
-
(2013)
Biomed. Res. Int.
, vol.2013
, pp. 205467
-
-
Chen, M.1
Krishnamurthy, A.2
Mohamed, A.R.3
Green, R.4
-
41
-
-
84971243101
-
Childhood malnutrition: toward an understanding of infections
-
inflammation, and antimicrobials
-
K.D. Jones, J.A. Berkley, Childhood malnutrition: toward an understanding of infections, inflammation, and antimicrobials, 35, (2014).
-
(2014)
, vol.35
-
-
Jones, K.D.1
Berkley, J.A.2
-
42
-
-
84929353032
-
Molecular connections between cancer cell metabolism and the tumor microenvironment
-
Justus C., Sanderlin E., Yang L. Molecular connections between cancer cell metabolism and the tumor microenvironment. Int. J. Mol. Sci. 2015, 16:11055-11086. 10.3390/ijms160511055.
-
(2015)
Int. J. Mol. Sci.
, vol.16
, pp. 11055-11086
-
-
Justus, C.1
Sanderlin, E.2
Yang, L.3
-
43
-
-
33747170887
-
Is pyruvate an endogenous anti-inflammatory molecule?
-
Das U.N. Is pyruvate an endogenous anti-inflammatory molecule?. Nutrition 2006, 22:965-972. 10.1016/j.nut.2006.05.009.
-
(2006)
Nutrition
, vol.22
, pp. 965-972
-
-
Das, U.N.1
-
44
-
-
84924530072
-
A comparative analysis of multiple sclerosis-relevant anti-inflammatory properties of ethyl pyruvate and dimethyl fumarate
-
Miljkovic D., Blaevski J., Petkovic F., Djedovic N., Momcilovic M., Stanisavljevic S., et al. A comparative analysis of multiple sclerosis-relevant anti-inflammatory properties of ethyl pyruvate and dimethyl fumarate. J. Immunol. 2015, 194:2493-2503. 10.4049/jimmunol.1402302.
-
(2015)
J. Immunol.
, vol.194
, pp. 2493-2503
-
-
Miljkovic, D.1
Blaevski, J.2
Petkovic, F.3
Djedovic, N.4
Momcilovic, M.5
Stanisavljevic, S.6
-
45
-
-
34748845127
-
Exogenous ethyl pyruvate versus pyruvate during metabolic recovery after oxidative stress in neonatal rat cerebrocortical slices
-
Zeng J., Liu J., Yang G.-Y., Kelly M.J.S., James T.L., Litt L. Exogenous ethyl pyruvate versus pyruvate during metabolic recovery after oxidative stress in neonatal rat cerebrocortical slices. Anesthesiology 2007, 107:630-640. 10.1097/01.anes.0000281898.01966.1e.
-
(2007)
Anesthesiology
, vol.107
, pp. 630-640
-
-
Zeng, J.1
Liu, J.2
Yang, G.-Y.3
Kelly, M.J.S.4
James, T.L.5
Litt, L.6
-
46
-
-
0347758406
-
Evidence that glutathione depletion is a mechanism responsible for the anti-inflammatory effects of ethyl pyruvate in cultured lipopolysaccharide-stimulated RAW 264.7 cells
-
Song M., Kellum J.A., Kaldas H., Fink M.P. Evidence that glutathione depletion is a mechanism responsible for the anti-inflammatory effects of ethyl pyruvate in cultured lipopolysaccharide-stimulated RAW 264.7 cells. J. Pharmacol. Exp. Ther. 2004, 308:307-316. 10.1124/jpet.103.056622.
-
(2004)
J. Pharmacol. Exp. Ther.
, vol.308
, pp. 307-316
-
-
Song, M.1
Kellum, J.A.2
Kaldas, H.3
Fink, M.P.4
-
47
-
-
84931386872
-
Pyruvate dehydrogenate kinase 1 participates in macrophage polarization via regulating glucose metabolism
-
Tan Z., Xie N., Cui H., Moellering D.R., Abraham E., Thannickal V.J., et al. Pyruvate dehydrogenate kinase 1 participates in macrophage polarization via regulating glucose metabolism. J. Immunol. 2015, 10.4049/jimmunol.1402469.
-
(2015)
J. Immunol.
-
-
Tan, Z.1
Xie, N.2
Cui, H.3
Moellering, D.R.4
Abraham, E.5
Thannickal, V.J.6
-
48
-
-
84857992195
-
Targeting cancer metabolism-aiming at a tumour's sweet-spot
-
Jones N.P., Schulze A. Targeting cancer metabolism-aiming at a tumour's sweet-spot. Drug Discov. Today 2012, 17:232-241. 10.1016/j.drudis.2011.12.017.
-
(2012)
Drug Discov. Today
, vol.17
, pp. 232-241
-
-
Jones, N.P.1
Schulze, A.2
-
49
-
-
84904406680
-
Tumor-associated macrophages: from mechanisms to therapy
-
Noy R., Pollard J.W. Tumor-associated macrophages: from mechanisms to therapy. Immunity 2014, 41:49-61. 10.1016/j.immuni.2014.06.010.
-
(2014)
Immunity
, vol.41
, pp. 49-61
-
-
Noy, R.1
Pollard, J.W.2
-
50
-
-
84872529636
-
Anti-tumour strategies aiming to target tumour-associated macrophages
-
Tang X., Mo C., Wang Y., Wei D., Xiao H. Anti-tumour strategies aiming to target tumour-associated macrophages. Immunology 2013, 138:93-104. 10.1111/imm.12023.
-
(2013)
Immunology
, vol.138
, pp. 93-104
-
-
Tang, X.1
Mo, C.2
Wang, Y.3
Wei, D.4
Xiao, H.5
|