메뉴 건너뛰기




Volumn 07-09-January-2007, Issue , 2007, Pages 1124-1132

Games of fixed rank: A hierarchy of bimatrix games

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; APPROXIMATION ALGORITHMS; GAME THEORY; OPTIMIZATION; POLYNOMIALS; QUADRATIC PROGRAMMING; TELECOMMUNICATION NETWORKS;

EID: 84969172320     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (30)

References (26)
  • 8
    • 84969281984 scopus 로고
    • On a class of Nashsolvable bimatrix games and some related Nash subsets
    • K. Isaacson and C.B. Millham. On a class of Nashsolvable bimatrix games and some related Nash subsets. Naval. Res. Logist. Quarterly 23:311-319, 1980.
    • (1980) Naval. Res. Logist. Quarterly , vol.23 , pp. 311-319
    • Isaacson, K.1    Millham, C.B.2
  • 10
    • 0031256798 scopus 로고    scopus 로고
    • On the maximal number of Nash equilibria in an n × n bimatrix game
    • H. Keiding. On the maximal number of Nash equilibria in an n × n bimatrix game. Games Econom. Behavior 21:148-160, 1997.
    • (1997) Games Econom. Behavior , vol.21 , pp. 148-160
    • Keiding, H.1
  • 15
    • 0042204039 scopus 로고    scopus 로고
    • Generic 4 × 4 two person games have at most 15 Nash equilibria
    • A. McLennan and I.-U. Park. Generic 4 × 4 two person games have at most 15 Nash equilibria. Games Econom. Behavior 26:111-130, 1997.
    • (1997) Games Econom. Behavior , vol.26 , pp. 111-130
    • McLennan, A.1    Park, I.-U.2
  • 16
    • 0002021736 scopus 로고
    • Equilibrium points in n-person games
    • J. Nash. Equilibrium points in n-person games. Proc. Amer. Math. Soc. 36:48-49, 1950.
    • (1950) Proc. Amer. Math. Soc. , vol.36 , pp. 48-49
    • Nash, J.1
  • 17
    • 0001730497 scopus 로고
    • Non-cooperative games
    • J. Nash. Non-cooperative games. Annals of Mathematics 54:286-295, 1951.
    • (1951) Annals of Mathematics , vol.54 , pp. 286-295
    • Nash, J.1
  • 21
    • 0036828589 scopus 로고    scopus 로고
    • A bound on the number of Nash equilibria in a coordination game
    • T. Quint and M. Shubik. A bound on the number of Nash equilibria in a coordination game. Economic Letters 77:323-327, 2002.
    • (2002) Economic Letters , vol.77 , pp. 323-327
    • Quint, T.1    Shubik, M.2
  • 22
    • 17744375213 scopus 로고    scopus 로고
    • Exponentially many steps for finding a Nash equilibrium in a bimatrix game
    • (Rome)
    • R. Savani and B. von Stengel. Exponentially many steps for finding a Nash equilibrium in a bimatrix game. In Proc. 45th IEEE Foundations of Computer Science (Rome), 258-257, 2004.
    • (2004) Proc. 45th IEEE Foundations of Computer Science , pp. 257-258
    • Savani, R.1    Von Stengel, B.2
  • 23
    • 0033463683 scopus 로고    scopus 로고
    • New maximal numbers of equilibria in bimatrix games
    • B. von Stengel. New maximal numbers of equilibria in bimatrix games. Discrete Comput. Geom. 21:557-568, 1999.
    • (1999) Discrete Comput. Geom. , vol.21 , pp. 557-568
    • Von Stengel, B.1
  • 24
    • 67649370955 scopus 로고    scopus 로고
    • Computing equilibria for two-person games
    • R.J. Aumann, S. Hart (eds.), North-Holland, Amsterdam
    • B. von Stengel. Computing equilibria for two-person games. In R.J. Aumann, S. Hart (eds.), Handbook of Game Theory, North-Holland, Amsterdam, 2002.
    • (2002) Handbook of Game Theory
    • Von Stengel, B.1
  • 26
    • 0346024729 scopus 로고
    • Approximation algorithms for indefinite quadratic programming
    • S. Vavasis. Approximation algorithms for indefinite quadratic programming. Math. Program. 57:279-311, 1992.
    • (1992) Math. Program. , vol.57 , pp. 279-311
    • Vavasis, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.