메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 730-738

Sparse local embeddings for extreme multi-label classification

Author keywords

[No Author keywords available]

Indexed keywords

FORECASTING; INFORMATION SCIENCE;

EID: 84965155847     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (495)

References (31)
  • 1
    • 84893108239 scopus 로고    scopus 로고
    • Multi-label learning with millions of labels: Recommending advertiser bid phrases for web pages
    • R. Agrawal, A. Gupta, Y. Prabhu, and M. Varma. Multi-label learning with millions of labels: Recommending advertiser bid phrases for web pages. In WWW, pages 13-24, 2013.
    • (2013) WWW , pp. 13-24
    • Agrawal, R.1    Gupta, A.2    Prabhu, Y.3    Varma, M.4
  • 2
    • 84897475513 scopus 로고    scopus 로고
    • Label partitioning for sublinear ranking
    • J. Weston, A. Makadia, and H. Yee. Label partitioning for sublinear ranking. In ICML, 2013.
    • (2013) ICML
    • Weston, J.1    Makadia, A.2    Yee, H.3
  • 3
    • 77956528679 scopus 로고    scopus 로고
    • Multi-label prediction via compressed sensing
    • D. Hsu, S. Kakade, J. Langford, and T. Zhang. Multi-label prediction via compressed sensing. In NIPS, 2009.
    • (2009) NIPS
    • Hsu, D.1    Kakade, S.2    Langford, J.3    Zhang, T.4
  • 4
    • 84898977831 scopus 로고    scopus 로고
    • Robust bloom filters for large multilabel classification tasks
    • M. Cissé, N. Usunier, T. Artières, and P. Gallinari. Robust bloom filters for large multilabel classification tasks. In NIPS, pages 1851-1859, 2013.
    • (2013) NIPS , pp. 1851-1859
    • Cissé, M.1    Usunier, N.2    Artières, T.3    Gallinari, P.4
  • 6
    • 84867137594 scopus 로고    scopus 로고
    • The landmark selection method for multiple output prediction
    • K. Balasubramanian and G. Lebanon. The landmark selection method for multiple output prediction. In ICML, 2012.
    • (2012) ICML
    • Balasubramanian, K.1    Lebanon, G.2
  • 7
    • 84897481254 scopus 로고    scopus 로고
    • Efficient multi-label classification with many labels
    • W. Bi and J. T.-Y. Kwok. Efficient multi-label classification with many labels. In ICML, 2013.
    • (2013) ICML
    • Bi, W.1    Kwok, J.T.-Y.2
  • 8
    • 84862283912 scopus 로고    scopus 로고
    • Multi-label output codes using canonical correlation analysis
    • Y. Zhang and J. G. Schneider. Multi-label output codes using canonical correlation analysis. In AISTATS, pages 873-882, 2011.
    • (2011) AISTATS , pp. 873-882
    • Zhang, Y.1    Schneider, J.G.2
  • 9
    • 84919793029 scopus 로고    scopus 로고
    • Large-scale multi-label learning with missing labels
    • H.-F. Yu, P. Jain, P. Kar, and I. S. Dhillon. Large-scale multi-label learning with missing labels. ICML, 2014.
    • (2014) ICML
    • Yu, H.-F.1    Jain, P.2    Kar, P.3    Dhillon, I.S.4
  • 10
    • 84877784525 scopus 로고    scopus 로고
    • Feature-aware label space dimension reduction for multi-label classification
    • Y.-N. Chen and H.-T. Lin. Feature-aware label space dimension reduction for multi-label classification. In NIPS, pages 1538-1546, 2012.
    • (2012) NIPS , pp. 1538-1546
    • Chen, Y.-N.1    Lin, H.-T.2
  • 11
    • 84868107507 scopus 로고    scopus 로고
    • Multi-label classification with error-correcting codes
    • C.-S. Feng and H.-T. Lin. Multi-label classification with error-correcting codes. JMLR, 20, 2011.
    • (2011) JMLR , vol.20
    • Feng, C.-S.1    Lin, H.-T.2
  • 12
    • 65449189832 scopus 로고    scopus 로고
    • Extracting shared subspace for multi-label classification
    • S. Ji, L. Tang, S. Yu, and J. Ye. Extracting shared subspace for multi-label classification. In KDD, 2008.
    • (2008) KDD
    • Ji, S.1    Tang, L.2    Yu, S.3    Ye, J.4
  • 13
    • 84867117593 scopus 로고    scopus 로고
    • Wsabie: Scaling up to large vocabulary image annotation
    • J. Weston, S. Bengio, and N. Usunier. Wsabie: Scaling up to large vocabulary image annotation. In IJCAI, 2011.
    • (2011) IJCAI
    • Weston, J.1    Bengio, S.2    Usunier, N.3
  • 14
    • 84949912504 scopus 로고    scopus 로고
    • Multi-label classification via feature-aware implicit label space encoding
    • Z. Lin, G. Ding, M. Hu, and J. Wang. Multi-label classification via feature-aware implicit label space encoding. In ICML, pages 325-333, 2014.
    • (2014) ICML , pp. 325-333
    • Lin, Z.1    Ding, G.2    Hu, M.3    Wang, J.4
  • 15
    • 84907027193 scopus 로고    scopus 로고
    • FastXML: A fast, accurate and stable tree-classifier for extreme multi-label learning
    • Y. Prabhu and M. Varma. FastXML: a fast, accurate and stable tree-classifier for extreme multi-label learning. In KDD, pages 263-272, 2014.
    • (2014) KDD , pp. 263-272
    • Prabhu, Y.1    Varma, M.2
  • 17
    • 59549087165 scopus 로고    scopus 로고
    • On Discriminative vs. Generative classifiers: A comparison of logistic regression and naive Bayes
    • A. Ng and M. Jordan. On Discriminative vs. Generative classifiers: A comparison of logistic regression and naive Bayes. In NIPS, 2002.
    • (2002) NIPS
    • Ng, A.1    Jordan, M.2
  • 18
    • 33750743381 scopus 로고    scopus 로고
    • An introduction to nonlinear dimensionality reduction by maximum variance unfolding
    • K. Q. Weinberger and L. K. Saul. An introduction to nonlinear dimensionality reduction by maximum variance unfolding. In AAAI, pages 1683-1686, 2006.
    • (2006) AAAI , pp. 1683-1686
    • Weinberger, K.Q.1    Saul, L.K.2
  • 19
    • 80053140950 scopus 로고    scopus 로고
    • Minimum volume embedding
    • B. Shaw and T. Jebara. Minimum volume embedding. In AISTATS, pages 460-467, 2007.
    • (2007) AISTATS , pp. 460-467
    • Shaw, B.1    Jebara, T.2
  • 20
    • 85162034614 scopus 로고    scopus 로고
    • Guaranteed rank minimization via singular value projection
    • P. Jain, R. Meka, and I. S. Dhillon. Guaranteed rank minimization via singular value projection. In NIPS, pages 937-945, 2010.
    • (2010) NIPS , pp. 937-945
    • Jain, P.1    Meka, R.2    Dhillon, I.S.3
  • 22
    • 84897547320 scopus 로고    scopus 로고
    • On the generalization ability of online learning algorithms for pairwise loss functions
    • P. Kar, K. B. Sriperumbudur, P. Jain, and H. Karnick. On the Generalization Ability of Online Learning Algorithms for Pairwise Loss Functions. In ICML, 2013.
    • (2013) ICML
    • Kar, P.1    Sriperumbudur, K.B.2    Jain, P.3    Karnick, H.4
  • 28
    • 74849083829 scopus 로고    scopus 로고
    • Effective and efficient multilabel classification in domains with large number of labels
    • G. Tsoumakas, I. Katakis, and I. Vlahavas. Effective and efficient multilabel classification in domains with large number of labels. In ECML/PKDD, 2008.
    • (2008) ECML/PKDD
    • Tsoumakas, G.1    Katakis, I.2    Vlahavas, I.3
  • 29
    • 85043619977 scopus 로고    scopus 로고
    • Efficient pairwise multilabel classification for large-scale problems in the legal domain
    • J. Mencía and Fürnkranz E. L. Efficient pairwise multilabel classification for large-scale problems in the legal domain. In ECML/PKDD, 2008.
    • (2008) ECML/PKDD
    • Mencía, J.1    Fürnkranz, E.L.2
  • 30
    • 84877784525 scopus 로고    scopus 로고
    • Feature-aware label space dimension reduction for multi-label classification
    • Y.-N. Chen and H.-T. Lin. Feature-aware label space dimension reduction for multi-label classification. In NIPS, pages 1538-1546, 2012.
    • (2012) NIPS , pp. 1538-1546
    • Chen, Y.-N.1    Lin, H.-T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.