메뉴 건너뛰기




Volumn 128, Issue , 2016, Pages 389-408

Image super-resolution: The techniques, applications, and future

Author keywords

Applications; Regularized framework; Resolution enhancement; Super resolution

Indexed keywords

ALGORITHMS; APPLICATIONS; OPTIMIZATION;

EID: 84971212665     PISSN: 01651684     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.sigpro.2016.05.002     Document Type: Review
Times cited : (485)

References (211)
  • 1
    • 69349102108 scopus 로고    scopus 로고
    • Super-resolution without explicit subpixel motion estimation
    • H. Takeda, P. Milanfar, M. Protter, and et al. Super-resolution without explicit subpixel motion estimation IEEE Trans. Image Process. 18 2009 1958 1975
    • (2009) IEEE Trans. Image Process. , vol.18 , pp. 1958-1975
    • Takeda, H.1    Milanfar, P.2    Protter, M.3
  • 2
    • 60649091348 scopus 로고    scopus 로고
    • Super-resolution in medical imaging
    • H. Greenspan Super-resolution in medical imaging Comput. J. 52 2009 43 63
    • (2009) Comput. J. , vol.52 , pp. 43-63
    • Greenspan, H.1
  • 4
    • 85032751363 scopus 로고    scopus 로고
    • Super-resolution image reconstruction: A technical overview
    • S.C. Park, M.K. Park, and M.G. Kang Super-resolution image reconstruction: a technical overview IEEE Signal Process. Mag. 20 2003 21 36
    • (2003) IEEE Signal Process. Mag. , vol.20 , pp. 21-36
    • Park, S.C.1    Park, M.K.2    Kang, M.G.3
  • 8
    • 84904508167 scopus 로고    scopus 로고
    • Super-resolution: A comprehensive survey
    • K. Nasrollahi, and T.B. Moeslund Super-resolution: a comprehensive survey Mach. Vis. Appl. 25 2014 1423 1468
    • (2014) Mach. Vis. Appl. , vol.25 , pp. 1423-1468
    • Nasrollahi, K.1    Moeslund, T.B.2
  • 10
    • 77951623771 scopus 로고    scopus 로고
    • Single-image super-resolution using sparse regression and natural image prior
    • K.I. Kim, and Y. Kwon Single-image super-resolution using sparse regression and natural image prior IEEE Trans. Pattern Anal. Mach. Intell. 32 2010 1127 1133
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , pp. 1127-1133
    • Kim, K.I.1    Kwon, Y.2
  • 11
    • 78049312324 scopus 로고    scopus 로고
    • Image super-resolution via sparse representation
    • J. Yang, J. Wright, T.S. Huang, and et al. Image super-resolution via sparse representation IEEE Trans. Image Process. 19 2010 2861 2873
    • (2010) IEEE Trans. Image Process. , vol.19 , pp. 2861-2873
    • Yang, J.1    Wright, J.2    Huang, T.S.3
  • 13
    • 85032751770 scopus 로고    scopus 로고
    • Computer vision applied to super resolution
    • D. Capel, and A. Zisserman Computer vision applied to super resolution IEEE Signal Process. Mag. 20 2003 75 86
    • (2003) IEEE Signal Process. Mag. , vol.20 , pp. 75-86
    • Capel, D.1    Zisserman, A.2
  • 14
    • 80051947769 scopus 로고    scopus 로고
    • A survey on super-resolution imaging
    • J. Tian, and K.K. Ma A survey on super-resolution imaging Signal, Image Video Process. 2011 2011 329 342
    • (2011) Signal, Image Video Process. , vol.2011 , pp. 329-342
    • Tian, J.1    Ma, K.K.2
  • 15
    • 33747070740 scopus 로고    scopus 로고
    • Image super-resolution survey
    • J. Van Ouwerkerk Image super-resolution survey Image Vis. Comput. 24 2006 1039 1052
    • (2006) Image Vis. Comput. , vol.24 , pp. 1039-1052
    • Van Ouwerkerk, J.1
  • 16
    • 84922612902 scopus 로고    scopus 로고
    • SkySat-1: Very high-resolution imagery from a small satellite
    • K. Murthy, M. Shearn, B.D. Smiley, and et al. SkySat-1: very high-resolution imagery from a small satellite Sens., Syst., -Gener. Satell. XVIII 2014 (92411E-1-92411E-12)
    • (2014) Sens., Syst., -Gener. Satell. XVIII , pp. 92411E1-92411E12
    • Murthy, K.1    Shearn, M.2    Smiley, B.D.3
  • 17
    • 33749026335 scopus 로고    scopus 로고
    • Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)
    • M.J. Rust, M. Bates, and X. Zhuang Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) Nat. Methods 3 2006 793 796
    • (2006) Nat. Methods , vol.3 , pp. 793-796
    • Rust, M.J.1    Bates, M.2    Zhuang, X.3
  • 21
    • 79953814425 scopus 로고    scopus 로고
    • A low noise pixel architecture for scientific CMOS monolithic active pixel sensors
    • R.E. Coath, J.P. Crooks, A. Godbeer, and et al. A low noise pixel architecture for scientific CMOS monolithic active pixel sensors IEEE Trans. Nucl. Sci. 57 2010 2490 2496
    • (2010) IEEE Trans. Nucl. Sci. , vol.57 , pp. 2490-2496
    • Coath, R.E.1    Crooks, J.P.2    Godbeer, A.3
  • 22
    • 0035424287 scopus 로고    scopus 로고
    • A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur
    • M. Elad, and Y. Hel-Or A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur IEEE Trans. Image Process. 10 2001 1187 1193
    • (2001) IEEE Trans. Image Process. , vol.10 , pp. 1187-1193
    • Elad, M.1    Hel-Or, Y.2
  • 24
    • 34250885103 scopus 로고    scopus 로고
    • Hallucinating faces: LPH super-resolution and neighbor reconstruction for residue compensation
    • Y. Zhuang, J. Zhang, and F. Wu Hallucinating faces: LPH super-resolution and neighbor reconstruction for residue compensation Pattern Recognit. 40 2007 3178 3194
    • (2007) Pattern Recognit. , vol.40 , pp. 3178-3194
    • Zhuang, Y.1    Zhang, J.2    Wu, F.3
  • 25
    • 84893429874 scopus 로고    scopus 로고
    • Super-resolution reconstruction for multi-angle remote sensing images considering resolution differences
    • H. Zhang, Z. Yang, L. Zhang, and et al. Super-resolution reconstruction for multi-angle remote sensing images considering resolution differences Remote Sens. 6 2014 637 657
    • (2014) Remote Sens. , vol.6 , pp. 637-657
    • Zhang, H.1    Yang, Z.2    Zhang, L.3
  • 26
    • 45849108809 scopus 로고    scopus 로고
    • Application of Tikhonov regularization to super-resolution reconstruction of brain MRI images
    • X. Zhang, E. Lam, E. Wu, and et al. Application of Tikhonov regularization to super-resolution reconstruction of brain MRI images Med. Imaging Inform. 2008 51 56
    • (2008) Med. Imaging Inform. , pp. 51-56
    • Zhang, X.1    Lam, E.2    Wu, E.3
  • 28
    • 60649095400 scopus 로고    scopus 로고
    • Super-resolution reconstruction algorithm to MODIS remote sensing images
    • H. Shen, M.K. Ng, P. Li, and et al. Super-resolution reconstruction algorithm to MODIS remote sensing images Comput. J. 52 2009 90 100
    • (2009) Comput. J. , vol.52 , pp. 90-100
    • Shen, H.1    Ng, M.K.2    Li, P.3
  • 30
    • 0000373061 scopus 로고
    • Diffraction and resolving power
    • J.L. Harris Diffraction and resolving power J. Opt. Soc. Am. 54 1964 931 933
    • (1964) J. Opt. Soc. Am. , vol.54 , pp. 931-933
    • Harris, J.L.1
  • 33
    • 0025449401 scopus 로고
    • Recursive reconstruction of high resolution image from noisy undersampled multiframes
    • S.P. Kim, N.K. Bose, and H.M. Valenzuela Recursive reconstruction of high resolution image from noisy undersampled multiframes IEEE Trans. Acoust., Speech, Signal Process. 38 1990 1013 1027
    • (1990) IEEE Trans. Acoust., Speech, Signal Process. , vol.38 , pp. 1013-1027
    • Kim, S.P.1    Bose, N.K.2    Valenzuela, H.M.3
  • 34
    • 0035305125 scopus 로고    scopus 로고
    • A fast MAP algorithm for high-resolution image reconstruction with multisensors
    • M.K. Ng, and A.M. Yip A fast MAP algorithm for high-resolution image reconstruction with multisensors Multidimens. Syst. Signal Process. 12 2001 143 164
    • (2001) Multidimens. Syst. Signal Process. , vol.12 , pp. 143-164
    • Ng, M.K.1    Yip, A.M.2
  • 35
    • 0035309154 scopus 로고    scopus 로고
    • A computationally efficient superresolution image reconstruction algorithm
    • N. Nguyen, P. Milanfar, and G. Golub A computationally efficient superresolution image reconstruction algorithm IEEE Trans. Image Process. 10 2001 573 583
    • (2001) IEEE Trans. Image Process. , vol.10 , pp. 573-583
    • Nguyen, N.1    Milanfar, P.2    Golub, G.3
  • 38
    • 0037000293 scopus 로고    scopus 로고
    • High resolution image formation from low resolution frames using Delaunay triangulation
    • S. Lertrattanapanich, and N.K. Bose High resolution image formation from low resolution frames using Delaunay triangulation IEEE Trans. Image Process. 11 2002 1427 1441
    • (2002) IEEE Trans. Image Process. , vol.11 , pp. 1427-1441
    • Lertrattanapanich, S.1    Bose, N.K.2
  • 39
    • 0036453476 scopus 로고    scopus 로고
    • Spatially adaptive high-resolution image reconstruction of low-resolution DCT-based compressed images
    • Rochester, New York
    • S.C. Park, M.G. Kang, C.A. Segall, et al., Spatially adaptive high-resolution image reconstruction of low-resolution DCT-based compressed images, in: Proceedings of the IEEE International Conference on Image Processing, Rochester, New York, 2002, pp. 861-864.
    • (2002) Proceedings of the IEEE International Conference on Image Processing , pp. 861-864
    • Park, S.C.1    Kang, M.G.2    Segall, C.A.3
  • 41
    • 10844234123 scopus 로고    scopus 로고
    • Parameter estimation in Bayesian high-resolution image reconstruction with multisensors
    • R. Molina, M. Vega, J. Abad, and et al. Parameter estimation in Bayesian high-resolution image reconstruction with multisensors IEEE Trans. Image Process. 12 2003 1655 1667
    • (2003) IEEE Trans. Image Process. , vol.12 , pp. 1655-1667
    • Molina, R.1    Vega, M.2    Abad, J.3
  • 46
    • 24944464196 scopus 로고    scopus 로고
    • Super-resolution image restoration from blurred low-resolution images
    • M.K. Ng, and A.C. Yau Super-resolution image restoration from blurred low-resolution images J. Math. Imaging Vis. 23 2005 367 378
    • (2005) J. Math. Imaging Vis. , vol.23 , pp. 367-378
    • Ng, M.K.1    Yau, A.C.2
  • 47
    • 34547143792 scopus 로고    scopus 로고
    • A total variation regularization based super-resolution reconstruction algorithm for digital video
    • M.K. Ng, H. Shen, E.Y. Lam, and et al. A total variation regularization based super-resolution reconstruction algorithm for digital video EURASIP J. Adv. Signal Process. 2007 2007
    • (2007) EURASIP J. Adv. Signal Process. , vol.2007
    • Ng, M.K.1    Shen, H.2    Lam, E.Y.3
  • 48
    • 60649094778 scopus 로고    scopus 로고
    • Super-resolution of multispectral images
    • M. Vega, J. Mateos, R. Molina, and et al. Super-resolution of multispectral images Comput. J. 52 2009 153
    • (2009) Comput. J. , vol.52 , pp. 153
    • Vega, M.1    Mateos, J.2    Molina, R.3
  • 49
    • 78649286493 scopus 로고    scopus 로고
    • Adaptive multiple-frame image super-resolution based on U-curve
    • Q. Yuan, L. Zhang, H. Shen, and et al. Adaptive multiple-frame image super-resolution based on U-curve IEEE Trans. Image Process. 19 2010 3157 3170
    • (2010) IEEE Trans. Image Process. , vol.19 , pp. 3157-3170
    • Yuan, Q.1    Zhang, L.2    Shen, H.3
  • 50
    • 84855393412 scopus 로고    scopus 로고
    • Video super-resolution using generalized Gaussian Markov random fields
    • J. Chen, J. Nunez-Yanez, and A. Achim Video super-resolution using generalized Gaussian Markov random fields IEEE Signal Process. Lett. 19 2012 63 66
    • (2012) IEEE Signal Process. Lett. , vol.19 , pp. 63-66
    • Chen, J.1    Nunez-Yanez, J.2    Achim, A.3
  • 51
    • 84862823369 scopus 로고    scopus 로고
    • A Super-resolution reconstruction algorithm for hyperspectral images
    • H. Zhang, L. Zhang, and H. Shen A Super-resolution reconstruction algorithm for hyperspectral images Signal Process. 92 2012 2082 2096
    • (2012) Signal Process. , vol.92 , pp. 2082-2096
    • Zhang, H.1    Zhang, L.2    Shen, H.3
  • 52
    • 84903178153 scopus 로고    scopus 로고
    • A locally adaptive L1-L2 norm for multi-frame super-resolution of images with mixed noise and outliers
    • L. Yue, H. Shen, Q. Yuan, and et al. A locally adaptive L1-L2 norm for multi-frame super-resolution of images with mixed noise and outliers Signal Process. 105 2014 156 174
    • (2014) Signal Process. , vol.105 , pp. 156-174
    • Yue, L.1    Shen, H.2    Yuan, Q.3
  • 54
    • 33847712243 scopus 로고    scopus 로고
    • Kernel regression for image processing and reconstruction
    • H. Takeda, S. Farsiu, and P. Milanfar Kernel regression for image processing and reconstruction IEEE Trans. Image Process. 16 2007 349 366
    • (2007) IEEE Trans. Image Process. , vol.16 , pp. 349-366
    • Takeda, H.1    Farsiu, S.2    Milanfar, P.3
  • 55
    • 0036141424 scopus 로고    scopus 로고
    • Super-resolution land cover pattern prediction using a Hopfield neural network
    • A. Tatem, H. Lewis, P. Atkinson, and et al. Super-resolution land cover pattern prediction using a Hopfield neural network Remote Sens. Environ. 79 2002 1 14
    • (2002) Remote Sens. Environ. , vol.79 , pp. 1-14
    • Tatem, A.1    Lewis, H.2    Atkinson, P.3
  • 58
    • 0028427322 scopus 로고
    • A Bayesian approach to image expansion for improved definition
    • R.R. Schultz, and R.L. Stevenson A Bayesian approach to image expansion for improved definition IEEE Trans. Image Process. 3 1994 233 242
    • (1994) IEEE Trans. Image Process. , vol.3 , pp. 233-242
    • Schultz, R.R.1    Stevenson, R.L.2
  • 59
    • 0026372049 scopus 로고
    • Acquisition of very high resolution images using stereo cameras
    • Boston, MA
    • K. Aizawa, T. Komatsu, T. Saito, Acquisition of very high resolution images using stereo cameras, in: Proceedings of the Visual Communications, Boston, MA, 1991, pp. 318-328.
    • (1991) Proceedings of the Visual Communications , pp. 318-328
    • Aizawa, K.1    Komatsu, T.2    Saito, T.3
  • 60
    • 0032686359 scopus 로고    scopus 로고
    • Discrete cosine transform based regularized high-resolution image reconstruction algorithm
    • S. Rhee, and M.G. Kang Discrete cosine transform based regularized high-resolution image reconstruction algorithm Opt. Eng. 38 1999 1348 1356
    • (1999) Opt. Eng. , vol.38 , pp. 1348-1356
    • Rhee, S.1    Kang, M.G.2
  • 61
    • 0033699507 scopus 로고    scopus 로고
    • A wavelet-based interpolation-restoration method for superresolution (wavelet superresolution)
    • N. Nguyen, and P. Milanfar A wavelet-based interpolation-restoration method for superresolution (wavelet superresolution) Circuits, Syst. Signal Process. 19 2000 321 338
    • (2000) Circuits, Syst. Signal Process. , vol.19 , pp. 321-338
    • Nguyen, N.1    Milanfar, P.2
  • 62
    • 33847755152 scopus 로고    scopus 로고
    • A MAP approach for joint motion estimation, segmentation, and super resolution
    • H. Shen, L. Zhang, B. Huang, and et al. A MAP approach for joint motion estimation, segmentation, and super resolution IEEE Trans. Image Process. 16 2007 479 490
    • (2007) IEEE Trans. Image Process. , vol.16 , pp. 479-490
    • Shen, H.1    Zhang, L.2    Huang, B.3
  • 63
    • 84997206985 scopus 로고
    • High-resolution image reconstruction from a low-resolution image sequence in the presence of time-varying motion blur
    • Austin, TX, USA
    • A.J. Patti, M.I. Sezan, A.M. Tekalp, High-resolution image reconstruction from a low-resolution image sequence in the presence of time-varying motion blur, in: Proceedings of the IEEE International Conference on Image Processing, Austin, TX, USA, 1994, pp. 343-347.
    • (1994) Proceedings of the IEEE International Conference on Image Processing , pp. 343-347
    • Patti, A.J.1    Sezan, M.I.2    Tekalp, A.M.3
  • 67
    • 84856756269 scopus 로고    scopus 로고
    • Super-resolution in respiratory synchronized positron emission tomography
    • D. Wallach, F. Lamare, G. Kontaxakis, and et al. Super-resolution in respiratory synchronized positron emission tomography IEEE Trans. Med. Imaging 31 2012 438 448
    • (2012) IEEE Trans. Med. Imaging , vol.31 , pp. 438-448
    • Wallach, D.1    Lamare, F.2    Kontaxakis, G.3
  • 68
    • 84930504659 scopus 로고    scopus 로고
    • A blind super-resolution reconstruction method considering image registration errors
    • H. Zhang, L. Zhang, and H. Shen A blind super-resolution reconstruction method considering image registration errors Int. J. Fuzzy Syst. 17 2015 353 364
    • (2015) Int. J. Fuzzy Syst. , vol.17 , pp. 353-364
    • Zhang, H.1    Zhang, L.2    Shen, H.3
  • 69
    • 70350716279 scopus 로고    scopus 로고
    • A super-resolution reconstruction algorithm for surveillance images
    • L. Zhang, H. Zhang, H. Shen, and et al. A super-resolution reconstruction algorithm for surveillance images Signal Process. 90 2010 848 859
    • (2010) Signal Process. , vol.90 , pp. 848-859
    • Zhang, L.1    Zhang, H.2    Shen, H.3
  • 70
    • 0024758573 scopus 로고
    • High-resolution image recovery from image plane arrays, using convex projections
    • H. Stark, and P. Oskoui High-resolution image recovery from image plane arrays, using convex projections J. Opt. Soc. Am. A: Opt. Image Sci. Vis. 6 1989 1715 1726
    • (1989) J. Opt. Soc. Am. A: Opt. Image Sci. Vis. , vol.6 , pp. 1715-1726
    • Stark, H.1    Oskoui, P.2
  • 71
    • 0031332301 scopus 로고    scopus 로고
    • Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images
    • M. Elad, and A. Feuer Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images IEEE Trans. Image Process. 6 1997 1646 1658
    • (1997) IEEE Trans. Image Process. , vol.6 , pp. 1646-1658
    • Elad, M.1    Feuer, A.2
  • 73
    • 84863118922 scopus 로고    scopus 로고
    • Spatially adaptive block-based super-resolution
    • H. Su, L. Tang, Y. Wu, and et al. Spatially adaptive block-based super-resolution IEEE Trans. Image Process. 21 2012 1031 1045
    • (2012) IEEE Trans. Image Process. , vol.21 , pp. 1031-1045
    • Su, H.1    Tang, L.2    Wu, Y.3
  • 74
    • 84873821315 scopus 로고    scopus 로고
    • A restoration algorithm for images contaminated by mixed Gaussian plus random-valued impulse noise
    • Y. Zhou, Z. Ye, and Y. Xiao A restoration algorithm for images contaminated by mixed Gaussian plus random-valued impulse noise J. Vis. Commun. Image Represent. 24 2013 283 294 (http://dx.doi.org/10.1016/j.jvcir.2013.01.004)
    • (2013) J. Vis. Commun. Image Represent. , vol.24 , pp. 283-294
    • Zhou, Y.1    Ye, Z.2    Xiao, Y.3
  • 75
    • 84943547237 scopus 로고    scopus 로고
    • Missing information reconstruction of remote sensing data: A technical review
    • H. Shen, X. Li, Q. Cheng, and et al. Missing information reconstruction of remote sensing data: a technical review IEEE Geosci. Remote Sens. Mag. 3 2015 61 85
    • (2015) IEEE Geosci. Remote Sens. Mag. , vol.3 , pp. 61-85
    • Shen, H.1    Li, X.2    Cheng, Q.3
  • 76
    • 84907779428 scopus 로고    scopus 로고
    • A new total variation method for multiplicative noise removal
    • Y.M. Huang, M.K. Ng, and Y.W. Wen A new total variation method for multiplicative noise removal SIAM J. Imaging Sci. 2 2009 22 40
    • (2009) SIAM J. Imaging Sci. , vol.2 , pp. 22-40
    • Huang, Y.M.1    Ng, M.K.2    Wen, Y.W.3
  • 77
    • 65549129259 scopus 로고    scopus 로고
    • A super-resolution framework for 3-D high-resolution and high-contrast imaging using 2-D multislice MRI
    • R.Z. Shilling, T.Q. Robbie, T. Bailloeul, and et al. A super-resolution framework for 3-D high-resolution and high-contrast imaging using 2-D multislice MRI IEEE Trans. Med. Imaging 28 2009 633 644
    • (2009) IEEE Trans. Med. Imaging , vol.28 , pp. 633-644
    • Shilling, R.Z.1    Robbie, T.Q.2    Bailloeul, T.3
  • 78
    • 0027624429 scopus 로고
    • A generalized Gaussian image model for edge-preserving MAP estimation
    • C. Bouman, and K. Sauer A generalized Gaussian image model for edge-preserving MAP estimation IEEE Trans. Image Process. 2 1993 296 310
    • (1993) IEEE Trans. Image Process. , vol.2 , pp. 296-310
    • Bouman, C.1    Sauer, K.2
  • 79
    • 0042665415 scopus 로고    scopus 로고
    • Regularized adaptive high-resolution image reconstruction considering inaccurate subpixel registration
    • E.S. Lee, and M.G. Kang Regularized adaptive high-resolution image reconstruction considering inaccurate subpixel registration IEEE Trans. Image Process. 12 2003 826 837
    • (2003) IEEE Trans. Image Process. , vol.12 , pp. 826-837
    • Lee, E.S.1    Kang, M.G.2
  • 80
    • 55649094906 scopus 로고    scopus 로고
    • Image super-resolution by TV-regularization and Bregman iteration
    • A. Marquina, and S.J. Osher Image super-resolution by TV-regularization and Bregman iteration J. Sci. Comput. 37 2008 367 382
    • (2008) J. Sci. Comput. , vol.37 , pp. 367-382
    • Marquina, A.1    Osher, S.J.2
  • 81
    • 84937722894 scopus 로고    scopus 로고
    • Adaptive norm selection for regularized image restoration and super-resolution
    • H. Shen, L. Peng, L. Yue, and et al. Adaptive norm selection for regularized image restoration and super-resolution IEEE Trans. Cybern. 2015 10.1109/TCYB.2015.2446755
    • (2015) IEEE Trans. Cybern.
    • Shen, H.1    Peng, L.2    Yue, L.3
  • 85
    • 79953042112 scopus 로고    scopus 로고
    • Restoration of images corrupted by mixed Gaussian-impulse noise via L1-L0 minimization
    • Y. Xiao, T. Zeng, J. Yu, and et al. Restoration of images corrupted by mixed Gaussian-impulse noise via L1-L0 minimization Pattern Recognit. 44 2011 1708 1720
    • (2011) Pattern Recognit. , vol.44 , pp. 1708-1720
    • Xiao, Y.1    Zeng, T.2    Yu, J.3
  • 86
    • 84869497905 scopus 로고    scopus 로고
    • A robust multiframe super-resolution algorithm based on half-quadratic estimation with modified BTV regularization
    • X. Zeng, and L. Yang A robust multiframe super-resolution algorithm based on half-quadratic estimation with modified BTV regularization Digit. Signal Process. 23 2013 98 109
    • (2013) Digit. Signal Process. , vol.23 , pp. 98-109
    • Zeng, X.1    Yang, L.2
  • 87
    • 84896388891 scopus 로고    scopus 로고
    • Hyperspectral image restoration using low-rank matrix recovery
    • H. Zhang, W. He, L. Zhang, and et al. Hyperspectral image restoration using low-rank matrix recovery IEEE Trans. Geosci. Remote Sens. 52 2014 4729 4743
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , pp. 4729-4743
    • Zhang, H.1    He, W.2    Zhang, L.3
  • 88
    • 1942436689 scopus 로고    scopus 로고
    • Image quality assessment: From error visibility to structural similarity
    • Z. Wang, A.C. Bovik, H.R. Sheikh, and et al. Image quality assessment: from error visibility to structural similarity IEEE Trans. Image Process. 13 2004 600 612
    • (2004) IEEE Trans. Image Process. , vol.13 , pp. 600-612
    • Wang, Z.1    Bovik, A.C.2    Sheikh, H.R.3
  • 89
    • 84876218439 scopus 로고    scopus 로고
    • Regional spatially adaptive total variation super-resolution with spatial information filtering and clustering
    • Q. Yuan, L. Zhang, and H. Shen Regional spatially adaptive total variation super-resolution with spatial information filtering and clustering IEEE Trans. Image Process. 22 2013 2327 2342
    • (2013) IEEE Trans. Image Process. , vol.22 , pp. 2327-2342
    • Yuan, Q.1    Zhang, L.2    Shen, H.3
  • 90
    • 84869488524 scopus 로고    scopus 로고
    • Adjustable model-based fusion method for multispectral and panchromatic images
    • L. Zhang, H. Shen, W. Gong, and et al. Adjustable model-based fusion method for multispectral and panchromatic images IEEE Trans. Syst., Man., Cybern., Part B: Cybern. 42 2012 1693 1704
    • (2012) IEEE Trans. Syst., Man., Cybern., Part B: Cybern. , vol.42 , pp. 1693-1704
    • Zhang, L.1    Shen, H.2    Gong, W.3
  • 93
    • 19844370110 scopus 로고    scopus 로고
    • An iterative regularization method for total variation-based image restoration
    • S. Osher, M. Burger, D. Goldfarb, and et al. An iterative regularization method for total variation-based image restoration Multiscale Model. Simul. 4 2005 460
    • (2005) Multiscale Model. Simul. , vol.4 , pp. 460
    • Osher, S.1    Burger, M.2    Goldfarb, D.3
  • 94
    • 84863250968 scopus 로고    scopus 로고
    • Multiframe super-resolution employing a spatially weighted total variation model
    • Q. Yuan, L. Zhang, and H. Shen Multiframe super-resolution employing a spatially weighted total variation model IEEE Trans. Circuits Syst. Video Technol. 22 2012 379 392
    • (2012) IEEE Trans. Circuits Syst. Video Technol. , vol.22 , pp. 379-392
    • Yuan, Q.1    Zhang, L.2    Shen, H.3
  • 96
    • 70349298322 scopus 로고    scopus 로고
    • A multi-frame image super-resolution method
    • X. Li, Y. Hu, X. Gao, and et al. A multi-frame image super-resolution method Signal Process. 90 2010 405 414
    • (2010) Signal Process. , vol.90 , pp. 405-414
    • Li, X.1    Hu, Y.2    Gao, X.3
  • 97
    • 57049132103 scopus 로고    scopus 로고
    • Nonlocal operators with applications to image processing
    • G. Gilboa, and S. Osher Nonlocal operators with applications to image processing Multiscale Model. Simul. 7 2008 1005 1028
    • (2008) Multiscale Model. Simul. , vol.7 , pp. 1005-1028
    • Gilboa, G.1    Osher, S.2
  • 98
    • 84859073195 scopus 로고    scopus 로고
    • Edge-preserving image regularization based on morphological wavelets and dyadic trees
    • Z.J. Xiang, and P.J. Ramadge Edge-preserving image regularization based on morphological wavelets and dyadic trees IEEE Trans. Image Process. 21 2012 1548 1560
    • (2012) IEEE Trans. Image Process. , vol.21 , pp. 1548-1560
    • Xiang, Z.J.1    Ramadge, P.J.2
  • 100
    • 11744307549 scopus 로고    scopus 로고
    • High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system
    • R.C. Hardie, K.J. Barnard, J.G. Bognar, and et al. High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system Opt. Eng. 37 1998 247 260
    • (1998) Opt. Eng. , vol.37 , pp. 247-260
    • Hardie, R.C.1    Barnard, K.J.2    Bognar, J.G.3
  • 101
    • 33751359627 scopus 로고    scopus 로고
    • Efficient Huber-Markov edge-preserving image restoration
    • R. Pan, and S.J. Reeves Efficient Huber-Markov edge-preserving image restoration IEEE Trans. Image Process. 15 2006 3728 3735
    • (2006) IEEE Trans. Image Process. , vol.15 , pp. 3728-3735
    • Pan, R.1    Reeves, S.J.2
  • 102
    • 84969334819 scopus 로고    scopus 로고
    • The split Bregman method for L1-regularized problems
    • T. Goldstein, and S. Osher The split Bregman method for L1-regularized problems SIAM J. Imaging Sci. 2 2009 323 343
    • (2009) SIAM J. Imaging Sci. , vol.2 , pp. 323-343
    • Goldstein, T.1    Osher, S.2
  • 103
    • 44049111982 scopus 로고
    • Nonlinear total variation based noise removal algorithms
    • L. Rudin, S. Osher, and E. Fatemi Nonlinear total variation based noise removal algorithms Physica D 60 1992 259 268
    • (1992) Physica D , vol.60 , pp. 259-268
    • Rudin, L.1    Osher, S.2    Fatemi, E.3
  • 105
    • 67651035078 scopus 로고    scopus 로고
    • An efficient primal-dual hybrid gradient algorithm for total variation image restoration
    • M. Zhu, T. Chan, An efficient primal-dual hybrid gradient algorithm for total variation image restoration, UCLA CAM Report 08-34, 2008
    • (2008) UCLA CAM Report 08-34
    • Zhu, M.1    Chan, T.2
  • 106
    • 0032028980 scopus 로고    scopus 로고
    • Total variation blind deconvolution
    • T. Chan, and C. Wong Total variation blind deconvolution IEEE Trans. Image Process. 7 1998 370 375
    • (1998) IEEE Trans. Image Process. , vol.7 , pp. 370-375
    • Chan, T.1    Wong, C.2
  • 107
    • 79953190377 scopus 로고    scopus 로고
    • Automated regularization parameter selection in multi-scale total variation models for image restoration
    • Y. Dong, M. Hintermüller, and M.M. Rincon-Camacho Automated regularization parameter selection in multi-scale total variation models for image restoration J. Math. Imaging Vis. 40 2011 82 104
    • (2011) J. Math. Imaging Vis. , vol.40 , pp. 82-104
    • Dong, Y.1    Hintermüller, M.2    Rincon-Camacho, M.M.3
  • 108
    • 70450233723 scopus 로고    scopus 로고
    • Adaptive total variation denoising based on difference curvature
    • Q. Chen, P. Montesinos, Q.S. Sun, and et al. Adaptive total variation denoising based on difference curvature Image Vis. Comput. 28 2010 298 306
    • (2010) Image Vis. Comput. , vol.28 , pp. 298-306
    • Chen, Q.1    Montesinos, P.2    Sun, Q.S.3
  • 109
    • 0346316863 scopus 로고    scopus 로고
    • Edge-preserving and scale-dependent properties of total variation regularization
    • D. Strong, and T. Chan Edge-preserving and scale-dependent properties of total variation regularization Inverse Probl. 19 2003 S165
    • (2003) Inverse Probl. , vol.19 , pp. S165
    • Strong, D.1    Chan, T.2
  • 110
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • H. Zou, and T. Hastie Regularization and variable selection via the elastic net J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 67 2005 301 320
    • (2005) J. R. Stat. Soc.: Ser. B (Stat. Methodol.) , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 111
    • 24644476589 scopus 로고    scopus 로고
    • Relations between higher order TV regularization and support vector regression
    • Springer
    • G. Steidl, S. Didas, J. Neumann, Relations between higher order TV regularization and support vector regression, Scale Space and PDE Methods in Computer Vision, Springer, 2005, pp. 515-527.
    • (2005) Scale Space and PDE Methods in Computer Vision , pp. 515-527
    • Steidl, G.1    Didas, S.2    Neumann, J.3
  • 112
    • 66349092786 scopus 로고    scopus 로고
    • Maximum a posteriori blind image deconvolution with Huber-Markov random-field regularization
    • Z. Xu, and E.Y. Lam Maximum a posteriori blind image deconvolution with Huber-Markov random-field regularization Opt. Lett. 34 2009 1453 1455
    • (2009) Opt. Lett. , vol.34 , pp. 1453-1455
    • Xu, Z.1    Lam, E.Y.2
  • 113
    • 58149144703 scopus 로고    scopus 로고
    • Generalizing the nonlocal-means to super-resolution reconstruction
    • M. Protter, M. Elad, H. Takeda, and et al. Generalizing the nonlocal-means to super-resolution reconstruction IEEE Trans. Image Process. 18 2009 36 51
    • (2009) IEEE Trans. Image Process. , vol.18 , pp. 36-51
    • Protter, M.1    Elad, M.2    Takeda, H.3
  • 114
    • 41549098470 scopus 로고    scopus 로고
    • Nonlocal linear image regularization and supervised segmentation
    • G. Gilboa, and S. Osher Nonlocal linear image regularization and supervised segmentation Multiscale Model. Simul. 6 2007 595 630
    • (2007) Multiscale Model. Simul. , vol.6 , pp. 595-630
    • Gilboa, G.1    Osher, S.2
  • 115
    • 78149463074 scopus 로고    scopus 로고
    • Bregmanized nonlocal regularization for deconvolution and sparse reconstruction
    • X. Zhang, M. Burger, X. Bresson, and et al. Bregmanized nonlocal regularization for deconvolution and sparse reconstruction SIAM J. Imaging Sci. 3 2010 253 276
    • (2010) SIAM J. Imaging Sci. , vol.3 , pp. 253-276
    • Zhang, X.1    Burger, M.2    Bresson, X.3
  • 116
    • 84897989089 scopus 로고    scopus 로고
    • Video super resolution based on non-local regularization and reliable motion estimation
    • J. Lu, H. Zhang, and Y. Sun Video super resolution based on non-local regularization and reliable motion estimation Signal Process.: Image Commun. 29 2014 514 529
    • (2014) Signal Process.: Image Commun. , vol.29 , pp. 514-529
    • Lu, J.1    Zhang, H.2    Sun, Y.3
  • 118
    • 84863061822 scopus 로고    scopus 로고
    • Hyperspectral imagery super-resolution by sparse representation and spectral regularization
    • Y. Zhao, J. Yang, Q. Zhang, and et al. Hyperspectral imagery super-resolution by sparse representation and spectral regularization EURASIP J. Adv. Signal Process. 2011 2011 1 10
    • (2011) EURASIP J. Adv. Signal Process. , vol.2011 , pp. 1-10
    • Zhao, Y.1    Yang, J.2    Zhang, Q.3
  • 119
    • 84867063792 scopus 로고    scopus 로고
    • Hyperspectral image denoising employing a spectral-spatial adaptive total variation model
    • Q. Yuan, L. Zhang, and H. Shen Hyperspectral image denoising employing a spectral-spatial adaptive total variation model IEEE Trans. Geosci. Remote Sens. 2012
    • (2012) IEEE Trans. Geosci. Remote Sens.
    • Yuan, Q.1    Zhang, L.2    Shen, H.3
  • 121
    • 84962412678 scopus 로고
    • The use of the L-curve in the regularization of discrete ill-posed problems
    • P.C. Hansen, and D.P. O'Leary The use of the L-curve in the regularization of discrete ill-posed problems SIAM J. Sci. Comput. 14 1993 1487 1503
    • (1993) SIAM J. Sci. Comput. , vol.14 , pp. 1487-1503
    • Hansen, P.C.1    O'Leary, D.P.2
  • 122
    • 32044449925 scopus 로고
    • Generalized cross-validation as a method for choosing a good ridge parameter
    • G.H. Golub, M. Heath, and G. Wahba Generalized cross-validation as a method for choosing a good ridge parameter Technometrics 21 1979 215 223
    • (1979) Technometrics , vol.21 , pp. 215-223
    • Golub, G.H.1    Heath, M.2    Wahba, G.3
  • 123
    • 34547502627 scopus 로고    scopus 로고
    • Regularization parameter selection in discrete ill-posed problems - The use of the U-curve
    • D. Krawczyk-StańDo, and M. Rudnicki Regularization parameter selection in discrete ill-posed problems - the use of the U-curve Int. J. Appl. Math. Comput. Sci. 17 2007 157 164
    • (2007) Int. J. Appl. Math. Comput. Sci. , vol.17 , pp. 157-164
    • Krawczyk-StańDo, D.1    Rudnicki, M.2
  • 126
    • 36348960300 scopus 로고    scopus 로고
    • A nonlinear least square technique for simultaneous image registration and super-resolution
    • Y. He, K.-H. Yap, L. Chen, and et al. A nonlinear least square technique for simultaneous image registration and super-resolution IEEE Trans. Image Process. 16 2007 2830 2841
    • (2007) IEEE Trans. Image Process. , vol.16 , pp. 2830-2841
    • He, Y.1    Yap, K.-H.2    Chen, L.3
  • 127
    • 85032752036 scopus 로고    scopus 로고
    • Variational Bayesian inference techniques
    • M. Seeger, and D.P. Wipf Variational Bayesian inference techniques IEEE Signal Process. Mag. 27 2010 81 91
    • (2010) IEEE Signal Process. Mag. , vol.27 , pp. 81-91
    • Seeger, M.1    Wipf, D.P.2
  • 128
    • 0001556589 scopus 로고    scopus 로고
    • Iterative methods for total variation denoising
    • C. Vogel, and M. Oman Iterative methods for total variation denoising SIAM J. Sci. Comput. 17 1996 227 238
    • (1996) SIAM J. Sci. Comput. , vol.17 , pp. 227-238
    • Vogel, C.1    Oman, M.2
  • 129
    • 59649097565 scopus 로고    scopus 로고
    • Efficient minimization method for a generalized total variation functional
    • P. Rodríguez, and B. Wohlberg Efficient minimization method for a generalized total variation functional IEEE Trans. Image Process. 18 2009 322 332
    • (2009) IEEE Trans. Image Process. , vol.18 , pp. 322-332
    • Rodríguez, P.1    Wohlberg, B.2
  • 131
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • S. Boyd, N. Parikh, E. Chu, and et al. Distributed optimization and statistical learning via the alternating direction method of multipliers Found. Trends Mach. Learn. 3 2011 1 122
    • (2011) Found. Trends Mach. Learn. , vol.3 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Chu, E.3
  • 132
    • 0001472922 scopus 로고
    • Iteratively reweighted least squares: Algorithms, convergence analysis, and numerical comparisons
    • R. Wolke, and H. Schwetlick Iteratively reweighted least squares: algorithms, convergence analysis, and numerical comparisons SIAM J. Sci. Stat. Comput. 9 1988 907 921
    • (1988) SIAM J. Sci. Stat. Comput. , vol.9 , pp. 907-921
    • Wolke, R.1    Schwetlick, H.2
  • 135
    • 39449085530 scopus 로고    scopus 로고
    • A Douglas-Rachford splitting approach o nonsmooth convex variational signal recovery
    • P.L. Combettes, and J.-C. Pesquet A Douglas-Rachford splitting approach o nonsmooth convex variational signal recovery IEEE J. Sel. Top. Signal Process. 1 2007 564 574
    • (2007) IEEE J. Sel. Top. Signal Process. , vol.1 , pp. 564-574
    • Combettes, P.L.1    Pesquet, J.-C.2
  • 136
    • 80051766714 scopus 로고    scopus 로고
    • A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science
    • E. Esser, X. Zhang, and T.F. Chan A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science SIAM J. Imaging Sci. 3 2010 1015 1046
    • (2010) SIAM J. Imaging Sci. , vol.3 , pp. 1015-1046
    • Esser, E.1    Zhang, X.2    Chan, T.F.3
  • 137
    • 79955026306 scopus 로고    scopus 로고
    • Efficient and effective total variation image super-resolution: A preconditioned operator splitting approach
    • L.-L. Huang, L. Xiao, and Z.-H. Wei Efficient and effective total variation image super-resolution: a preconditioned operator splitting approach Math. Probl. Eng. 2011 2011 20 10.1155/2011/380807
    • (2011) Math. Probl. Eng. , vol.2011 , pp. 20
    • Huang, L.-L.1    Xiao, L.2    Wei, Z.-H.3
  • 140
    • 35048833329 scopus 로고    scopus 로고
    • High accuracy optical flow estimation based on a theory for warping
    • Springer
    • T. Brox, A. Bruhn, N. Papenberg, et al., High accuracy optical flow estimation based on a theory for warping, in: Proceedings of the Computer Vision-ECCV, Springer, 2004, pp. 25-36
    • (2004) Proceedings of the Computer Vision-ECCV , pp. 25-36
    • Brox, T.1    Bruhn, A.2    Papenberg, N.3
  • 143
    • 59749085192 scopus 로고    scopus 로고
    • Exact feature extraction using finite rate of innovation principles with an application to image super-resolution
    • L. Baboulaz, and P.L. Dragotti Exact feature extraction using finite rate of innovation principles with an application to image super-resolution IEEE Trans. Image Process. 18 2009 281 298
    • (2009) IEEE Trans. Image Process. , vol.18 , pp. 281-298
    • Baboulaz, L.1    Dragotti, P.L.2
  • 144
    • 84859018196 scopus 로고    scopus 로고
    • Super-resolution without dense flow
    • H. Su, Y. Wu, and J. Zhou Super-resolution without dense flow IEEE Trans. Image Process. 21 2012 1782 1795
    • (2012) IEEE Trans. Image Process. , vol.21 , pp. 1782-1795
    • Su, H.1    Wu, Y.2    Zhou, J.3
  • 145
    • 32944471247 scopus 로고    scopus 로고
    • An image super-resolution algorithm for different error levels per frame
    • H. Hu, and L.P. Kondi An image super-resolution algorithm for different error levels per frame IEEE Trans. Image Process. 15 2006 592 603
    • (2006) IEEE Trans. Image Process. , vol.15 , pp. 592-603
    • Hu, H.1    Kondi, L.P.2
  • 146
    • 0029769903 scopus 로고
    • Reconstruction of a high-resolution image by simultaneous registration, restoration, and interpolation of low-resolution images
    • Washington, DC, USA
    • B.C. Tom, A.K. Katsaggelos, Reconstruction of a high-resolution image by simultaneous registration, restoration, and interpolation of low-resolution images, in: Proceedings of the IEEE International Conference on Image Processing, Washington, DC, USA, 1995, pp. 539-542.
    • (1995) Proceedings of the IEEE International Conference on Image Processing , pp. 539-542
    • Tom, B.C.1    Katsaggelos, A.K.2
  • 147
    • 84897691078 scopus 로고    scopus 로고
    • Joint image registration and super-resolution from low-resolution images with zooming motion
    • Y. Tian, and K.-H. Yap Joint image registration and super-resolution from low-resolution images with zooming motion IEEE Trans. Circuits Syst. Video Technol. 23 2013 1224 1234
    • (2013) IEEE Trans. Circuits Syst. Video Technol. , vol.23 , pp. 1224-1234
    • Tian, Y.1    Yap, K.-H.2
  • 148
    • 68249087473 scopus 로고    scopus 로고
    • Super resolution with probabilistic motion estimation
    • M. Protter, and M. Elad Super resolution with probabilistic motion estimation IEEE Trans. Image Process. 18 2009 1899 1904
    • (2009) IEEE Trans. Image Process. , vol.18 , pp. 1899-1904
    • Protter, M.1    Elad, M.2
  • 149
    • 0000783736 scopus 로고
    • Motion analysis for image enhancement: Resolution, occlusion, and transparency
    • M. Irani, and S. Peleg Motion analysis for image enhancement: resolution, occlusion, and transparency J. Vis. Commun. Image Represent. 4 1993 324 335
    • (1993) J. Vis. Commun. Image Represent. , vol.4 , pp. 324-335
    • Irani, M.1    Peleg, S.2
  • 156
    • 84862549633 scopus 로고    scopus 로고
    • Image super-resolution with sparse neighbor embedding
    • X. Gao, K. Zhang, D. Tao, and et al. Image super-resolution with sparse neighbor embedding IEEE Trans. Image Process. 21 2012 3194 3205 10.1109/tip.2012.2190080
    • (2012) IEEE Trans. Image Process. , vol.21 , pp. 3194-3205
    • Gao, X.1    Zhang, K.2    Tao, D.3
  • 157
    • 84863011854 scopus 로고    scopus 로고
    • Joint learning for single-image super-resolution via a coupled constraint
    • X. Gao, K. Zhang, D. Tao, and et al. Joint learning for single-image super-resolution via a coupled constraint IEEE Trans. Image Process. 21 2012 469 480
    • (2012) IEEE Trans. Image Process. , vol.21 , pp. 469-480
    • Gao, X.1    Zhang, K.2    Tao, D.3
  • 158
    • 54249130426 scopus 로고    scopus 로고
    • Example-based learning for single-image super-resolution
    • Springer
    • K.I. Kim, Y. Kwon, Example-based learning for single-image super-resolution, Pattern Recognition, Springer, 2008, pp. 456-465.
    • (2008) Pattern Recognition , pp. 456-465
    • Kim, K.I.1    Kwon, Y.2
  • 159
    • 79959594311 scopus 로고    scopus 로고
    • Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization
    • W. Dong, D. Zhang, G. Shi, and et al. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization IEEE Trans. Image Process. 20 2011 1838 1857
    • (2011) IEEE Trans. Image Process. , vol.20 , pp. 1838-1857
    • Dong, W.1    Zhang, D.2    Shi, G.3
  • 162
    • 60249093963 scopus 로고    scopus 로고
    • Neighbor embedding based super-resolution algorithm through edge detection and feature selection
    • T.-M. Chan, J. Zhang, J. Pu, and et al. Neighbor embedding based super-resolution algorithm through edge detection and feature selection Pattern Recognit. Lett. 30 2009 494 502
    • (2009) Pattern Recognit. Lett. , vol.30 , pp. 494-502
    • Chan, T.-M.1    Zhang, J.2    Pu, J.3
  • 163
    • 79952931901 scopus 로고    scopus 로고
    • Partially supervised neighbor embedding for example-based image super-resolution
    • K. Zhang, X. Gao, X. Li, and et al. Partially supervised neighbor embedding for example-based image super-resolution IEEE J. Sel. Top. Signal Process. 5 2011 230 239
    • (2011) IEEE J. Sel. Top. Signal Process. , vol.5 , pp. 230-239
    • Zhang, K.1    Gao, X.2    Li, X.3
  • 164
    • 84865419736 scopus 로고    scopus 로고
    • Single-image super-resolution reconstruction via learned geometric dictionaries and clustered sparse coding
    • S. Yang, M. Wang, Y. Chen, and et al. Single-image super-resolution reconstruction via learned geometric dictionaries and clustered sparse coding IEEE Trans. Image Process. 21 2012 4016 4028
    • (2012) IEEE Trans. Image Process. , vol.21 , pp. 4016-4028
    • Yang, S.1    Wang, M.2    Chen, Y.3
  • 165
    • 84864128043 scopus 로고    scopus 로고
    • Coupled dictionary training for image super-resolution
    • J. Yang, Z. Wang, Z. Lin, and et al. Coupled dictionary training for image super-resolution IEEE Trans. Image Process. 21 2012 3467 3478
    • (2012) IEEE Trans. Image Process. , vol.21 , pp. 3467-3478
    • Yang, J.1    Wang, Z.2    Lin, Z.3
  • 166
    • 84901060118 scopus 로고    scopus 로고
    • A statistical prediction model based on sparse representations for single image super-resolution
    • T. Peleg, and M. Elad A statistical prediction model based on sparse representations for single image super-resolution IEEE Trans. Image Process. 23 2014 2569 2582
    • (2014) IEEE Trans. Image Process. , vol.23 , pp. 2569-2582
    • Peleg, T.1    Elad, M.2
  • 172
    • 84906484697 scopus 로고    scopus 로고
    • Learning a deep convolutional network for image super-resolution
    • C. Dong, C.C. Loy, K. He, et al., Learning a deep convolutional network for image super-resolution, in: Proceedings of the Computer Vision-ECCV, Springer, 2014, pp. 184-199.
    • (2014) Proceedings of the Computer Vision-ECCV , pp. 184-199
    • Dong, C.1    Loy, C.C.2    He, K.3
  • 175
    • 79956214392 scopus 로고    scopus 로고
    • Vehicle license plate super-resolution using soft learning prior
    • Y. Tian, K.-H. Yap, and Y. He Vehicle license plate super-resolution using soft learning prior Multimed. Tools Appl. 60 2012 519 535
    • (2012) Multimed. Tools Appl. , vol.60 , pp. 519-535
    • Tian, Y.1    Yap, K.-H.2    He, Y.3
  • 176
    • 84896958866 scopus 로고    scopus 로고
    • Novel example-based method for super-resolution and denoising of medical images
    • D.-H. Trinh, M. Luong, F. Dibos, and et al. Novel example-based method for super-resolution and denoising of medical images IEEE Trans. Image Process. 23 2014 1882 1895
    • (2014) IEEE Trans. Image Process. , vol.23 , pp. 1882-1895
    • Trinh, D.-H.1    Luong, M.2    Dibos, F.3
  • 177
    • 84887842762 scopus 로고    scopus 로고
    • Fast acquisition and reconstruction of optical coherence tomography images via sparse representation
    • L. Fang, S. Li, R.P. McNabb, and et al. Fast acquisition and reconstruction of optical coherence tomography images via sparse representation IEEE Trans. Med. Imaging 32 2013 2034 2049
    • (2013) IEEE Trans. Med. Imaging , vol.32 , pp. 2034-2049
    • Fang, L.1    Li, S.2    McNabb, R.P.3
  • 178
    • 19944366982 scopus 로고    scopus 로고
    • MAP-based multiframe super-resolution image reconstruction
    • D. Zhang, H. Li, and M. Du, Fast MAP-based multiframe super-resolution image reconstruction Image Vis. Comput. 23 2005 671 679
    • (2005) Image Vis. Comput. , vol.23 , pp. 671-679
    • Zhang, D.1    Li, H.2    Du Fast, M.3
  • 181
    • 84873340760 scopus 로고    scopus 로고
    • Accelerating 3B single-molecule super-resolution microscopy with cloud computing
    • Y.S. Hu, X. Nan, P. Sengupta, and et al. Accelerating 3B single-molecule super-resolution microscopy with cloud computing Nat. Methods 10 2013 96 97
    • (2013) Nat. Methods , vol.10 , pp. 96-97
    • Hu, Y.S.1    Nan, X.2    Sengupta, P.3
  • 185
    • 84869097763 scopus 로고    scopus 로고
    • Robust super resolution of compressed video
    • X. Zhang, M. Tang, and R. Tong Robust super resolution of compressed video Vis. Comput. 28 2012 1167 1180
    • (2012) Vis. Comput. , vol.28 , pp. 1167-1180
    • Zhang, X.1    Tang, M.2    Tong, R.3
  • 188
    • 84887204287 scopus 로고    scopus 로고
    • Sparse representation-based MRI super-resolution reconstruction
    • Y.-H. Wang, J. Qiao, J.-B. Li, and et al. Sparse representation-based MRI super-resolution reconstruction Measurement 47 2014 946 953
    • (2014) Measurement , vol.47 , pp. 946-953
    • Wang, Y.-H.1    Qiao, J.2    Li, J.-B.3
  • 189
    • 34247508224 scopus 로고    scopus 로고
    • Super-resolution of remotely sensed images with variable-pixel linear reconstruction
    • M.T. Merino, and J. Nunez Super-resolution of remotely sensed images with variable-pixel linear reconstruction IEEE Trans. Geosci. Remote Sens. 45 2007 1446 1457
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , pp. 1446-1457
    • Merino, M.T.1    Nunez, J.2
  • 190
    • 64149115077 scopus 로고    scopus 로고
    • Superresolution construction of multispectral imagery based on local enhancement
    • M. Elbakary, and M. Alam Superresolution construction of multispectral imagery based on local enhancement IEEE Geosci. Remote Sens. Lett. 5 2008 276 279
    • (2008) IEEE Geosci. Remote Sens. Lett. , vol.5 , pp. 276-279
    • Elbakary, M.1    Alam, M.2
  • 191
    • 57649118737 scopus 로고    scopus 로고
    • A comparison of superresolution reconstruction methods for multi-angle CHRIS/Proba images
    • J.C.-W. Chan, J. Ma, and F. Canters A comparison of superresolution reconstruction methods for multi-angle CHRIS/Proba images SPIE Remote Sens. 2008 710904-1 710904-11
    • (2008) SPIE Remote Sens. , pp. 7109041-71090411
    • Chan, J.C.-W.1    Ma, J.2    Canters, F.3
  • 193
    • 84866481410 scopus 로고    scopus 로고
    • Remote sensing image subpixel mapping based on adaptive differential evolution
    • Y. Zhong, and L. Zhang Remote sensing image subpixel mapping based on adaptive differential evolution IEEE Trans. Syst., Man, Cybern., Part B: Cybern. 42 2012 1306 1329
    • (2012) IEEE Trans. Syst., Man, Cybern., Part B: Cybern. , vol.42 , pp. 1306-1329
    • Zhong, Y.1    Zhang, L.2
  • 194
    • 0037211218 scopus 로고    scopus 로고
    • Subpixel mapping of snow cover in forests by optical remote sensing
    • D. Vikhamar, and R. Solberg Subpixel mapping of snow cover in forests by optical remote sensing Remote Sens. Environ. 84 2003 69 82
    • (2003) Remote Sens. Environ. , vol.84 , pp. 69-82
    • Vikhamar, D.1    Solberg, R.2
  • 195
    • 67651152608 scopus 로고    scopus 로고
    • Development and testing of a subpixel mapping algorithm
    • Y. Ge, S. Li, and V.C. Lakhan Development and testing of a subpixel mapping algorithm IEEE Trans. Geosci. Remote Sens. 47 2009 2155 2164
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , pp. 2155-2164
    • Ge, Y.1    Li, S.2    Lakhan, V.C.3
  • 196
    • 84971314309 scopus 로고    scopus 로고
    • Super-resolution of hyperspectral images using compressive sensing based approach
    • R.C. Patel, and M. Joshi Super-resolution of hyperspectral images using compressive sensing based approach ISPRS Ann. Photogramm. Remote. Sens. Spat. Inf. Sci. 7 2012 83 88
    • (2012) ISPRS Ann. Photogramm. Remote. Sens. Spat. Inf. Sci. , vol.7 , pp. 83-88
    • Patel, R.C.1    Joshi, M.2
  • 199
    • 75749121856 scopus 로고    scopus 로고
    • Super-resolution reconstruction and higher-degree function deformation model based matching for Chang'E-1 lunar images
    • L. Li, Q. Yu, Y. Yuan, and et al. Super-resolution reconstruction and higher-degree function deformation model based matching for Chang'E-1 lunar images Sci. China Ser. E: Technol. Sci. 52 2009 3468 3476
    • (2009) Sci. China Ser. E: Technol. Sci. , vol.52 , pp. 3468-3476
    • Li, L.1    Yu, Q.2    Yuan, Y.3
  • 200
    • 77954621931 scopus 로고    scopus 로고
    • Super-resolution of THEMIS thermal infrared data: Compositional relationships of surface units below the 100 m scale on Mars
    • C.G. Hughes, and M.S. Ramsey Super-resolution of THEMIS thermal infrared data: compositional relationships of surface units below the 100 m scale on Mars Icarus 208 2010 704 720
    • (2010) Icarus , vol.208 , pp. 704-720
    • Hughes, C.G.1    Ramsey, M.S.2
  • 206
    • 33750593662 scopus 로고    scopus 로고
    • High-resolution iris image reconstruction from low-resolution imagery
    • R. Barnard, V. Pauca, T. Torgersen, and et al. High-resolution iris image reconstruction from low-resolution imagery SPIE Opt.+Photonics 2006 (63130D-1-63130D-13)
    • (2006) SPIE Opt.+Photonics , pp. 63130D1-63130D13
    • Barnard, R.1    Pauca, V.2    Torgersen, T.3
  • 207
  • 208
    • 34648826792 scopus 로고    scopus 로고
    • Multicolor super-resolution imaging with photo-switchable fluorescent probes
    • M. Bates, B. Huang, G.T. Dempsey, and et al. Multicolor super-resolution imaging with photo-switchable fluorescent probes Science 317 2007 1749 1753
    • (2007) Science , vol.317 , pp. 1749-1753
    • Bates, M.1    Huang, B.2    Dempsey, G.T.3
  • 209
    • 62549155396 scopus 로고    scopus 로고
    • Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure
    • G. Shtengel, J.A. Galbraith, C.G. Galbraith, and et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure Proc. Natl. Acad. Sci. 106 2009 3125 3130
    • (2009) Proc. Natl. Acad. Sci. , vol.106 , pp. 3125-3130
    • Shtengel, G.1    Galbraith, J.A.2    Galbraith, C.G.3
  • 210
    • 84864289137 scopus 로고    scopus 로고
    • Demonstration of super-resolution for tomographic SAR imaging in urban environment
    • X.X. Zhu, and R. Bamler Demonstration of super-resolution for tomographic SAR imaging in urban environment IEEE Trans. Geosci. Remote Sens. 50 2012 3150 3157
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , pp. 3150-3157
    • Zhu, X.X.1    Bamler, R.2
  • 211
    • 84859756388 scopus 로고    scopus 로고
    • Superresolution differential tomography: Experiments on identification of multiple scatterers in spaceborne sar data
    • F. Lombardini, and M. Pardini Superresolution differential tomography: experiments on identification of multiple scatterers in spaceborne sar data IEEE Trans. Geosci. Remote Sens. 50 2012 1117 1129
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , pp. 1117-1129
    • Lombardini, F.1    Pardini, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.