-
2
-
-
8344289127
-
-
Hassan, Y., Tazaki, E.: Interpretation of Rough Neural Networks as Emergent Model. In: G.Wang et al. (eds.) RSFDGrC 2003. LNAI, 2639, pp. 245-249. Springer, Heidelberg (2003).
-
Hassan, Y., Tazaki, E.: Interpretation of Rough Neural Networks as Emergent Model. In: G.Wang et al. (eds.) RSFDGrC 2003. LNAI, vol 2639, pp. 245-249. Springer, Heidelberg (2003).
-
-
-
-
3
-
-
34548710589
-
Emergent Rough Set Data Analysis
-
Peters, J. F, eds, Transactions on Rough Sets, 3135, pp, Springer, Heidelberg
-
Hassan, Y., Tazaki, E.: Emergent Rough Set Data Analysis. In: Peters, J. F. (eds.) Transactions on Rough Sets II 2004. LNCS, vol 3135, pp. 343-361. Springer, Heidelberg (2004).
-
(2004)
LNCS
, vol.2
, pp. 343-361
-
-
Hassan, Y.1
Tazaki, E.2
-
4
-
-
84949233005
-
Approximate Reasoning by Agents
-
Dunin-Keplicz, B, Nawarecki, E, eds, CEEMAS 2002, Springer, Heidelberg
-
Skowron, A.: Approximate Reasoning by Agents. In: Dunin-Keplicz, B., Nawarecki, E. (eds.) CEEMAS 2002. LNAI, vol 2296, pp. 3-14. Springer, Heidelberg (2002).
-
(2002)
LNAI
, vol.2296
, pp. 3-14
-
-
Skowron, A.1
-
5
-
-
8344247760
-
-
Hu, X.T., Han, J.: A New Rough Sets Model Based on Database Systems. In: Wang, G. et al. (eds.) RSFDGrC 2003. LNAI, 2639, pp. 114-121. Springer, Heidelberg (2003).
-
Hu, X.T., Han, J.: A New Rough Sets Model Based on Database Systems. In: Wang, G. et al. (eds.) RSFDGrC 2003. LNAI, vol 2639, pp. 114-121. Springer, Heidelberg (2003).
-
-
-
-
7
-
-
2942691454
-
A Rough Set Framework of Propositional Default Rules Data Mining
-
Pal, S.K, Skowron, A, eds, Springer, Singapore
-
Mollestad, T., Komorowski, J.: A Rough Set Framework of Propositional Default Rules Data Mining. In: Pal, S.K., Skowron, A. (eds.) Fuzzy Sets,Rough Sets and Decision Making Processes, pp. 1-15. Springer, Singapore (1998).
-
(1998)
Fuzzy Sets,Rough Sets and Decision Making Processes
, pp. 1-15
-
-
Mollestad, T.1
Komorowski, J.2
-
8
-
-
67449151066
-
-
Mollestad, T.: A Rough Set Approach to Data Mining: Extracting Logic of Default Rules from Data. Ph.D Thesis, Norwegian University of Science And Technology (1997).
-
Mollestad, T.: A Rough Set Approach to Data Mining: Extracting Logic of Default Rules from Data. Ph.D Thesis, Norwegian University of Science And Technology (1997).
-
-
-
-
9
-
-
84949747271
-
A Rough Set Framework for Data Mining of Propositional Default Rules
-
Michalewicz, Z, Ras, Z. R, eds, 96, pp, Springer, Heidelberg
-
Mollestad, T., Skowron, A.: A Rough Set Framework for Data Mining of Propositional Default Rules. In: Michalewicz, Z., Ras, Z. R. (eds.) Proc. Of the 9th Intl. Symposium on Intelligent Systems, ISMIS '96, pp. 448-457. Springer, Heidelberg (1996).
-
(1996)
Proc. Of the 9th Intl. Symposium on Intelligent Systems, ISMIS
, pp. 448-457
-
-
Mollestad, T.1
Skowron, A.2
-
12
-
-
28244452904
-
-
Jenssen, T. K., Komorowski, J., Ohrn, A.: Some Heuristics for Default Knowledge Discovery. In: Polkowski, L., Skowron, A. (eds.) RSCTC'98. LNAI, 1424, pp. 373- -381. Springer, Heidelberg (1998).
-
Jenssen, T. K., Komorowski, J., Ohrn, A.: Some Heuristics for Default Knowledge Discovery. In: Polkowski, L., Skowron, A. (eds.) RSCTC'98. LNAI, vol. 1424, pp. 373- -381. Springer, Heidelberg (1998).
-
-
-
-
14
-
-
2342594508
-
Rough Set As a Framework for Data Mining
-
Technical Report, Norwegian University of Science and Technology
-
Aasheim, O. T., Solheim, H. G.: Rough Set As a Framework for Data Mining. Technical Report, Norwegian University of Science and Technology (1996).
-
(1996)
-
-
Aasheim, O.T.1
Solheim, H.G.2
-
15
-
-
0035792575
-
Approach to Generating Rules for Expert Systems Using Rough Set Theory
-
Nguyen, H. P., Le, L. P., Pratit, S., Baets, B. D.: Approach to Generating Rules for Expert Systems Using Rough Set Theory. In: IEEE/IFSA World Congress and 20th NAFIPS International Conference, pp. 877-822 (2001).
-
(2001)
IEEE/IFSA World Congress and 20th NAFIPS International Conference
, pp. 877-822
-
-
Nguyen, H.P.1
Le, L.P.2
Pratit, S.3
Baets, B.D.4
|