-
8
-
-
84969281984
-
On a class of Nashsolvable bimatrix games and some related Nash subsets
-
K. Isaacson and C.B. Millham. On a class of Nashsolvable bimatrix games and some related Nash subsets. Naval. Res. Logist. Quarterly 23:311-319, 1980.
-
(1980)
Naval. Res. Logist. Quarterly
, vol.23
, pp. 311-319
-
-
Isaacson, K.1
Millham, C.B.2
-
10
-
-
0031256798
-
On the maximal number of Nash equilibria in an n × n bimatrix game
-
H. Keiding. On the maximal number of Nash equilibria in an n × n bimatrix game. Games Econom. Behavior 21:148-160, 1997.
-
(1997)
Games Econom. Behavior
, vol.21
, pp. 148-160
-
-
Keiding, H.1
-
13
-
-
0242624716
-
Playing large games using simple strategies
-
(San Diego, CA)
-
R.J. Lipton, E. Markakis, and A. Mehta. Playing large games using simple strategies. In Proc. ACM Conf. on Electronic Commerce (San Diego, CA), 36-41, 2003.
-
(2003)
Proc. ACM Conf. on Electronic Commerce
, pp. 36-41
-
-
Lipton, R.J.1
Markakis, E.2
Mehta, A.3
-
15
-
-
0042204039
-
Generic 4 × 4 two person games have at most 15 Nash equilibria
-
A. McLennan and I.-U. Park. Generic 4 × 4 two person games have at most 15 Nash equilibria. Games Econom. Behavior 26:111-130, 1997.
-
(1997)
Games Econom. Behavior
, vol.26
, pp. 111-130
-
-
McLennan, A.1
Park, I.-U.2
-
16
-
-
0002021736
-
Equilibrium points in n-person games
-
J. Nash. Equilibrium points in n-person games. Proc. Amer. Math. Soc. 36:48-49, 1950.
-
(1950)
Proc. Amer. Math. Soc.
, vol.36
, pp. 48-49
-
-
Nash, J.1
-
17
-
-
0001730497
-
Non-cooperative games
-
J. Nash. Non-cooperative games. Annals of Mathematics 54:286-295, 1951.
-
(1951)
Annals of Mathematics
, vol.54
, pp. 286-295
-
-
Nash, J.1
-
21
-
-
0036828589
-
A bound on the number of Nash equilibria in a coordination game
-
T. Quint and M. Shubik. A bound on the number of Nash equilibria in a coordination game. Economic Letters 77:323-327, 2002.
-
(2002)
Economic Letters
, vol.77
, pp. 323-327
-
-
Quint, T.1
Shubik, M.2
-
22
-
-
17744375213
-
Exponentially many steps for finding a Nash equilibrium in a bimatrix game
-
(Rome)
-
R. Savani and B. von Stengel. Exponentially many steps for finding a Nash equilibrium in a bimatrix game. In Proc. 45th IEEE Foundations of Computer Science (Rome), 258-257, 2004.
-
(2004)
Proc. 45th IEEE Foundations of Computer Science
, pp. 257-258
-
-
Savani, R.1
Von Stengel, B.2
-
23
-
-
0033463683
-
New maximal numbers of equilibria in bimatrix games
-
B. von Stengel. New maximal numbers of equilibria in bimatrix games. Discrete Comput. Geom. 21:557-568, 1999.
-
(1999)
Discrete Comput. Geom.
, vol.21
, pp. 557-568
-
-
Von Stengel, B.1
-
24
-
-
67649370955
-
Computing equilibria for two-person games
-
R.J. Aumann, S. Hart (eds.), North-Holland, Amsterdam
-
B. von Stengel. Computing equilibria for two-person games. In R.J. Aumann, S. Hart (eds.), Handbook of Game Theory, North-Holland, Amsterdam, 2002.
-
(2002)
Handbook of Game Theory
-
-
Von Stengel, B.1
-
26
-
-
0346024729
-
Approximation algorithms for indefinite quadratic programming
-
S. Vavasis. Approximation algorithms for indefinite quadratic programming. Math. Program. 57:279-311, 1992.
-
(1992)
Math. Program.
, vol.57
, pp. 279-311
-
-
Vavasis, S.1
|