메뉴 건너뛰기




Volumn 32, Issue 2, 2013, Pages 364-375

Splat feature classification with application to retinal hemorrhage detection in fundus images

Author keywords

Diabetic retinopathy (DR); fundus image; retinal hemorrhage; splat feature classification

Indexed keywords

AUTOMATED SCREENING; COLOR IMAGES; DATA SETS; DIABETIC RETINOPATHY; EXPERT ANNOTATIONS; FEATURE CLASSIFICATION; FILTER APPROACH; FUNDUS IMAGE; NONOVERLAPPING; OBJECT DETECTION; OPTIMAL SUBSETS; RECEIVER OPERATING CHARACTERISTIC CURVES; RELIABLE DETECTION; RETINAL HEMORRHAGES; SPATIAL LOCATION; TEXTURE INFORMATION; WRAPPER APPROACH;

EID: 84873307847     PISSN: 02780062     EISSN: None     Source Type: Journal    
DOI: 10.1109/TMI.2012.2227119     Document Type: Article
Times cited : (174)

References (32)
  • 2
    • 84863316633 scopus 로고    scopus 로고
    • Algorithms for the automated detection of diabetic retinopathy using digital fundus images: A review
    • Apr. .
    • O. Faust, R. AcharyaU., E. Y. K. Ng,K.-H. Ng, and J. S. Suri, Algorithms for the automated detection of diabetic retinopathy using digital fundus images: A review, J. Med. Syst., Apr. .
    • J. Med. Syst.
    • Faust, O.1    Acharya, R.2    Ng, U.E.Y.K.3    Ng, K.-H.4    Suri, J.S.5
  • 3
    • 65549099337 scopus 로고    scopus 로고
    • Information fusion for diabetic retinopathy CAD in digital color fundus photographs
    • May
    • M. Niemeijer, M. D. Abramoff, and B. van Ginneken, Information fusion for diabetic retinopathy CAD in digital color fundus photographs, IEEE Trans. Med. Imag., no. 5, pp. 775-785, May .
    • IEEE Trans. Med. Imag. , Issue.5 , pp. 775-785
    • Niemeijer, M.1    Abramoff, M.D.2    Van Ginneken, B.3
  • 5
    • 79551603135 scopus 로고    scopus 로고
    • Optimal filter framework for automated, instantaneous detection of lesions in retinal images
    • Feb
    • G. Quellec, S. Russell, and M. Abràmoff, Optimal filter framework for automated, instantaneous detection of lesions in retinal images, IEEE Trans. Med. Imag., vol. 30, no. 2, pp. 523-533, Feb. 2011.
    • (2011) IEEE Trans. Med. Imag. , vol.30 , Issue.2 , pp. 523-533
    • Quellec, G.1    Russell, S.2    Abràmoff, M.3
  • 6
    • 44349193883 scopus 로고    scopus 로고
    • Improvement of automatic hemorrhages detection methods using brightness correction on fundus images
    • Y. Hatanaka, T. Nakagawa, Y. Hayashi, M. Kakogawa, A. Sawada, K. Kawase, T. Hara, and H. Fujita, Improvement of automatic hemorrhages detection methods using brightness correction on fundus images, in Proc. SPIE, 2008, vol. 6915, pp. 69 153E-1-69 153E-10.
    • (2008) Proc. SPIE , vol.6915
    • Hatanaka, Y.1    Nakagawa, T.2    Hayashi, Y.3    Kakogawa, M.4    Sawada, A.5    Kawase, K.6    Hara, T.7    Fujita, H.8
  • 9
    • 33749263388 scopus 로고    scopus 로고
    • Batchmode active learning and its application to medical image classification
    • S. C.H.Hoi, R. Jin, J. Zhu, andM. R. Lyu, Batchmode active learning and its application to medical image classification, in Proc. ICML, 2006, pp. 417-424.
    • (2006) Proc. ICML , pp. 417-424
    • Hoi, S.C.H.1    Jin, R.2    Zhu, J.3    Lyu, M.R.4
  • 10
    • 0025554257 scopus 로고
    • Toboggan contrast enhancement for contrast segmentation
    • J. Fairfield, Toboggan contrast enhancement for contrast segmentation, in Proc. Int. Conf. Pattern Recognit., 1990, vol. 1, pp. 712-716.
    • (1990) Proc. Int. Conf. Pattern Recognit. , vol.1 , pp. 712-716
    • Fairfield, J.1
  • 11
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: Special issue on learning from imbalanced data sets
    • N. V. Chawla, N. Japkowicz, and A. Kotcz, Editorial: Special issue on learning from imbalanced data sets, SIGKDD Explorations, no. 1, pp. 1-6, 2004.
    • (2004) SIGKDD Explorations , Issue.1 , pp. 1-6
    • Chawla, N.V.1    Japkowicz, N.2    Kotcz, A.3
  • 12
    • 34547150680 scopus 로고    scopus 로고
    • Stereo for image-based rendering using image over-segmentation
    • Feb
    • C. L. Zitnick and S. B. Kang, Stereo for image-based rendering using image over-segmentation, Int. J. Comput. Vis., no. 1, pp. 49-65, Feb. .
    • Int. J. Comput. Vis. , Issue.1 , pp. 49-65
    • Zitnick, C.L.1    Kang, S.B.2
  • 13
    • 0345414167 scopus 로고    scopus 로고
    • Learning a classification model for segmentation
    • X. Ren and J. Malik, Learning a classification model for segmentation, in Int. Conf. Comput. Vis., 2003, vol. 1, pp. 10-17.
    • (2003) Int. Conf. Comput. Vis. , vol.1 , pp. 10-17
    • Ren, X.1    Malik, J.2
  • 15
    • 32944475758 scopus 로고    scopus 로고
    • Comparison between immersion-based and toboggan-based watershed image segmentation
    • Mar. .
    • Y.-C. Lin, Y.-P. Tsai, Y.-P. Hung, and Z.-C. Shih, Comparison between immersion-based and toboggan-based watershed image segmentation, IEEE Trans. Image Process., no. 3, pp. 632-40, Mar. .
    • IEEE Trans. Image Process. , Issue.3 , pp. 632-640
    • Lin, Y.-C.1    Tsai, Y.-P.2    Hung, Y.-P.3    Shih, Z.-C.4
  • 18
  • 19
    • 0041525298 scopus 로고    scopus 로고
    • Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels
    • Aug
    • A. Hoover and M. Goldbaum, Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels, IEEE Trans. Med. Imag., vol. 22, no. 8, pp. 951-958, Aug. 2003.
    • (2003) IEEE Trans. Med. Imag. , vol.22 , Issue.8 , pp. 951-958
    • Hoover, A.1    Goldbaum, M.2
  • 20
    • 70350422327 scopus 로고    scopus 로고
    • Fast detection of the optic disc and fovea in color fundus photographs
    • Dec. .
    • M. Niemeijer, M. D. Abràmoff, and B. van Ginneken, Fast detection of the optic disc and fovea in color fundus photographs, Med. Image Anal., no. 6, pp. 859-870, Dec. .
    • Med. Image Anal. , Issue.6 , pp. 859-870
    • Niemeijer, M.1    Abràmoff, M.D.2    Van Ginneken, B.3
  • 24
    • 8644258401 scopus 로고    scopus 로고
    • A statistical approach to texture classification from single images
    • M. Varma and A. Zisserman, A statistical approach to texture classification from single images, Int. J. Comput. Vis., vol. 62, no. 1-2, pp. 61-81, 2005.
    • (2005) Int. J. Comput. Vis. , vol.62 , Issue.1-2 , pp. 61-81
    • Varma, M.1    Zisserman, A.2
  • 27
    • 0018200258 scopus 로고
    • Textural features corresponsing to visual perception
    • Jun
    • H. Tamura, S. Mori, and T. Yamawaki, Textural features corresponsing to visual perception, IEEE Trans. Syst., Man Cybern., vol. 8, no. 6, pp. 460-472, Jun. 1978.
    • (1978) IEEE Trans. Syst., Man Cybern. , vol.8 , Issue.6 , pp. 460-472
    • Tamura, H.1    Mori, S.2    Yamawaki, T.3
  • 28
    • 5644287725 scopus 로고    scopus 로고
    • Comparative study of retinal vessel segmentation methods on a new publicly available database
    • M.Niemeijer, J. Staal, B. vanGinneken, M. Loog, andM.D.Abramoff, Comparative study of retinal vessel segmentation methods on a new publicly available database, in Proc. SPIE, pp. 648-656.
    • Proc. SPIE , pp. 648-656
    • Niemeijer, M.1    Staal, J.2    Van Ginneken, B.3    Loog, M.4    Abramoff, M.D.5
  • 29
    • 33846265680 scopus 로고    scopus 로고
    • Segmentation of the optic disc, macula and vascular arch in fundus photographs
    • Jan.
    • M. Niemeijer, M. D. Abràmoff, and B. van Ginneken, Segmentation of the optic disc, macula and vascular arch in fundus photographs, IEEE Trans. Med. Imag., no. 1, pp. 116-127, Jan. .
    • IEEE Trans. Med. Imag. , Issue.1 , pp. 116-127
    • Niemeijer, M.1    Abràmoff, M.D.2    Van Ginneken, B.3
  • 30
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G. John, Wrappers for feature subset selection, Artif. Intell., vol. 97, no. 1-2, pp. 272-324, 1997.
    • (1997) Artif. Intell. , vol.97 , Issue.1-2 , pp. 272-324
    • Kohavi, R.1    John, G.2
  • 32
    • 84873852053 scopus 로고    scopus 로고
    • Active learning for an efficient training strategy of computer-aided diagnosis systems: Application to diabetic retinopathy screening
    • C. Sànchez, M. Niemeijer, M. Abràmoff, and B. vanGinneken, Active learning for an efficient training strategy of computer-aided diagnosis systems: Application to diabetic retinopathy screening, Med. Image Comput. Comput. Assist. Intervent., vol. 13, no. 3, pp. 603-610, 2010.
    • (2010) Med. Image Comput. Comput. Assist. Intervent. , vol.13 , Issue.3 , pp. 603-610
    • Sànchez, C.1    Niemeijer, M.2    Abràmoff, M.3    Vanginneken, B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.