메뉴 건너뛰기




Volumn , Issue , 2016, Pages 16-25

Throughput-optimized openCL-based FPGA accelerator for large-scale convolutional neural networks

Author keywords

Convolutional neural networks; FPGA; OpenCL; Optimization

Indexed keywords

ACCELERATION; COMPUTER HARDWARE; COMPUTER VISION; CONVOLUTION; ENERGY EFFICIENCY; FACE RECOGNITION; HARDWARE; HIGH LEVEL SYNTHESIS; IMAGE CLASSIFICATION; LOGIC GATES; NEURAL NETWORKS; OPTIMIZATION; REAL TIME SYSTEMS; RECONFIGURABLE HARDWARE; THROUGHPUT;

EID: 84966471227     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2847263.2847276     Document Type: Conference Paper
Times cited : (552)

References (27)
  • 1
  • 2
    • 84947041871 scopus 로고    scopus 로고
    • ImageNet large-scale visual recognition challenge
    • O. Russakovsky, et al. ImageNet large-scale visual recognition challenge. In Int. J. Computer Vision, 2015.
    • (2015) Int. J. Computer Vision
    • Russakovsky, O.1
  • 3
    • 84911364368 scopus 로고    scopus 로고
    • Large-scale video classification with convolutional neural networks
    • A. Karpathy, et al. Large-scale video classification with convolutional neural networks. In CVPR, 1725-1732, 2014.
    • (2014) CVPR , pp. 1725-1732
    • Karpathy, A.1
  • 4
    • 84941368895 scopus 로고    scopus 로고
    • A convolutional neural network cascade for face detection
    • H. Li, Z. Lin, X. Shen, J. Brandt and G. Hua. A convolutional neural network cascade for face detection. In CVPR, 5325-5334, 2015.
    • (2015) CVPR , pp. 5325-5334
    • Li, H.1    Lin, Z.2    Shen, X.3    Brandt, J.4    Hua, G.5
  • 7
    • 56449095373 scopus 로고    scopus 로고
    • A unified architecture for natural language processing: Deep neural networks with multitask learning
    • R. Collobert and J. Weston. A unified architecture for natural language processing: Deep neural networks with multitask learning. In Int. Conf. on Machine Learning, 160-167, 2008.
    • (2008) Int. Conf. on Machine Learning , pp. 160-167
    • Collobert, R.1    Weston, J.2
  • 8
  • 9
    • 84937522268 scopus 로고    scopus 로고
    • Going deeper with convolutions
    • C. Szegedy, et al. Going deeper with convolutions. In CVPR, 1-9, 2015.
    • (2015) CVPR , pp. 1-9
    • Szegedy, C.1
  • 10
    • 77956000290 scopus 로고    scopus 로고
    • Hardware accelerated convolutional neural networks for synthetic vision systems
    • C. Farabet, et al. Hardware accelerated convolutional neural networks for synthetic vision systems. In ISCAS, 257-260, 2010.
    • (2010) ISCAS , pp. 257-260
    • Farabet, C.1
  • 11
    • 77955007393 scopus 로고    scopus 로고
    • A dynamically configurable coprocessor for convolutional neural networks
    • S. Chakradhar, et al. A dynamically configurable coprocessor for convolutional neural networks. In ISCA, 247-257, 2010.
    • (2010) ISCA , pp. 247-257
    • Chakradhar, S.1
  • 12
    • 84892533708 scopus 로고    scopus 로고
    • Memory-centric accelerator design for convolutional neural networks
    • M. Peemen, et al. Memory-centric accelerator design for convolutional neural networks. In ICCD, 13-19, 2013.
    • (2013) ICCD , pp. 13-19
    • Peemen, M.1
  • 13
    • 84962921765 scopus 로고    scopus 로고
    • Optimizing FPGA-based accelerator design for deep convolutional neural networks
    • C. Zhang, et al. Optimizing FPGA-based accelerator design for deep convolutional neural networks. In ACM Int. Symp. On Field- Programmable Gate Arrays, 161-170, 2015.
    • (2015) ACM Int. Symp. On Field- Programmable Gate Arrays , pp. 161-170
    • Zhang, C.1
  • 14
    • 84908529622 scopus 로고    scopus 로고
    • A 240 G-ops/s mobile coprocessor for deep neural networks
    • V. Gokhale, et al. A 240 G-ops/s mobile coprocessor for deep neural networks. In CVPR Workshops, 696-701, 2014.
    • (2014) CVPR Workshops , pp. 696-701
    • Gokhale, V.1
  • 15
    • 84988406311 scopus 로고    scopus 로고
    • DaDianNao: A machine-learning supercomputer
    • Y. Chen, et al. DaDianNao: A machine-learning supercomputer. In IEEE/ACM Int. Symp. on Microarchitecture, 602-622, 2014.
    • (2014) IEEE/ACM Int. Symp. on Microarchitecture , pp. 602-622
    • Chen, Y.1
  • 16
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • A. Krizhevsky, et al. ImageNet classification with deep convolutional neural networks. In NIPS, 1097-1105, 2012.
    • (2012) NIPS , pp. 1097-1105
    • Krizhevsky, A.1
  • 18
    • 77956502203 scopus 로고    scopus 로고
    • A theoretical analysis of feature pooling in visual recognition
    • Y.L. Boureau, et al. A Theoretical Analysis of Feature Pooling in Visual Recognition. In Int. Conf. on Machine Learning, 2010.
    • (2010) Int. Conf. on Machine Learning
    • Boureau, Y.L.1
  • 19
    • 84898971588 scopus 로고    scopus 로고
    • Predicting parameters in deep learning
    • M. Denil, et al. Predicting parameters in deep learning. In NIPS, 2148-2156, 2013.
    • (2013) NIPS , pp. 2148-2156
    • Denil, M.1
  • 21
    • 70349100958 scopus 로고    scopus 로고
    • version 1.1.44
    • Khronos OpenCL Working Group. The OpenCL Specification, version 1.1.44, 2011.
    • (2011) The OpenCL Specification
  • 22
    • 84987645079 scopus 로고    scopus 로고
    • Gzip on a chip: High performance lossless data compression on FPGAS using OpenCL
    • M. S. Abdelfattah, et al. Gzip on a chip: High performance lossless data compression on FPGAS using OpenCL. In Int. Workshop on OpenCL 2014.
    • (2014) Int. Workshop on OpenCL
    • Abdelfattah, M.S.1
  • 24
    • 84966597954 scopus 로고    scopus 로고
    • Available online at
    • Altera OpenCL design examples. Available online at https://www.altera.com/support/support-resources/designexamples/design-software/opencl.html
    • Altera OpenCL Design Examples
  • 26
    • 84966597996 scopus 로고    scopus 로고
    • Available online at
    • DE5-Net FPGA kit user manual. Available online at ftp://ftp.altera.com/up/pub/Altera-Material/Boards/DE5/DE5-User-Manual.pdf
    • DE5-Net FPGA Kit User Manual


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.