메뉴 건너뛰기




Volumn 176, Issue , 2016, Pages 18-27

Glycolytic pathway affects differentiation of human monocytes to regulatory macrophages

Author keywords

Differentiation; Glycolytic pathway; Human monocyte; Regulatory macrophage

Indexed keywords

COLONY STIMULATING FACTOR 1; DEOXYGLUCOSE; DICHLOROACETIC ACID; GELATINASE B; INTERLEUKIN 10; INTERLEUKIN 6; LIPOPOLYSACCHARIDE; PYRUVIC ACID; VASCULOTROPIN A; 2-DEOXY-GLUCOSE TETRAACETATE; COLONY STIMULATING FACTOR; CYTOKINE; GLUCOSE; MMP9 PROTEIN, HUMAN; TRANSCRIPTOME; VEGFA PROTEIN, HUMAN;

EID: 84971281324     PISSN: 01652478     EISSN: 18790542     Source Type: Journal    
DOI: 10.1016/j.imlet.2016.05.009     Document Type: Article
Times cited : (66)

References (50)
  • 1
    • 80355131976 scopus 로고    scopus 로고
    • Protective and pathogenic functions of macrophage subsets
    • Murray P.J., Wynn T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 2011, 11:723-737. 10.1038/nri3073.
    • (2011) Nat. Rev. Immunol. , vol.11 , pp. 723-737
    • Murray, P.J.1    Wynn, T.A.2
  • 2
    • 28544446111 scopus 로고    scopus 로고
    • Monocyte and macrophage heterogeneity
    • Gordon S., Taylor P.R. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 2005, 5:953-964. 10.1038/nri1733.
    • (2005) Nat. Rev. Immunol. , vol.5 , pp. 953-964
    • Gordon, S.1    Taylor, P.R.2
  • 3
    • 84857883847 scopus 로고    scopus 로고
    • Macrophage plasticity and polarization: in vivo veritas
    • Antonio S., Albelto M. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest. 2012, 122:787-795. 10.1172/JCI59643DS1.
    • (2012) J. Clin. Invest. , vol.122 , pp. 787-795
    • Antonio, S.1    Albelto, M.2
  • 4
    • 27744437941 scopus 로고    scopus 로고
    • Abnormally differentiated subsets of intestinal macrophage play a key role in Th1-dominant chronic colitis through excess production of IL-12 and IL-23 in response to bacteria
    • 175/10/6900 [ii]
    • Kamada N., Hisamatsu T., Okamoto S., Sato T., Matsuoka K., Arai K., et al. Abnormally differentiated subsets of intestinal macrophage play a key role in Th1-dominant chronic colitis through excess production of IL-12 and IL-23 in response to bacteria. J. Immunol. 2005, 175:6900-6908. 175/10/6900 [ii].
    • (2005) J. Immunol. , vol.175 , pp. 6900-6908
    • Kamada, N.1    Hisamatsu, T.2    Okamoto, S.3    Sato, T.4    Matsuoka, K.5    Arai, K.6
  • 5
    • 33646455658 scopus 로고    scopus 로고
    • Phenotypic and functional pro ling of human proin ammatory type-1 and anti-in ammatory type-2 macrophages in response to microbial antigens and IFN-gamma- and CD40L-mediated costimulation
    • Verreck F.A.W., De Boer T., Langenberg D.M.L., Van Der Zanden L., Ottenhoff T.H.M. Phenotypic and functional pro ling of human proin ammatory type-1 and anti-in ammatory type-2 macrophages in response to microbial antigens and IFN-gamma- and CD40L-mediated costimulation. J. Leukoc. Biol. 2006, 79:285-293. 10.1189/jlb.0105015.Journal.
    • (2006) J. Leukoc. Biol. , vol.79 , pp. 285-293
    • Verreck, F.A.W.1    De Boer, T.2    Langenberg, D.M.L.3    Van Der Zanden, L.4    Ottenhoff, T.H.M.5
  • 6
    • 77951902290 scopus 로고    scopus 로고
    • Monocyte chemoattractant protein-1 contributes to gut homeostasis and intestinal inflammation by composition of IL-10-producing regulatory macrophage subset
    • Takada Y., Hisamatsu T., Kamada N., Kitazume M.T., Honda H., Oshima Y., et al. Monocyte chemoattractant protein-1 contributes to gut homeostasis and intestinal inflammation by composition of IL-10-producing regulatory macrophage subset. J. Immunol. 2010, 184:2671-2676. 10.4049/jimmunol.0804012.
    • (2010) J. Immunol. , vol.184 , pp. 2671-2676
    • Takada, Y.1    Hisamatsu, T.2    Kamada, N.3    Kitazume, M.T.4    Honda, H.5    Oshima, Y.6
  • 7
    • 0035950972 scopus 로고    scopus 로고
    • Interleukin-10 contributes development of macrophage suppressor activities by macrophage colony-stimulating factor, but not by granulocyte-macrophage colony-stimulating factor
    • Mochida-Nishimura K., Akagawa K.S., a Rich E. Interleukin-10 contributes development of macrophage suppressor activities by macrophage colony-stimulating factor, but not by granulocyte-macrophage colony-stimulating factor. Cell. Immunol. 2001, 214:81-88. 10.1006/cimm.2001.1801.
    • (2001) Cell. Immunol. , vol.214 , pp. 81-88
    • Mochida-Nishimura, K.1    Akagawa, K.S.2    a Rich, E.3
  • 8
    • 0031020848 scopus 로고    scopus 로고
    • Enhancement of macrophage colony-stimulating factor-induced growth and differentiation of human monocytes by interleukin-10
    • Hashimoto S., Yamada M., Motoyoshi K., Akagawa K.S. Enhancement of macrophage colony-stimulating factor-induced growth and differentiation of human monocytes by interleukin-10. Blood 1997, 89:315-321.
    • (1997) Blood , vol.89 , pp. 315-321
    • Hashimoto, S.1    Yamada, M.2    Motoyoshi, K.3    Akagawa, K.S.4
  • 10
    • 33846026712 scopus 로고    scopus 로고
    • Obesity induces a phenotypic switch in adipose tissue macrophage polarization
    • Lumeng C.N., Bodzin J.L., Saltiel A.R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 2007, 117:175-184. 10.1172/JCI29881.
    • (2007) J. Clin. Invest. , vol.117 , pp. 175-184
    • Lumeng, C.N.1    Bodzin, J.L.2    Saltiel, A.R.3
  • 11
    • 34347354309 scopus 로고    scopus 로고
    • Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance
    • Odegaard J.I., Ricardo-Gonzalez R.R., Goforth M.H., Morel C.R., Subramanian V., Mukundan L., et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 2007, 447:1116-1120. 10.1038/nature05894.
    • (2007) Nature , vol.447 , pp. 1116-1120
    • Odegaard, J.I.1    Ricardo-Gonzalez, R.R.2    Goforth, M.H.3    Morel, C.R.4    Subramanian, V.5    Mukundan, L.6
  • 12
    • 84896905991 scopus 로고    scopus 로고
    • Metabolic regulation of immune responses
    • Ganeshan K., Chawla A. Metabolic regulation of immune responses. Annu. Rev. Immunol. 2014, 32:609-634. 10.1146/annurev-immunol-032713-120236.
    • (2014) Annu. Rev. Immunol. , vol.32 , pp. 609-634
    • Ganeshan, K.1    Chawla, A.2
  • 13
    • 84876758617 scopus 로고    scopus 로고
    • Metabolic Pathways in immune cell activation and Quiescence
    • Pearce E.L., Pearce E.J. Metabolic Pathways in immune cell activation and Quiescence. Immunity 2013, 38:633-643. 10.1016/j.biotechadv.2011.08.021.Secreted.
    • (2013) Immunity , vol.38 , pp. 633-643
    • Pearce, E.L.1    Pearce, E.J.2
  • 14
    • 79955532516 scopus 로고    scopus 로고
    • TLR signalling augments macrophage bactericidal activity through mitochondrial ROS
    • Phillip W., Igor B., Gerald S., Sankar G. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 2011, 472:476-480. 10.1038/nature09973.
    • (2011) Nature , vol.472 , pp. 476-480
    • Phillip, W.1    Igor, B.2    Gerald, S.3    Sankar, G.4
  • 16
    • 84901218517 scopus 로고    scopus 로고
    • Lactate reduces liver and pancreatic injury in toll-like receptor- and inflammasome-mediated inflammation via GPR81-mediated suppression of innate immunity
    • Hoque R., Farooq A., Ghani A., Gorelick F., Mehal W.Z. Lactate reduces liver and pancreatic injury in toll-like receptor- and inflammasome-mediated inflammation via GPR81-mediated suppression of innate immunity. Gastroenterology 2014, 146:1763-1774. 10.1053/j.gastro.2014.03.014.
    • (2014) Gastroenterology , vol.146 , pp. 1763-1774
    • Hoque, R.1    Farooq, A.2    Ghani, A.3    Gorelick, F.4    Mehal, W.Z.5
  • 17
    • 84862016400 scopus 로고    scopus 로고
    • The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism
    • Haschemi A., Kosma P., Gille L., Evans C.R., Burant C.F., Starkl P., et al. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab. 2012, 15:813-826. 10.1016/j.cmet.2012.04.023.
    • (2012) Cell Metab. , vol.15 , pp. 813-826
    • Haschemi, A.1    Kosma, P.2    Gille, L.3    Evans, C.R.4    Burant, C.F.5    Starkl, P.6
  • 18
    • 33745428666 scopus 로고    scopus 로고
    • Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation
    • Vats D., Mukundan L., Odegaard J.I., Zhang L., Smith K.L., Morel C.R., et al. Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab. 2006, 4:13-24. 10.1016/j.cmet.2006.05.011.
    • (2006) Cell Metab. , vol.4 , pp. 13-24
    • Vats, D.1    Mukundan, L.2    Odegaard, J.I.3    Zhang, L.4    Smith, K.L.5    Morel, C.R.6
  • 19
    • 84906319549 scopus 로고    scopus 로고
    • Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages
    • Huang S.C.-C., Everts B., Ivanova Y., O'sullivan D., Nascimento M., Smith A.M., et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat. Immunol. 2014, 15:846-855. 10.1038/ni.2956.
    • (2014) Nat. Immunol. , vol.15 , pp. 846-855
    • Huang, S.C.-C.1    Everts, B.2    Ivanova, Y.3    O'sullivan, D.4    Nascimento, M.5    Smith, A.M.6
  • 20
    • 45749107055 scopus 로고    scopus 로고
    • Unique CD14+ intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-γ axis
    • Kamada N., Hisamatsu T., Okamoto S., Chinen H., Kobayashi T., Sato T., et al. Unique CD14+ intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-γ axis. J. Clin. Invest. 2008, 118:2269-2280. 10.1172/JCI34610.
    • (2008) J. Clin. Invest. , vol.118 , pp. 2269-2280
    • Kamada, N.1    Hisamatsu, T.2    Okamoto, S.3    Chinen, H.4    Kobayashi, T.5    Sato, T.6
  • 21
    • 84897556094 scopus 로고    scopus 로고
    • The M1 and M2 paradigm of macrophage activation: time for reassessment
    • Martinez F.O., Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014, 6:6-13. 10.12703/P.
    • (2014) F1000Prime Rep. , vol.6 , pp. 6-13
    • Martinez, F.O.1    Gordon, S.2
  • 22
    • 33746879141 scopus 로고    scopus 로고
    • Glycolysis inhibition for anticancer treatment
    • Pelicano H., Martin D.S., Xu R.-H., Huang P. Glycolysis inhibition for anticancer treatment. Oncogene 2006, 25:4633-4646. 10.1038/sj.onc.1209597.
    • (2006) Oncogene , vol.25 , pp. 4633-4646
    • Pelicano, H.1    Martin, D.S.2    Xu, R.-H.3    Huang, P.4
  • 23
    • 53049103850 scopus 로고    scopus 로고
    • Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer
    • Michelakis E.D., Webster L., Mackey J.R. Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br. J. Cancer. 2008, 99:989-994. 10.1038/sj.bjc.6604554.
    • (2008) Br. J. Cancer. , vol.99 , pp. 989-994
    • Michelakis, E.D.1    Webster, L.2    Mackey, J.R.3
  • 24
    • 84878626950 scopus 로고    scopus 로고
    • Activated hepatic stellate cells mediate the differentiation of macrophages
    • Chang J., Hisamatsu T., Shimamura K., Yoneno K., Adachi M., Naruse H., et al. Activated hepatic stellate cells mediate the differentiation of macrophages. Hepatol. Res. 2013, 43:658-669. 10.1111/j.1872-034X.2012.01111.x.
    • (2013) Hepatol. Res. , vol.43 , pp. 658-669
    • Chang, J.1    Hisamatsu, T.2    Shimamura, K.3    Yoneno, K.4    Adachi, M.5    Naruse, H.6
  • 25
    • 80052242132 scopus 로고    scopus 로고
    • M.G. Vander Heiden, Targeting cancer metabolism: a therapeutic window opens
    • M.G. Vander Heiden, Targeting cancer metabolism: a therapeutic window opens. Nat. Rev. Drug Discov. 2011, 10:671-684. 10.1038/nrd3504.
    • (2011) Nat. Rev. Drug Discov. , vol.10 , pp. 671-684
  • 26
    • 33846002728 scopus 로고    scopus 로고
    • A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth
    • Bonnet S., Archer S.L., Allalunis-Turner J., Haromy A., Beaulieu C., Thompson R., et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. 2007, 11:37-51. 10.1016/j.ccr.2006.10.020.
    • (2007) Cancer Cell. , vol.11 , pp. 37-51
    • Bonnet, S.1    Archer, S.L.2    Allalunis-Turner, J.3    Haromy, A.4    Beaulieu, C.5    Thompson, R.6
  • 27
    • 7444254061 scopus 로고    scopus 로고
    • CSF-1 regulation of the wandering macrophage: complexity in action
    • Pixley F.J., Stanley E.R. CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol. 2004, 14:628-638. 10.1016/j.tcb.2004.09.016.
    • (2004) Trends Cell Biol. , vol.14 , pp. 628-638
    • Pixley, F.J.1    Stanley, E.R.2
  • 28
    • 7944225940 scopus 로고    scopus 로고
    • Membrane-bound macrophage colony-stimulating factor mediated auto-juxtacrine downregulates matrix metalloproteinase-9 release on J6-1 leukemic cell
    • Rao Q., Zheng G.-G., Li G., Lin Y.-M., Wu K.-F. Membrane-bound macrophage colony-stimulating factor mediated auto-juxtacrine downregulates matrix metalloproteinase-9 release on J6-1 leukemic cell. Exp. Biol. Med. 2004, 229:946-953.
    • (2004) Exp. Biol. Med. , vol.229 , pp. 946-953
    • Rao, Q.1    Zheng, G.-G.2    Li, G.3    Lin, Y.-M.4    Wu, K.-F.5
  • 29
    • 0035412388 scopus 로고    scopus 로고
    • Rescue of the colony-stimulating factor 1 (CSF-1)-nullizygous mouse (Csf1 op/Csf1 op) phenotype with a CSF-1 transgene and identification of sites of local CSF-1 synthesis
    • Ryan G.R., Dai X., Dominguez M.G., Tong W., Chuan F., Chisholm O., et al. Rescue of the colony-stimulating factor 1 (CSF-1)-nullizygous mouse (Csf1 op/Csf1 op) phenotype with a CSF-1 transgene and identification of sites of local CSF-1 synthesis. Blood 2001, 98:74-84. 10.1182/blood.V98.1.74.
    • (2001) Blood , vol.98 , pp. 74-84
    • Ryan, G.R.1    Dai, X.2    Dominguez, M.G.3    Tong, W.4    Chuan, F.5    Chisholm, O.6
  • 30
    • 30044448462 scopus 로고    scopus 로고
    • Colony-stimulating factor-1 in immunity and inflammation
    • Chitu V., Stanley E.R. Colony-stimulating factor-1 in immunity and inflammation. Curr. Opin. Immunol. 2006, 18:39-48. 10.1016/j.coi.2005.11.006.
    • (2006) Curr. Opin. Immunol. , vol.18 , pp. 39-48
    • Chitu, V.1    Stanley, E.R.2
  • 31
    • 46249090513 scopus 로고    scopus 로고
    • Colony-stimulating factors in inflammation and autoimmunity
    • Hamilton J.A. Colony-stimulating factors in inflammation and autoimmunity. Nat. Rev. Immunol. 2008, 8:533-544. 10.1038/nri2356.
    • (2008) Nat. Rev. Immunol. , vol.8 , pp. 533-544
    • Hamilton, J.A.1
  • 32
    • 0033999678 scopus 로고    scopus 로고
    • Membrane-bound macrophage colony-stimulating factor and its receptor play adhesion molecule-like roles in leukemic cells
    • Zheng G., Rao Q., Wu K., He Z., Geng Y. Membrane-bound macrophage colony-stimulating factor and its receptor play adhesion molecule-like roles in leukemic cells. Leuk. Res. 2000, 24:375-383. 10.1016/S0145-2126(99)00192-7.
    • (2000) Leuk. Res. , vol.24 , pp. 375-383
    • Zheng, G.1    Rao, Q.2    Wu, K.3    He, Z.4    Geng, Y.5
  • 33
    • 1642541143 scopus 로고    scopus 로고
    • Incomplete restoration of colony-stimulating factor 1 (CSF-1) function in CSF-1-deficient Csf1op/CSF1op mice by transgenic expression of cell surface CSF-1
    • Dai X., Zong X., Sylvestre V., Stanley E.R. Incomplete restoration of colony-stimulating factor 1 (CSF-1) function in CSF-1-deficient Csf1op/CSF1op mice by transgenic expression of cell surface CSF-1. Blood 2004, 103:1114-1123. 10.1182/blood-2003-08-2739.Supported.
    • (2004) Blood , vol.103 , pp. 1114-1123
    • Dai, X.1    Zong, X.2    Sylvestre, V.3    Stanley, E.R.4
  • 34
    • 84893487976 scopus 로고    scopus 로고
    • Angiogenic capacity of M1- and M2-polarized macrophages is determined by the levels of TIMP-1 complexed with their secreted proMMP-9
    • Zajac E., Schweighofer B., Kupriyanova T.A., Juncker-Jensen A., Minder P., Quigley J.P., et al. Angiogenic capacity of M1- and M2-polarized macrophages is determined by the levels of TIMP-1 complexed with their secreted proMMP-9. Blood 2013, 122:4054-4067. 10.1182/blood-2013-05-501494.
    • (2013) Blood , vol.122 , pp. 4054-4067
    • Zajac, E.1    Schweighofer, B.2    Kupriyanova, T.A.3    Juncker-Jensen, A.4    Minder, P.5    Quigley, J.P.6
  • 35
    • 84875670440 scopus 로고    scopus 로고
    • Macrophage heterogeneity in respiratory diseases
    • Boorsma C.E., Draijer C., Melgert B.N. Macrophage heterogeneity in respiratory diseases. Mediators Inflamm. 2013, 2013:1-19. 10.1155/2013/769214.
    • (2013) Mediators Inflamm. , vol.2013 , pp. 1-19
    • Boorsma, C.E.1    Draijer, C.2    Melgert, B.N.3
  • 36
    • 0037442674 scopus 로고    scopus 로고
    • VEGF expression in human macrophages is NF-κB-dependent: studies using adenoviruses expressing the endogenous NF-κB inhibitor IκBα and a kinase-defective form of the IκB kinase 2
    • Kiriakidis S., Andreakos E., Monaco C., Foxwell B., Feldmann M., Paleolog E. VEGF expression in human macrophages is NF-κB-dependent: studies using adenoviruses expressing the endogenous NF-κB inhibitor IκBα and a kinase-defective form of the IκB kinase 2. J. Cell Sci. 2003, 116:665-674. 10.1242/jcs.00286.
    • (2003) J. Cell Sci. , vol.116 , pp. 665-674
    • Kiriakidis, S.1    Andreakos, E.2    Monaco, C.3    Foxwell, B.4    Feldmann, M.5    Paleolog, E.6
  • 37
    • 84943594573 scopus 로고    scopus 로고
    • Monocyte and macrophage plasticity in tissue repair and regeneration
    • Das A., Sinha M., Datta S., Abas M., Chaffee S., Sen C.K., et al. Monocyte and macrophage plasticity in tissue repair and regeneration. Am. J. Pathol. 2015, 185:1-11. 10.1016/j.ajpath.2015.06.001.
    • (2015) Am. J. Pathol. , vol.185 , pp. 1-11
    • Das, A.1    Sinha, M.2    Datta, S.3    Abas, M.4    Chaffee, S.5    Sen, C.K.6
  • 39
    • 84893357660 scopus 로고    scopus 로고
    • Engulfment of apoptotic cells by macrophages: a role of microRNA-21 in the resolution of wound inflammation
    • Das A., Ganesh K., Khanna S., Sen C.K., Roy S. Engulfment of apoptotic cells by macrophages: a role of microRNA-21 in the resolution of wound inflammation. J. Immunol. 2014, 192:1120-1129. 10.4049/jimmunol.1300613.
    • (2014) J. Immunol. , vol.192 , pp. 1120-1129
    • Das, A.1    Ganesh, K.2    Khanna, S.3    Sen, C.K.4    Roy, S.5
  • 40
    • 84881537511 scopus 로고    scopus 로고
    • Hematological disorders following gastric bypass surgery: emerging concepts of the interplay between nutritional deficiency and inflammation
    • Chen M., Krishnamurthy a, Mohamed a R., Green R. Hematological disorders following gastric bypass surgery: emerging concepts of the interplay between nutritional deficiency and inflammation. Biomed. Res. Int. 2013, 2013:205467. 10.1155/2013/205467.
    • (2013) Biomed. Res. Int. , vol.2013 , pp. 205467
    • Chen, M.1    Krishnamurthy, A.2    Mohamed, A.R.3    Green, R.4
  • 41
    • 84971243101 scopus 로고    scopus 로고
    • Childhood malnutrition: toward an understanding of infections
    • inflammation, and antimicrobials
    • K.D. Jones, J.A. Berkley, Childhood malnutrition: toward an understanding of infections, inflammation, and antimicrobials, 35, (2014).
    • (2014) , vol.35
    • Jones, K.D.1    Berkley, J.A.2
  • 42
    • 84929353032 scopus 로고    scopus 로고
    • Molecular connections between cancer cell metabolism and the tumor microenvironment
    • Justus C., Sanderlin E., Yang L. Molecular connections between cancer cell metabolism and the tumor microenvironment. Int. J. Mol. Sci. 2015, 16:11055-11086. 10.3390/ijms160511055.
    • (2015) Int. J. Mol. Sci. , vol.16 , pp. 11055-11086
    • Justus, C.1    Sanderlin, E.2    Yang, L.3
  • 43
    • 33747170887 scopus 로고    scopus 로고
    • Is pyruvate an endogenous anti-inflammatory molecule?
    • Das U.N. Is pyruvate an endogenous anti-inflammatory molecule?. Nutrition 2006, 22:965-972. 10.1016/j.nut.2006.05.009.
    • (2006) Nutrition , vol.22 , pp. 965-972
    • Das, U.N.1
  • 44
    • 84924530072 scopus 로고    scopus 로고
    • A comparative analysis of multiple sclerosis-relevant anti-inflammatory properties of ethyl pyruvate and dimethyl fumarate
    • Miljkovic D., Blaevski J., Petkovic F., Djedovic N., Momcilovic M., Stanisavljevic S., et al. A comparative analysis of multiple sclerosis-relevant anti-inflammatory properties of ethyl pyruvate and dimethyl fumarate. J. Immunol. 2015, 194:2493-2503. 10.4049/jimmunol.1402302.
    • (2015) J. Immunol. , vol.194 , pp. 2493-2503
    • Miljkovic, D.1    Blaevski, J.2    Petkovic, F.3    Djedovic, N.4    Momcilovic, M.5    Stanisavljevic, S.6
  • 45
    • 34748845127 scopus 로고    scopus 로고
    • Exogenous ethyl pyruvate versus pyruvate during metabolic recovery after oxidative stress in neonatal rat cerebrocortical slices
    • Zeng J., Liu J., Yang G.-Y., Kelly M.J.S., James T.L., Litt L. Exogenous ethyl pyruvate versus pyruvate during metabolic recovery after oxidative stress in neonatal rat cerebrocortical slices. Anesthesiology 2007, 107:630-640. 10.1097/01.anes.0000281898.01966.1e.
    • (2007) Anesthesiology , vol.107 , pp. 630-640
    • Zeng, J.1    Liu, J.2    Yang, G.-Y.3    Kelly, M.J.S.4    James, T.L.5    Litt, L.6
  • 46
    • 0347758406 scopus 로고    scopus 로고
    • Evidence that glutathione depletion is a mechanism responsible for the anti-inflammatory effects of ethyl pyruvate in cultured lipopolysaccharide-stimulated RAW 264.7 cells
    • Song M., Kellum J.A., Kaldas H., Fink M.P. Evidence that glutathione depletion is a mechanism responsible for the anti-inflammatory effects of ethyl pyruvate in cultured lipopolysaccharide-stimulated RAW 264.7 cells. J. Pharmacol. Exp. Ther. 2004, 308:307-316. 10.1124/jpet.103.056622.
    • (2004) J. Pharmacol. Exp. Ther. , vol.308 , pp. 307-316
    • Song, M.1    Kellum, J.A.2    Kaldas, H.3    Fink, M.P.4
  • 47
    • 84931386872 scopus 로고    scopus 로고
    • Pyruvate dehydrogenate kinase 1 participates in macrophage polarization via regulating glucose metabolism
    • Tan Z., Xie N., Cui H., Moellering D.R., Abraham E., Thannickal V.J., et al. Pyruvate dehydrogenate kinase 1 participates in macrophage polarization via regulating glucose metabolism. J. Immunol. 2015, 10.4049/jimmunol.1402469.
    • (2015) J. Immunol.
    • Tan, Z.1    Xie, N.2    Cui, H.3    Moellering, D.R.4    Abraham, E.5    Thannickal, V.J.6
  • 48
    • 84857992195 scopus 로고    scopus 로고
    • Targeting cancer metabolism-aiming at a tumour's sweet-spot
    • Jones N.P., Schulze A. Targeting cancer metabolism-aiming at a tumour's sweet-spot. Drug Discov. Today 2012, 17:232-241. 10.1016/j.drudis.2011.12.017.
    • (2012) Drug Discov. Today , vol.17 , pp. 232-241
    • Jones, N.P.1    Schulze, A.2
  • 49
    • 84904406680 scopus 로고    scopus 로고
    • Tumor-associated macrophages: from mechanisms to therapy
    • Noy R., Pollard J.W. Tumor-associated macrophages: from mechanisms to therapy. Immunity 2014, 41:49-61. 10.1016/j.immuni.2014.06.010.
    • (2014) Immunity , vol.41 , pp. 49-61
    • Noy, R.1    Pollard, J.W.2
  • 50
    • 84872529636 scopus 로고    scopus 로고
    • Anti-tumour strategies aiming to target tumour-associated macrophages
    • Tang X., Mo C., Wang Y., Wei D., Xiao H. Anti-tumour strategies aiming to target tumour-associated macrophages. Immunology 2013, 138:93-104. 10.1111/imm.12023.
    • (2013) Immunology , vol.138 , pp. 93-104
    • Tang, X.1    Mo, C.2    Wang, Y.3    Wei, D.4    Xiao, H.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.